
CHAPTER 3

Second Order Linear Differential Equations

3.1 Introduction; Basic Terminology and Results

Any second order differential equation can be written as

F (x, y, y′, y′′) = 0

This chapter is concerned with special yet very important second order equations, namely
linear equations.

Recall that a first order linear differential equation is an equation which can be written
in the form

y′ + p(x)y = q(x)

where p and q are continuous functions on some interval I . A second order, linear
differential equation has an analogous form.

DEFINITION 1. A second order linear differential equation is an equation which can
be written in the form

y′′ + p(x)y′ + q(x)y = f(x) (1)

where p, q, and f are continuous functions on some interval I .

The functions p and q are called the coefficients of the equation; the function f on
the right-hand side is called the forcing function or the nonhomogeneous term . The term
“forcing function” comes from applications of second-order linear equations; the description
“nonhomogeneous” is given below.

A second order equation which is not linear is said to be nonlinear .

Examples

(a) y′′ − 5y′ + 6y = 3 cos 2x. Here p(x) = −5, q(x) = 6, f(x) = 3 cos 2x are
continuous functions on (−∞,∞).

(b) x2 y′′ − 2x y′ + 2y = 0. This equation is linear because it can be written in the form
(1) as

y′′ − 2
x
y′ +

2
x2
y = 0

where p(x) = 2/x, q(x) = 2/x2, f(x) = 0 are continuous on any interval that does
not contain x = 0. For example, we could take I = (0,∞).
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(c) y′′ +xy2y′− y3 = exy is a nonlinear equation; this equation cannot be written in the
form (1). �

Remarks on “Linear.” Intuitively, a second order differential equation is linear if y′′

appears in the equation with exponent 1 only, and if either or both of y and y′ appear
in the equation, then they do so with exponent 1 only. Also, there are no so-called “cross-
product” terms, y y′, y y′′, y′ y′′. In this sense, it is easy to see that the equations in (a) and
(b) are linear, and the equation in (c) is nonlinear.

Set L[y] = y′′ + p(x)y′ + q(x)y. If we view L as an “operator” that transforms a twice
differentiable function y = y(x) into the continuous function

L[y(x)] = y′′(x) + p(x)y′(x) + q(x)y(x),

then, for any two twice differentiable functions y1(x) and y2(x),

L[y1(x) + y2(x)] = [y1(x) + y2(x)]′′ + p(x)[y1(x) + y2(x)]′ + q(x)[y1(x) + y2(x)]

= y′′1(x) + y′′2(x) + p(x)[y′1(x) + y′2(x)] + q(x)[y1(x) + y2(x)]

= y′′1(x) + p(x)y′1(x) + q(x)y1(x) + y′′2 (x) + p(x)y′2(x) + q(x) + y2(x)

= L[y1(x)] + L[y2(x)]

and, for any constant c,

L[cy(x)] = [cy(x)]′′ + p(x)[cy(x)]′ + q(x)[cy(x)]

= cy′′(x) + p(x)[cy′(x)] + cq(x)y(x)

= c[y′′(x) + p(x)y′(x) + q(x)y(x)]

= cL[y(x)].

Therefore, as introduced in Section 2.1, L is a linear differential operator. This is the real
reason that equation (1) is said to be a linear differential equation. �

The first thing we need to know is that an initial-value problem has a solution, and that
it is unique.

THEOREM 1. (Existence and Uniqueness Theorem) Given the second order linear
equation (1). Let a be any point on the interval I , and let α and β be any two real
numbers. Then the initial-value problem

y′′ + p(x) y′ + q(x) y = f(x), y(a) = α, y′(a) = β

has a unique solution.
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As before, a proof of this theorem is beyond the scope of this course.

Remark: We can solve any first order linear differential equation; Section 2-1 gives a
method for finding the general solution of any first order linear equation. In contrast, there
is no general method for solving second (or higher) order linear differential equations. There
are, however, methods for solving certain special types of second order linear equations and
we shall study these in this chapter. Extensions of these methods to higher order linear
equations will be given later. �

DEFINITION 2. The linear differential equation (1) is homogeneous 1 if the function f

on the right side of the equation is 0 for all x ∈ I . In this case, equation (1) becomes

y′′ + p(x) y′ + q(x) y = 0. (2)

Equation (1) is nonhomogeneous if f is not the zero function on I , i.e., (1) is nonhomo-
geneous if f(x) 6= 0 for some x ∈ I .

As you will see in the work which follows, almost all of our attention will be focused on
homogeneous equations.

1This use of the term “homogeneous” is completely different from its use to categorize the first order

equation y′ = f(x, y) in Exercises 2.2.
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3.2 Second Order Linear Homogeneous Equations

As defined in the previous section, a second order linear homogeneous differential equation
is an equation that can be written in the form

y′′ + p(x) y′ + q(x) y = 0 (H)

where p and q are continuous functions on some interval I .

The trivial solution The first thing to note is that the zero function, y(x) = 0 for all
x ∈ I , (also denoted by y ≡ 0) is a solution of (H) (y ≡ 0 implies y′ ≡ 0 and y′′ ≡ 0).
The zero solution is called the trivial solution . Obviously our main interest is in finding
nontrivial solutions. Unless specified otherwise, the term “solution” will mean “nontrivial
solution.” �

First we establish some essential facts about homogeneous equations.

THEOREM 1. If y = y(x) is a solution of (H) and if C is any real number, then
u(x) = Cy(x) is also a solution of (H).

Proof Let y = y(x) be a solution of (H). Then

y′′(x) + p(x)y′(x) + q(x)y(x) = 0.

Let C be any real number, and set u(x) = Cy(x). Then

u(x) = Cy(x)

u′(x) = Cy′(x)

u′′(x) = Cy′′(x)

Substituting u into (H), we get

u′′(x) + p(x) u′(x) + q(x) u(x) = Cy′′(x) + p(x)[Cy′(x)] + q(x)[Cy(x)]

= C[y′′(x) + p(x) y′(x) + q(x) y(x)]

= C[0]

= 0.

Alternate Proof Consider the linear differential operator L[y] = y′′ + p(x)y′ + q(x)y.
Since y = y(x) is a solution of (H), L[y(x)] = 0. Since L is a linear operator,

L[Cy(x)] = C L[y(x)] = C(0) = 0.

Thus, u(x) = Cy(x) is a solution of (H). �

In words, Theorem 1 says that any constant multiple of a solution of (H) is also a
solution of (H).
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THEOREM 2. If y = y1(x) and y = y2(x) are any two solutions of (H), then
u(x) = y1(x) + y2(x) is also a solution of (H).

Proof Let y = y1(x) and y = y2(x) be any two solutions of (H). Then

y′′1(x) + p(x)y′1(x) + q(x)y1(x) = 0 and y′′2(x) + p(x)y′2(x) + q(x)y2(x) = 0.

Now set u(x) = y1(x) + y2(x). Then

u(x) = y1(x) + y2(x)

u′(x) = y′1(x) + y′2(x)

u′′(x) = y′′1(x) + y′′2(x)

Substituting u into (H), we get

u′′(x) + p(x) u′(x) + q(x) u(x) = y′′1(x) + y′′2(x) + p(x)[y′1(x) + y′2(x)] + q(x)[y1(x) + y2(x)]

= [y′′1(x) + p(x)y′1(x) + q(x)y1(x)] + [y′′2(x) + p(x)y′2(x) + q(x)y2(x)]

= 0 + 0

= 0.

Alternate Proof Set L[y] = y′′+p(x)y′+q(x)y; L is a linear operator. Since y = y1(x)
and y = y2(x) are solutions of (H), L[y1(x)] = L[y2(x)] = 0. Since L is linear,

L[y1(x) + y2(x)] = L[y1(x)] + L[y2(x)] = 0 + 0 = 0.

Thus, u(x) = y1(x) + y2(x) is a solution of (H). �

Theorem 2 says that the sum of any two solutions of (H) is also a solution of (H). (Some
authors call this property the superposition principle. )

Combining Theorems 1 and 2, we get

THEOREM 3. If y = y1(x) and y = y2(x) are any two solutions of (H), and if C1

and C2 are any two real numbers, then

y(x) = C1y1(x) + C2y2(x)

is also a solution of (H).

DEFINITION 1. (Linear Combinations) Let f = f(x) and g = g(x) be functions
defined on some interval I , and let C1 and C2 be real numbers. The expression

C1f(x) + C2g(x)

is called a linear combination of f and g.
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Theorem 3 says that any linear combination of solutions of (H) is also a solution of
(H).

Note that the equation
y(x) = C1y1(x) + C2y2(x) (1)

where C1 and C2 are arbitrary constants, has the form of a general solution of equation
(H). So the question is: If y1 and y2 are solutions of (H), is the expression (1) the general
solution of (H)? That is, can every solution of (H) be written as a linear combination of
y1 and y2? It turns out that (1) may or not be the general solution; it depends on the
relation between the solutions y1 and y2.

Example 1. As you can verify, y1(x) = ex and y2(x) = e2x are each solutions of

y′′ − 3y′ + 2y = 0. (a)

We want to determine whether or not the two-parameter family

y = C1e
x + C2e

2x (b)

is the general solution of (a).

Let u = u(x) be any solution of (a) and let α = u(0), β = u′(0). We will try to find
values for C1 and C2 such that y(x) = C1e

x +C2e
2x satisfies y(0) = α and y′(0) = β.

We have
y(x) = C1e

x + C2e
2x, y′(x) = C1e

x + 2C2e
2x

Setting x = 0, we obtain the pair of equations

y(0) = C1 + C2 = α

y′(0) = C1 + 2C2 = β.

This pair of equations has the unique solution C1 = 2α− β, C2 = β − α. Now,

y = (2α− β)ex + (β − α)e2x and u(x)

are each solutions of (a), and y(0) = u(0) = α, y′(0) = u′(0) = β. By the Existence and
Uniqueness Theorem, u(x) ≡ y(x). Thus

u(x) = (2α− β)ex + (β − α)e2x

is a member of the two-parameter family (b). Since u was any solution of (a), we can
conclude that (b) is the general solution of (a); (b) represents all solutions of (a). �

Example 2. The functions y1(x) = x2 and y2(x) = 5x2 are solutions of

y′′ − 2
x
y′ +

2
x2
y = 0. (a)
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We want to determine whether or not the two-parameter family

y = C1x
2 + C2(5x2) (b)

is the general solution of (a).

By the Existence and Uniqueness Theorem there exists a unique solution u of (a) such
that u(1) = 1, u′(1) = 0. If we try to find values for C1, C2 such that y(1) = 1, y′(1) = 0
we obtain the pair of equations:

y(1) = C1 + 5C2 = 1

y′(1) = 2C1 + 10C2 = 0

There is no solution to this pair of equations. Therefore u is not a member of the two-
parameter family (b) and (b) is not the general solution of (a)

The problem here is that y1 and y2 are constant multiples of each other (y2 =
5y1; or y1 = y2/5). Notice that while (b) “appears” to be a two-parameter family, it is, in
fact, a one-parameter family:

y = C1x
2 + C2(5x2) = (C1 + 5C2)x2 = Kx2.

You can verify that y3(x) = x is a solution of (a) which is “different” from y1 (i.e.,
not a constant multiple of y1), and that

y = C1x+ C2x
2

is the general solution of (a). �

Let’s consider the problem in general. Suppose that y = y1(x) and y = y2(x) are
solutions of equation (H). Under what conditions is (1) the general solution of (H)?

Let u = u(x) be any solution of (H) and choose any point a ∈ I . Suppose that
α = u(a), β = u′(a). Then u is a member of the two-parameter family (1) if and only if
there are values for C1 and C2 such that

C1y1(a) + C2y2(a) = α

C1y
′
1(a) + C2y

′
2(a) = β

If we multiply the first equation by y′2(a), the second equation by −y2(a), and add, we
get

[y1(a)y′2(a) − y2(a)y′1(a)]C1 = αy′2(a)− βy2(a).

Similarly, if we multiply the first equation by −y′1(a), the second equation by y1(a), and
add, we get

[y1(a)y′2(a)− y2(a)y′1(a)]C2 = −αy′1(a) + βy1(a).
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We are guaranteed that this pair of equations has solutions C1, C2 if and only if

y1(a)y′2(a) − y2(a)y′1(a) 6= 0

in which case

C1 =
αy′2(a) − βy2(a)

y1(a)y′2(a)− y2(a)y′1(a)
and C2 =

−αy′1(a) + βy1(a)
y1(a)y′2(a)− y2(a)y′1(a)

.

Since a was chosen to be any point on I , we conclude that (2) is the general solution of
(H) if

y1(x)y′2(x)− y2(x)y′1(x) 6= 0 for all x ∈ I .

DEFINITION 2. (Wronskian) Let y = y1(x) and y = y2(x) be solutions of (H).
The function W defined by

W [y1, y2](x) = y1(x)y′2(x) − y2(x)y′1(x)

is called the Wronskian of y1, y2.

We use the notation W [y1, y2](x) to emphasize that the Wronskian is a function of x

that is determined by two solutions y1, y2 of equation (H). When there is no danger of
confusion, we’ll shorten the notation to W (x).

Remark There is a short-hand way to represent the Wronskian of two solutions of equation
(H) using a 2 × 2 determinant. Determinants will be defined and discussed in general in
Chapter 5. For now

W (x) =

∣∣∣∣∣
y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣∣ = y1(x)y′2(x) − y2(x)y′1(x). �

Example 3. From Example 1, the functions y1(x) = ex and y2(x) = e2x are each
solutions of

y′′ − 3y′ + 2y = 0.

Their Wronskian is:

W (x) =

∣∣∣∣∣
ex e2x

ex 2e2x

∣∣∣∣∣ = ex(2e2x) − e2x(ex) = e3x 6= 0 for all x ∈ (−∞,∞).

From Example 2, the functions y1(x) = x2 and y2(x) = 5x2 are solutions of

y′′ − 2
x
y′ +

2
x2
y = 0.

Their Wronskian is:

W (x) =

∣∣∣∣∣
x2 5x2

2x 10x

∣∣∣∣∣ = x2(10x)− 2x(5x2) = 10x2 − 10x2 ≡ 0.
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Also from Example 2, the functions y1(x) = x2 and y3(x) = x are solutions of

y′′ − 2
x
y′ +

2
x2
y = 0.

Their Wronskian is:

W (x) =

∣∣∣∣∣
x2 x

2x 1

∣∣∣∣∣ = x2(1)− 2x(x) = −x2 6= 0 for all x ∈ (0,∞). �

Here is the general result.

THEOREM 4. Let y = y1(x) and y = y2(x) be solutions of equation (H), and let
W (x) be their Wronskian. Exactly one of the following holds:

(i) W (x) = 0 for all x ∈ I ; y1 is a constant multiple of y2 and vice versa.

(ii) W (x) 6= 0 for all x ∈ I and y = C1y1(x) + C2y2(x) is the general solution of (H)

Proof Let y = y1(x) and y = y2(x) be solutions of equation (H). Then

y′′1 + py′1 + qy1 = 0 which implies y′′1 = −py′1 − qy1

y′′2 + py′2 + qy2 = 0 which implies y′′2 = −py′2 − qy2

Set W = y1y
′
2 − y2y

′
1. Then

W ′ = y1y
′′
2 + y′2y

′
1 − y2y

′′
1 − y′1y

′
2 = y1y

′′
2 − y2y

′′
1

= y1
[
−py′2 − qy2

]
− y2

[
−py′1 − qy1

]

= −p
[
y1y

′
2 − y2y

′
1

]
= −pW

which implies that
W ′ + p(x)W = 0.

Therefore W is a solution of the first order linear equation

y′ + p(x)y = 0.

Now, as we showed in Section 2.1,

W (x) = C e−
∫

p(x)dx, for some constant C.

If C = 0, then W (x) = 0 for all x ∈ I ; if C 6= 0, then W (x) 6= 0 for all x ∈ I .

We have already shown that if W (x) 6= 0 for all x ∈ I , then (1) is the general solution
of (H). We leave it as an exercise (Exercise 25) to show that if W ≡ 0 on I then y1 is
a constant multiple of y2 (and vice versa). �
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Example 4. Finishing Example 3, y = C1 e
x + C2 e

2x is the general solution of

y′′ − 3y′ + 2y = 0;

y = C1 x
2 + C2 x is the general solution of

y′′ − 2
x
y′ +

2
x2
y = 0. �

DEFINITION 3. (Fundamental Set) A pair of solutions y = y1(x), y = y2(x) of
equation (H) forms a fundamental set of solutions if

W [y1, y2](x) 6= 0 for all x ∈ I.

Linear Dependence; Linear Independence

By Theorem 4, if y1 and y2 are solutions of equation (H) such that W [y1, y2] ≡ 0,
then y1 is a constant multiple of y2. The question as to whether or not one function is
a multiple of another function and the consequences of this are of fundamental importance
in differential equations and in linear algebra. We introduce the concept here; we will deal
with it in more generality later.

In this sub-section we are dealing with functions in general, not just solutions of the
differential equation (H)

DEFINITION 4. (Linear Dependence; Linear Independence) Given two functions
f = f(x), g = g(x) defined on an interval I . The functions f and g are linearly dependent
on I if one of the functions is a constant multiple of the other. That is, f and g are
linearly dependent on I if there exists a number λ such that g(x) = λf(x) for all x ∈ I ,
or if there is a number γ such that f(x) = γ g(x) for all x ∈ I . The functions f and
g are linearly independent on I if they are not linearly dependent.

Remark The case where one of the functions is 0 is special: If either f or g is the
zero function, then f and g are linearly dependent. For example, suppose g ≡ 0, then
g = 0 · f is a multiple of f . �

The term Wronskian defined above for two solutions of equation (H) can be extended to
any two differentiable functions f and g. Let f = f(x) and g = g(x) be differentiable
functions on an interval I . The function W [f, g] defined by

W [f, g](x) = f(x)g′(x) − g(x)f ′(x)

is called the Wronskian of f, g.

There is a connection between linear dependence/independence and Wronskian.
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THEOREM 5. Let f = f(x) and g = g(x) be differentiable functions on an interval
I . If f and g are linearly dependent on I , then W (x) = 0 for all x ∈ I (W ≡ 0 on I).

Proof If f and g are linearly dependent on I , then there exists a number λ such
that g(x) = λ f(x) on I . Since g′(x) = λ f ′(x), we have

W (x) = f(x)g′(x)− g(x)f ′(x) = f(x)[λ f ′(x)]− [λ f(x)]f ′(x)

= λ f(x)f ′(x)− λ f(x)f ′(x) = 0 for all x ∈ I. �

This theorem can be stated equivalently as: Let f = f(x) and g = g(x) be
differentiable functions on an interval I . If W (x) 6= 0 for at least one x ∈ I , then f

and g are linearly independent on I .

Going back to differential equations, Theorem 4 can be restated as

Theorem 4′ Let y = y1(x) and y = y2(x) be solutions of equation (H). Exactly one of
the following holds:

(i) W (x) = 0 for all x ∈ I ; y1 and y2 are linear dependent.

(ii) W (x) 6= 0 for all x ∈ I ; y1 and y2 are linearly independent and y = C1y1(x) +
C2y2(x) is the general solution of (H).

The statements “y1(x), y2(x) form a fundamental set of solutions of (H)” and “y1(x), y2(x)
are linearly independent solutions of (H)” are synonymous.

Exercises 3.2

Verify that the functions y1 and y2 are solutions of the given differential equation. Do
they constitute a fundamental set of solutions of the equation?

1. y′′ − y′ − 6y = 0; y1(x) = e3x, y2(x) = e−2x.

2. y′′ − 9y = 0; y1(x) = e3x, y2(x) = e−3x.

3. y′′ + 9y = 0; y1(x) = cos 3x, y2(x) = sin 3x.

4. y′′ − 4y′ + 4y = 0; y1(x) = e2x, y2(x) = xe2x.

5. x2y′′ − x(x+ 2)y′ + (x+ 2)y = 0; y1(x) = x, y2(x) = xex.

6. Given the differential equation y′′ − 3y′ − 4y = 0.

(a) Find two values of r such that y = erx is a solution of the equation.
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(b) Determine a fundamental set of solutions and give the general solution of the
equation.

(c) Find the solution of the equation satisfying the initial conditions y(0) =
1, y′(0) = 0.

7. Given the differential equation y′′ −
(

2
x

)
y′ −

(
4
x2

)
y = 0.

(a) Find two values of r such that y = xr is a solution of the equation.

(b) Determine a fundamental set of solutions and give the general solution of the
equation.

(c) Find the solution of the equation satisfying the initial conditions y(1) =
2, y′(1) = −1.

(d) Find the solution of the equation satisfying the initial conditions y(2) = y′(2) =
0.

8. Given the differential equation (x2 + 2x− 1)y′′ − 2(x+ 1)y′ + 2y = 0.

(a) Show that the equation has a linear polynomial and a quadratic polynomial as
solutions.

b Find two linearly independent solutions of the equation and give the general
solution.

Show that the given functions are linearly independent on the interval I and find
a second-order linear homogeneous equation having the pair as a fundamental set of
solutions.

9. y1(x) = e3x, y2(x) = e−x; I = (−∞,∞).

10. y1(x) = e−x, y2(x) = xe−x; I = (−∞,∞).

11. y1(x) = 1, y2(x) = x; I = (0,∞).

12. y1(x) = cos 2x, y2(x) = sin 2x; I = (−∞,∞).

13. y1(x) = x, y2(x) = x2; I = (0,∞).

14. y1(x) = x, y2(x) = x ln x; I = (0,∞).

15. Let y = y1(x) be a solution of (H): y′′ + p(x)y′ + q(x)y = 0 where p and q are
continuous function on an interval I . Let a ∈ I and assume that y1(x) 6= 0 on I .
Set

y2(x) = y1(x)
∫ x

a

e−
∫ t

a
p(u) du

y2
1(t)

dt.

Show that y2 is a solution of (H) and that y1 and y2 are linearly independent.

Use Exercise 15 to find a fundamental set of solutions of the given equation starting
from the given solution y1.
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16. y′′ − 6y′ + 9y = 0; y1(x) = e3x.

17. y′′ − 2
x
y′ +

2
x2
y = 0; y1(x) = x.

18. y′′ − 1
x
y′ +

1
x2
y = 0; y1(x) = x.

19. y′′ − 1
x
y′ − 4x2y = 0; y1(x) = ex

2
.

20. y′′ − 2x− 1
x

y′ +
x− 1
x

y = 0; y1(x) = ex.

21. Let y = y1(x) and y = y2(x) be solutions of equation (H) on an interval I . Let
a ∈ I and suppose that

y1(a) = α, y′1(a) = β and y2(a) = γ, y′2(a) = δ.

Under what conditions on α, β, γ, δ will the functions y1 and y2 be linearly
independent on I?

22. Suppose that the functions y1 and y2 are linearly independent solutions of (H).
Does it follow that c1y1 and c2y2 are also linearly independent solutions of (H)? If
not, why not.

23. Suppose that the functions y1 and y2 are linearly independent solutions of (H).
Prove that y3 = y1 + y2 and y4 = y1 − y2 are also linearly independent solutions of
(H). Conversely, prove that if y3 and y4 are linearly independent solutions of (H),
then y1 and y2 are linearly independent solutions of (H).

24. Suppose that the functions y1 and y2 are linearly independent solutions of (H).
Under what conditions will the functions y3 = αy1 + βy2 and y4 = γy1 + δy2 be
linearly independent solutions of (H)?

25. Suppose that y = y1(x) and y = y2(x) are solutions of (H). Show that if y1(x) 6= 0
on I and W [y1, y2](x) ≡ 0 on I , then y2(x) = λy1(x) on I .

75



3.3 Homogeneous Equations with Constant Coefficients

We emphasized in Sections 3.1 and 3.2 that there are no general methods for solving second
(or higher) order linear differential equations. However, there are some special cases for
which solution methods do exist. In this and the following sections we consider such a case,
linear equations with constant coefficients. In this section we treat homogeneous equations;
nonhomogeneous equations will be treated in the next two sections.

A second order linear homogeneous differential equation with constant coefficients is an
equation which can be written in the form

y′′ + ay′ + by = 0 (1)

where a and b are real numbers.

You have seen that the function y = e−ax is a solution of the first-order linear equation

y′ + ay = 0. (the model for exponential growth and decay)

This suggests the possibility that equation (1) may also have an exponential function y =
erx as a solution.

If y = erx, then y′ = r erx and y′′ = r2 erx. Substitution into (1) gives

r2 erx + a (r erx) + b (erx) = erx
(
r2 + ar + b

)
= 0.

Since erx 6= 0 for all x, we conclude that y = erx is a solution of (1) if and only if

r2 + ar + b = 0. (2)

Thus, if r is a root of the quadratic equation (2), then y = erx is a solution of equation
(1); we can find solutions of (1) by finding the roots of the quadratic equation (2).

DEFINITION 1. Given the differential equation (1). The corresponding quadratic equa-
tion

r2 + ar + b = 0

is called the characteristic equation of (1); the quadratic polynomial r2 + ar + b is
called the characteristic polynomial. The roots of the characteristic equation are called the
characteristic roots .

The nature of the solutions of the differential equation (1) depends on the nature of the
roots of its characteristic equation (2). There are three cases to consider:

(1) Equation (2) has two, distinct real roots, r1 = α, r2 = β.

(2) Equation (2) has only one real root, r = α.
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(3) Equation (2) has complex conjugate roots, r1 = α+ i β, r2 = α − i β, β 6= 0.

Case I: The characteristic equation has two, distinct real roots, r1 = α, r2 = β.
In this case,

y1(x) = eαx and y2(x) = eβx

are solutions of (1). Since α 6= β, y1 and y2 are not constant multiples of
each other, the pair y1, y2 forms a fundamental set of solutions of equation (1)
and

y = C1 e
αx + C2 e

βx

is the general solution.

Note: We can use the Wronskian to verify the independence of y1 and y2:

W (x) =

∣∣∣∣∣
eαx eβx

α eαx β eβx

∣∣∣∣∣ = eαx
(
β eβx

)
−eβx (α eαx) = (α−β) e(α+β)x 6= 0. �

Example 1. Find the general solution of the differential equation

y′′ + 2y′ − 8y = 0.

SOLUTION The characteristic equation is

r2 + 2r − 8 = 0

(r + 4)(r− 2) = 0

The characteristic roots are: r1 = −4, r2 = 2. The functions y1(x) = e−4x, y2(x) = e2x

form a fundamental set of solutions of the differential equation and

y = C1 e
−4x + C2 e

2x

is the general solution of the equation. �

Example 2. Find a linearly independent pair of solutions of

y′′ + 3y′ = 0.

and give the general solution of the equation.

SOLUTION The characteristic equation is r2 + 3r = r(r+ 3) = 0, and the characteristic
roots are r1 = 0, r2 = −3. Therefore the functions y1(x) = e0x ≡ 1 and y2(x) = e−3x

are linearly independent solutions of the differential equation.

The general solution is

y = C1(1) + C2 e
−3x = C1 + C2 e

−3x. �
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Case II: The characteristic equation has only one real root, r = α.2 Then

y1(x) = eαx and y2(x) = x eαx

are linearly independent solutions of equation (1) and

y = C1 e
αx + C2 x e

αx

is the general solution.

Proof: We know that y1(x) = eαx is one solution of the differential equa-
tion; we need to find another solution which is independent of y1. Since the
characteristic equation has only one real root, α, the equation must be

r2 + ar + b = (r− α)2 = r2 − 2αr + α2 = 0

and the differential equation (1) must have the form

y′′ − 2αy′ + α2y = 0. (∗)

Now, z = C eαx, C any constant, is also a solution of (∗), but z is not
independent of y1 since it is simply a multiple of y1. We replace C by a
function u which is to be determined (if possible) so that y = ueαx is a
solution of (∗).3 Calculating the derivatives of y, we have

y = u eαx

y′ = αu eαx + u′ eαx

y′′ = α2u eαx + 2αu′ eαx + u′′ eαx

Substitution into (∗) gives

α2u eαx + 2αu′ eαx + u′′ eαx − 2α
[
αu eαx + u′ eαx

]
+ α2 u eαx = 0.

This reduces to

u′′ eαx = 0 which implies u′′ = 0 since eαx 6= 0.

Now, u′′ = 0 is the simplest second order, linear differential equation with
constant coefficients; the general solution is u = C1 + C2x = C1 · 1 + C2 · x ,
and u1(x) = 1 and u2(x) = x form a fundamental set of solutions.

Since y = u eαx, we conclude that

y1(x) = 1 · eαx = eαx and y2(x) = x eαx

2In this case, α is said to be a double root of the characteristic equation.
3This is an application of a general method called variation of parameters. We will use the method

several times in the work that follows.
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are solutions of (∗). In particular, y2 = x eαx is a solution of (∗) which is
independent of y1 = eαx. That is, y1 and y2 form a fundamental set of
solutions of (∗). This can also be checked by using the Wronskian:

W (x) =

∣∣∣∣∣
eαx xeαx

α eαx eαx + αxeαx

∣∣∣∣∣ = eαx [eαx + αx eαx] − αx eαx = e2αx 6= 0.

Finally, the general solution of (∗) is

y = C1 e
αx + C2 x e

αx.

Note: The solution y2(x) = xeαx can also be obtained by using Problem 15
in Exercises 3.2. �

Example 3. Find the general solution of the differential equation

y′′ − 6y′ + 9y = 0.

SOLUTION The characteristic equation is

r2 − 6r+ 9 = 0

(r − 3)2 = 0

There is only one characteristic root: r1 = r2 = 3. The functions y1(x) = e3x, y2(x) = x e3x

are linearly independent solutions of the differential equation and

y = C1 e
3x + C2 x e

3x

is the general solution. �

Case III: The characteristic equation has complex conjugate roots:

r1 = α + i β, r2 = α− i β, β 6= 0

In this case

y1(x) = eαx cos βx and y2(x) = eαx sin βx

are linearly independent solutions of equation (1) and

y = C1 e
αx cos βx+ C2 e

αx sin βx = eαx [C1 cos βx+ C2 sin βx]

is the general solution.

Proof: It is true that the functions z1(x) = e(α+iβ)x and z2(x) = e(α−iβ)x

are linearly independent solutions of (1), but these are complex-valued functions
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and we are not equipped to handle such functions in this course. We want real-
valued solutions of (1). The characteristic equation in this case is

r2 + ar + b = (r − [α+ i β])(r− [α− i β]) = r2 − 2αr + α2 + β2 = 0

and the differential equation (1) has the form

y′′ − 2α y′ +
(
α2 + β2

)
y = 0. (*)

We’ll proceed in a manner similar to Case II. Set y = u eαx where u is
to be determined (if possible) so that y is a solution of (*). Calculating the
derivatives of y, we have

y = u eαx

y′ = αu eαx + u′ eαx

y′′ = α2u eαx + 2αu′ eαx + u′′ eαx

Substitution into (*) gives

α2u eαx + 2αu′ eαx + u′′ eαx − 2α
[
αu eαx + u′ eαx

]
+

(
α2 + β2

)
u eαx = 0.

This reduces to

u′′ eαx + β2 u eαx = 0 which implies u′′ + β2 u = 0 since eαx 6= 0.

Now,
u′′ + β2 u = 0

is the equation of simple harmonic motion (for example, it models the oscillatory
motion of a weight suspended on a spring). The functions u1(x) = cos βx and
u2(x) = sin βx form a fundamental set of solutions. (Verify this.)

Since y = u eαx, we conclude that

y1(x) = eαx cos βx and y2(x) = eαx sin βx

are solutions of (*). It’s easy to see that y1 and y2 form a fundamental set of
solutions. This can also be checked by using the Wronskian

Finally, we conclude that the general solution of equation (1) is:

y = C1 e
αx cos βx+ C2e

αx sin βx = eαx [C1 cos βx+ C2 sin βx] . �

Example 4. Find the general solution of the differential equation

y′′ − 4y′ + 13y = 0.
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SOLUTION The characteristic equation is: r2 − 4r + 13. By the quadratic formula, the
roots are

r1, r2 =
−(−4) ±

√
(−4)2 − 4(1)(13)

2
=

4 ±
√

16 − 52
2

=
4±

√
−36

2
=

4 ± 6 i
2

= 2 ± 3 i.

The characteristic roots are the complex numbers: r1 = 2 + 3 i, r2 = 2 − 3 i. The
functions y1(x) = e2x cos 3x, y2(x) = e2x sin 3x are linearly independent solutions of the
differential equation and

y = C1 e
2x cos 3x+ C2 e

2x sin 3x = e2x [C1 cos 3x+ C2 sin 3x]

is the general solution. �

Example 5. Find two linearly independent solutions of y′′ + 16y = 0.

SOLUTION The characteristic equation is r2 + 16 = 0 and the complex numbers r1 =
0 + 4i = 4i, r2 = 0 − 4i = −4i are the characteristic roots. The functions

y1(x) = e0x cos 4x = cos 4x, y2(x) = e0x sin 4x = sin 4x

are linearly independent solutions of the differential equation. �

In our next example we find the solution of an initial-value problem.

Example 6. Find the solution of the initial-value problem:

y′′ + 2y′ − 15y = 0, y(0) = 2, y′(0) = −6.

SOLUTION The characteristic equation is

r2 + 2r − 15 = 0

(r + 5)(r− 3) = 0

The characteristic roots are: r1 = −5, r2 = 3. The functions y1(x) = e−5x, y2(x) = e3x

are linearly independent solutions of the differential equation and

y = C1 e
−5x + C2 e

3x

is the general solution.

Before applying the initial conditions we need to calculate y′:

y′(x) = −5C1 e
−5x + 3C2 e

3x

Now, the conditions y(0) = 2, y′(0) = −6 are satisfied if and only if

C1 + C2 = 2

−5C1 + 3C2 = −6.
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The solution of this pair of equations is: C1 = 3
2 , C2 = 1

2 and the solution of the initial-
value problem is

y = 3
2 e

−5x + 1
2 e

3x. �

Recovering a Differential Equation from Solutions

You can also work backwards using the results above. That is, we can determine a second
order, linear, homogeneous differential equation with constant coefficients that has given
functions u and v as solutions. Here are some examples.

Example 7. Find a second order, linear, homogeneous differential equation with constant
coefficients that has the functions u(x) = e2x, v(x) = e−3x as solutions.

SOLUTION Since e2x is a solution, 2 must be a root of the characteristic equation and
r− 2 must be a factor of the characteristic polynomial. Similarly, e−3x a solution means
that −3 is a root and r− (−3) = r+ 3 is a factor of the characteristic polynomial. Thus
the characteristic equation must be

(r − 2)(r+ 3) = 0 which expands to r2 + r− 6 = 0.

Therefore, the differential equation is

y′′ + y′ − 6y = 0. �

Example 8. Find a second order, linear, homogeneous differential equation with constant
coefficients that has y = C1 e

−4x + C2 x e
−4x as its general solution.

SOLUTION Since e−4x and xe−4x are solutions, −4 must be a double root of the
characteristic equation. Therefore, the characteristic equation is

(r− [−4])2 = (r + 4)2 = 0 which expands to r2 + 8r+ 16 = 0

and the differential equation is

y′′ + 8y′ + 16y = 0. �

Example 9. Find a second order, linear, homogeneous differential equation with constant
coefficients that has y(x) = ex cos 2x as a solution.

SOLUTION Since ex cos 2x is a solution, the characteristic equation must have the
complex numbers 1 + 2i and 1 − 2i as roots. (Although we didn’t state it explicitly,
ex sin 2x must also be a solution.) The characteristic equation must be

(r − [1 + 2i])(r− [1− 2i]) = 0 which expands to r2 − 2r+ 5 = 0

and the differential equation is

y′′ − 2y′ + 5y = 0. �

82



Exercises 3.3

Find the general solution of the given differential equation.

1. y′′ + 2y′ − 8y = 0.

2. y′′ − 13y′ + 42y = 0.

3. y′′ − 10y′ + 25y = 0.

4. y′′ + 2y′ + 5y = 0.

5. y′′ + 4y′ + 13y = 0.

6. y′′ = 0.

7. y′′ + 2y′ = 0.

8. 2y′′ + 5y′ − 3y = 0.

9. y′′ − 12y = 0.

10. y′′ + 12y = 0.

11. y′′ − 2y′ + 2y = 0.

12. y′′ − 3y′ + 9
4 y = 0.

13. y′′ − y′ − 30y = 0.

14. 2y′′ + 3y′ = 0.

15. 2y′′ + 2y′ + y = 0.

16. y′′ + 2y′ + 3y = 0.

17. y′′ − 8y′ + 16y = 0.

18. 5y′′ + 11
4 y

′ − 3
4y = 0.

Find the solution of the initial-value problem.

19. y′′ − 5y′ + 6y = 0; y(0) = 1, y′(0) = 1.

20. y′′ + 4y′ + 3y = 0; y(0) = 2, y′(0) = −1.

21. y′′ + 2y′ + y = 0; y(0) = −3, y′(0) = 1.

22. y′′ + 1
4y = 0; y(π) = 1, y′(π) = −1.

23. y′′ − 2y′ + 2y = 0; y(0) = −1, y′(0) = −1.
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24. y′′ + 4y′ + 4y = 0; y(−1) = 2, y′(−1) = 1.

Find a differential equation y′′ +ay′ + by = 0 that is satisfied by the given functions.

25. y1(x) = e2x, y2(x) = e−5x.

26. y1(x) = 3e3x, y2(x) = 2xe3x.

27. y1(x) = cos 2x, y2(x) = 2 sin 2x.

28. y1(x) = e−2x cos 4x, y2(x) = e−2x sin 4x.

Find a differential equation y′′ + ay′ + by = 0 whose general solution is the given
expression.

29. y = C1e
x/2 + C2e

2x.

30. y = C1e
3x + C2e

−4x.

31. y = C1e
−x cos 3x+ C2e

−x sin 3x.

32. y = C1e
x/2 + C2xe

x/2.

33. y = C1 cos 4x+ C2 sin 4x.

34. Find the solution y = y(x) of the initial-value problem y′′ − y′ − 2y = 0; y(0) =
α, y′(0) = 2. Then find α such that y(x) → 0 as x→ ∞.

35. Find the solution y = y(x) of the initial-value problem 4y′′−y = 0; y(0) = 2, y′(0) =
β. Then find β such that y(x) → 0 as x→ ∞.

36. Given the differential equation y′′ − (2a− 1)y′ + a(a− 1)y = 0.

(a) Determine the values of a (if any) for which all solutions have limit 0 as
x→ ∞.

(b) Determine the values of a (if any) for which all solutions are unbounded as
x→ ∞.

Exercises 37 - 39 are concerned with the differential equation (1): y′′ + ay′ + by = 0
where a and b are constants.

37. Give a condition on a and b which will imply that:

(a) (1) has solutions of the form y1 = eαx, y2 = eβx, α, β distinct real numbers.

(b) (1) has solutions of the form y1 = eαx, y2 = xeαx, α a real number.

(c) (1) has solutions of the form y1 = eαx cos βx, y2 = eαx sin βx, α, β real
numbers.

38. Prove that if a and b are both positive, then all solutions have limit 0 as x→ ∞.
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39. Prove:

(a) If a = 0 and b > 0, then all solutions of the equation are bounded.

(b) If a > 0 and b = 0, and y = y(x) is a solution, then

lim
x→∞

y(x) = k for some constant k.

Determine k for the solution that satisfies the initial conditions y(0) =
α, y′(0) = β.

40. Show that the general solution of the differential equation

y′′ − ω2y = 0, ω a positive constant,

can be written
y = C1 cosh ωx+ C2 sinh ωx.

41. Suppose that the roots r1, r2 of the characteristic equation (2) are real and distinct.
Then they can be written as r1 = α+β, r2 = α−β where α and β are real. Show
that the general solution of equation (1) in this case can be expressed in the form

y = eαx (C1 cosh βx+ C2 sinh βx) .

Euler Equations A second order linear homogeneous equation of the form

x2d
2y

dx2
+ αx

dy

dx
+ βy = 0 (E)

where α and β are constants, is called an Euler equation .

42. Prove that the Euler equation (E) can be transformed into the second order equation
with constant coefficients

d2y

dz2
+ a

dy

dz
+ by = 0

where a and b are constants, by means of the change of independent variable
z = ln x.

Find the general solution of the Euler equations.

43. x2y′′ − xy′ − 8y = 0.

44. x2y′′ − 2xy′ + 2y = 0.

45. x2y′′ − 3xy′ + 4y = 0.

46. x2y′′ − xy′ + 5y = 0.
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3.4 Second Order Linear Nonhomogeneous Equations

In this section we consider the general second order linear nonhomogeneous equation

y′′ + p(x)y′ + q(x)y = f(x) (N)

where p, q, f are continuous functions on an interval I .

The objectives of this section are to determine the “structure” of the set of solutions of
(N) and to develop a method for constructing a solution of (N) using two linearly indepen-
dent solutions of the corresponding homogeneous equation

y′′ + p(x)y′ + q(x)y = 0. (H)

As we shall see, there is a close connection between equations (N) and (H). In this
context, equation (H) is called the reduced equation of equation (N).

General Results

THEOREM 1. If z = z1(x) and z = z2(x) are solutions of equation (N), then

y(x) = z1(x)− z2(x)

is a solution of equation (H).

Proof: Since z1 and z2 are solutions of (N),

z′′1(x) + p(x)z′1(x) + q(x)z1(x) = f(x) and z′′2(x) + p(x)z′2(x) + q(x)z2(x) = f(x).

Let y(x) = z1(x)− z2(x). Then

y′′ − py′ + qy = (z′′1 − z′′2) + p(z′1 − z′2) + q(z1 − z2)

=
(
z′′1 + pz′1 + qz1

)
−

(
z′′2 + pz′2 + qz2

)

= f(x) − f(x) = 0.

Thus, y = z1 − z2 is a solution of (H).

Alternate Proof Set L[y] = y′′ + p(x)y′ + q(x)y; L is a linear operator. Since z1 and
z2 are solutions of (N), L[z1(x)] = L[z2(x)] = f(x). Since L is a linear operator,

L[z1(x) − z2(x)] = L[z1(x)]− L[z2(x)] = f(x)− f(x) = 0.

Thus, y = z1 − z2 is a solution of (H). �

In words, Theorem 1 says that the difference of any two solutions of the nonhomogeneous
equation (N) is a solution of its reduced equation (H).

Our next theorem gives the “structure” of the set of solutions of (N).
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THEOREM 2. Let y = y1(x) and y = y2(x) be linearly independent solutions of the
reduced equation (H) and let z = z(x) be a particular solution of (N). If u = u(x) is any
solution of (N), then there exist constants C1 and C2 such that

u(x) = C1y1(x) + C2y2(x) + z(x)

Proof: Let z = z(x) be a particular of (N) and let u = u(x) be any other solution of
(N). By Theorem 1, u(x) − z(x) is a solution of the reduced equation (H). Since y1(x)
and y2(x) are linearly independent solutions of (H), there exist constants C1 and C2

such that
u(x) − z(x) = C1y1(x) + C2y2(x).

Thus,
u(x) = C1y1(x) + C2y2(x) + z(x). �

According to Theorem 2, if y = y1(x) and y = y2(x) are linearly independent solutions
of the reduced equation (H) and z = z(x) is a particular solution of (N), then

y = C1y1(x) + C2y2(x) + z(x) (1)

represents the set of all solutions of (N). That is, (1) is the general solution of (N). Another
way to look at (1) is: The general solution of (N) consists of the general solution of the
reduced equation (H) plus a particular solution of (N):

y︸︷︷︸
general solution of (N)

= C1y1(x) + C2y2(x)︸ ︷︷ ︸
general solution of (H)

+ z(x).︸ ︷︷ ︸
particular solution of (N)

The following result is sometimes useful in finding particular solutions of nonhomoge-
neous equations. It is known as the superposition principle.

THEOREM 3. Given the second order linear nonhomogeneous equation

y′′ + p(x)y′ + q(x)y = f(x) + g(x). (∗)

If z = zf (x) and z = zg(x) are particular solutions of

y′′ + p(x)y′ + q(x)y = f(x) and y′′ + p(x)y′ + q(x)y = g(x),

respectively, then z(x) = zf (x) + zg(x) is a particular solution of (∗).

The proof is left as an exercise. �

This result can be extended to nonhomogeneous equations whose right-hand side is the
sum of an arbitrary number of functions.
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COROLLARY If

z = z1(x) is a particular solution of

y′′ + p(x)y′ + q(x)y = f1(x),

z = z2(x) is a particular solution of

y′′ + p(x)y′ + q(x)y = f2(x),

...

z = zn(x) is a particular solution of

y′′ + p(x)y′ + q(x)y = fn(x),

then z(x) = z1(x) + z2(x) + · · ·+ zn(x) is a particular solution of

y′′ + p(x)y′ + q(x)y = f1(x) + f2(x) + · · ·+ fn(x). �

The importance of Theorem 3 and its Corollary is that we need only consider non-
homogeneous equations in which the function on the right-hand side consists of one term
only.

Variation of Parameters

By our work above, to find the general solution of (N) we need to find:

(i) a linearly independent pair of solutions y1, y2 of the reduced equation (H), and

(ii) a particular solution z of (N).

The method of variation of parameters uses a pair of linearly independent solutions of
the reduced equation to construct a particular solution of (N).

Let y1(x) and y2(x) be linearly independent solutions of the reduced equation

y′′ + p(x)y′ + q(x)y = 0. (H)

Then
y = C1y1(x) + C2y2(x)

is the general solution of (H). We replace the arbitrary constants C1 and C2 by functions
u = u(x) and v = v(x), which are to be determined so that

z(x) = u(x)y1(x) + v(x)y2(x)
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is a particular solution of the nonhomogeneous equation (N). The replacement of the pa-
rameters C1 and C2 by the “variables” u and v is the basis for the term “variation of
parameters.” Since there are two unknowns u and v to be determined, we shall impose
two conditions on these unknowns. One condition is that z should solve the differential
equation (N). The second condition is at our disposal and we shall choose it in a manner
that will simplify our calculations.

Differentiating z we get

z′ = u y′1 + y1 u
′ + v y′2 + y2 v

′.

For our second condition on u and v, we set

y1 u
′ + y2 v

′ = 0. (a)

This condition is chosen because it simplifies the first derivative z′ and because it will lead
to a simple pair of equations in the unknowns u and v. With this condition the equation
for z′ becomes

z′ = u y′1 + v y′2 (b)

and
z′′ = u y′′1 + y′1 u

′ + v y′′2 + y′2 v
′.

Now substitute z, z′ (given by (b)), and z′′ into the left side of equation (N). This
gives

z′′ + pz′ + qz = (u y′′1 + y′1 u
′ + v y′′2 + y′2 v

′) + p(u y′1 + v y′2) + q(u y1 + v y2)

= u(y′′1 + py′1 + qy1) + v(y′′2 + py′2 + qy2) + y′1 u
′ + y′2 v

′.

Since y1 and y2 are solutions of (H),

y′′1 + py′1 + qy1 = 0 and y′′2 + py′2 + qy2 = 0

and so
z′′ + pz′ + qz = y′1 u

′ + y′2 v
′.

The condition that z should satisfy (N) is

y′1 u
′ + y′2 v

′ = f(x). (c)

Equations (a) and (c) constitute a system of two equations in the two unknowns u and
v:

y1 u
′ + y2 v

′ = 0

y′1 u
′ + y′2 v

′ = f(x)
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Obviously this system involves u′ and v′ not u and v, but if we can solve for u′ and
v′, then we can integrate to find u and v. Solving for u′ and v′, we find that

u′ =
−y2 f

y1 y′2 − y2 y′1
and v′ =

y1 f

y1 y′2 − y2 y′1

We know that the denominators here are non-zero because the expression

y1(x)y′2(x) − y2(x)y′1(x) = W (x)

is the Wronskian of y1 and y2, and y1, y2 are linearly independent solutions of the
reduced equation.

We can now get u and v by integrating:

u =
∫ −y2(x)f(x)

W (x)
dx and v =

∫
y1(x)f(x)
W (x)

dx.

Finally

z(x) = y1(x)
∫ −y2(x)f(x)

W (x)
dx+ y2(x)

∫
y1(x)f(x)
W (x)

dx (2)

is a particular solution of the nonhomogeneous equation (N).

Remark This result illustrates why the emphasis is on linear homogeneous equations. To
find the general solution of the nonhomogeneous equation (N) we need a fundamental set
of solutions of the reduced equation (H) and one particular solution of (N). But, as we
have just shown, if we have a fundamental set of solutions of (H), then we can use them to
construct a particular solution of (N). Thus, all we really need to solve (N) is a fundamental
set of solutions of its reduced equation (H). �

Example 1. Find a particular solution of the nonhomogeneous equation

y′′ − 2
x
y′ +

2
x2
y = 2x3 (∗)

given that y1(x) = x and y2(x) = x2 are linearly independent solutions of the correspond-
ing reduced equation. Also give the general solution of the nonhomogeneous equation.

SOLUTION The Wronskian of y1, y2 is W (x) = y1 y
′
2 − y2 y

′
1 = x(2x) − x2(1) = x2.

By the method of variation of parameters, a particular solution of the nonhomogeneous
equation is

z(x) = u(x) x+ v(x) x2

where, from (2),

u(x) =
∫

−y2(x) f(x)
W (x)

dx =
∫

−x2(2x3)
x2

dx =
∫

−2x3 dx = −1
2 x

4
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and

v(x) =
∫

y1(x) f(x)
W (x)

dx =
∫
x(2x3)
x2

dx =
∫

2x2 dx = 2
3 x

3

(NOTE: Since we are seeking only one function u and one function v we have not included
arbitrary constants in the integration steps.)

Now
z(x) = −1

2 x
4 · x+ 2

3 x
3 · x2 = 1

6 x
5.

is a particular solution of the nonhomogeneous equation (∗) and

y = C1x+ C2x
2 + 1

6 x
5.

is the general solution. �

Remark Rather than simply memorizing the formula (4) for the particular solution z of
(N), some people prefer to use the variation of parameters method to construct the solution
z. We’ll use this approach in the next example. �

Example 2. Find the general solution of

y′′ − 5y′ + 6y = 4e2x. (∗)

SOLUTION The reduced equation y′′ − 5y′ + 6y = 0 has characteristic equation

r2 − 5r − 6 = (r− 2)(r− 3) = 0,

and y1(x) = e2x, y2(x) = e3x are linearly independent solutions. The general solution of
the reduced equation is

y = C1e
2x + C2e

3x.

We replace the constants C1 and C2 by functions u and v which are to be
determined such that

z = ue2x + ve3x

is a solution of (∗).

Now,
z′ = 2ue2x + e2xu′ + 3ve3x + e3xv′.

Imposing the condition
e2xu′ + e3xv′ = 0, (a)

the first derivative simplifies to
z′ = 2ue2x + 3ve3x (b)

and
z′′ = 4ue2x + 2e2xu′ + 9ve3x + 3e3xv′.
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Substituting z, z′ [given by (b)] and z′′ into the left side of (∗) gives

4ue2x + 2e2xu′ + 9ve3x + 3e3xv′ − 5(2ue2x + 3ve3x) + 6(u2x + ve3x) = 2e2xu′ + 3e3xv′.

Setting this equal to 4e2x we have our second equation

2e2xu′ + 3e3xv′ = 4e2x. (c)

Taking (a) and (c) together, we get the system

e2xu′ + e3xv′ = 0

2e2xu′ + 3e3xv′ = 4e2x

Multiplying the first equation by −3 and adding gives

−e2xu′ = 4e2x which implies u′ = −4 and u = −4x;

multiplying the first equation by −2 and adding gives

e3xv′ = 4e2x which implies v′ = 4e−x and v = −4e−x.

Therefore,
z = (−4x)e2x + (−4e−x)e3x = −4xe2x − 4e2x

is a particular solution of (*).

Finally, the general solution of (*) is

y = C1 e
2x + C2 e

3x − 4x e2x − 4e2x

which can be written equivalently as

y = C1 e
2x + C2 e

3x − 4x e2x

by combining −4e2x with C1 e
2x. �

Exercises 3.4

Verify that the given functions y1 and y2 form a fundamental set of solutions of the
reduced equation of the given nonhomogeneous equation; then find a particular solution of
the nonhomogeneous equation and give the general solution of the equation.

1. y′′ − 2
x2
y = 3 − x−2; y1(x) = x2, y2(x) = x−1.

2. y′′ − 1
x
y′ +

1
x2
y =

2
x

; y1(x) = x, y2(x) = x ln x.
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3. x2y′′ − 2xy′ + 2y = x2 ln x; y1(x) = x, y2(x) = x2.

4. y′′ − 1 + x

x
y′ +

1
x
y = xe2x; y1(x) = 1 + x, y2(x) = ex.

5. (x− 1)y′′ − xy′ + y = (x− 1)2; y1(x) = x, y2(x) = ex.

6. x2y′′ − xy′ + y = 4x ln x.

Find the general solution of the given nonhomogeneous differential equation.

7. y′′ − y′ − 2y = 2e−x.

8. y′′ + y = tan x.

9. y′′ + 4y = sec 2x.

10. y′′ − 2y′ + y = xex.

11. y′′ − 2y′ + y = ex cos x.

12. y′′ − 4y′ + 4y = 1
3 x

−1e2x.

13. y′′ + 4y′ + 4y =
e−2x

x2
.

14. y′′ + 2y′ + y = e−x ln x.

15. y′′ + 9y = 9 sec2 3x.

16. y′′ − 2y′ + 2y = ex sec x.

17. The function y1(x) = x is a solution of x2y′′+xy′−y = 0. Find the general solution
of the differential equation

x2y′′ + xy′ − y = 2x.

HINT: See Exercise 15, Section 3.2.

18. The function y1(x) = x is a solution of (x2 +1)y′′− 2xy′ +2y = 0. Find the general
solution of the differential equation

(x2 + 1)y′′ − 2xy′ + 2y = (x2 + 1)2.

19. The functions y1(x) = x2 + x ln x, y2(x) = x+ x2 and y3(x) = x2 are solutions of
a second order linear nonhomogeneous equation. What is the general solution of the
equation?

20. The functions y1(x) = x−2x3 y2(x) = xex +x−2x3 and y3(x) = −2x3 are solutions
of a second order linear nonhomogeneous equation. What is the general solution of
the equation?
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3.5 Nonhomogeneous Equations with Constant Coefficients;

Undetermined Coefficients

Solving a linear nonhomogeneous equation depends, in part, on finding a particular solution
of the equation. We have seen one method for finding a particular solution, the method
of variation of parameters. In this section we present another method, the method of
undetermined coefficients.

Remark: Limitations of the method. In contrast to variation of parameters, which
can be applied to any nonhomogeneous equation, the method of undetermined coefficients
can be applied only to nonhomogeneous equations of the form

y′′ + ay′ + by = f(x) (1)

where a and b are constants and the nonhomogeneous term f is a polynomial, an
exponential function, a sine, a cosine, or a combination of such functions. �

To motivate the method of undetermined coefficients, consider the linear operator L

on the left side of (1):

L[y] = y′′ + ay′ + by. (2)

If we calculate L[y] for an exponential function z = Aerx, A a constant, we have

z = Aerx, z′ = Arerx, z′′ = Ar2erx

and

L[y] = y′′ + ay′ + by = Ar2erx + a(Arerx) + b(Aerx =
(
Ar2 + aAr + bA

)
erx

= K erx where K = Ar2 + aAr + bA.

That is, the operator L “transforms” Aerx into a constant multiple of erx. We can use
this result to determine a particular solution of a nonhomogeneous equation of the form

y′′ + ay′ + by = cerx.

Here is a specific example.

Example 1. Find a particular solution of the nonhomogeneous equation

y′′ − 2y′ + 5y = 6e3x.

SOLUTION As we saw above, if we “apply” y′′ − 2y′ + 5y to z(x) = Ae3x we will get
an expression of the form Ke3x. We want to determine A so that K = 6. The constant
A is called an undetermined coefficient. We have

z = Ae3x, z′ = 3Ae3x, z′′ = 9Ae3x.
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Substituting z and its derivatives into the left side of the differential equation, we get

9Ae3x − 2
(
3Ae3x

)
+ 5

(
Ae3x

)
= (9A− 6A+ 5A)e3x = 8Ae3x.

We want
z′′ − 2z′ + 5z = 6e3x,

so we set
8Ae3x = 6e3x which gives 8A = 6 and A = 3

4 .

Thus, z(x) = 3
4 e

3x is a particular solution of y′′ − 2y′ + 5y = 6e3x. (Verify this.)

You can also verify that

y = C1e
x cos 2x+ C2e

x sin 2x+ 3
4 e

3x

is the general solution of the equation. �

If we set z(x) = A cos βx and calculate z′ and z′′, we get

z = A cos βx, z′ = −βA sin βx, z′′ = −β2A cos βx.

Therefore, L[y] = y′′ + ay′ + by applied to z gives

L[z] = z′′ + az′ + bz = −β2A cos βx+ a (−βA sin βx) + b(Acos βx)

= (−β2A+ bA) cos βx+ (−aβA) sin βx.

That is, L “transforms” z = A cos βx into an expression of the form

K cos βx+M sin βx

where K and M are constants which depend on a, b, β and A. We will get exactly the
same type of result if we apply L to z = B sinβx. Combining these two results, it follows
that L[y] = y′′ + ay′ + by applied to

z = A cos βx+ B sin βx

will produce the expression
K cos βx+M sin βx

where K and M are constants which depend on a, b, β, A, and B.

Now suppose we have a nonhomogeneous equation of the form

y′′ + ay′ + by = c cos βx or y′′ + ay′ + by = d sin βx,

or the general form
y′′ + ay′ + by = c cos βx+ d sin βx.

(Note: The first equation can be written y′′ + ay′ + by = c cos βx + 0 sin βx and the
second equation can be written y′′ + ay′ + by = 0 cos βx + d sin βx so each is a special
case of the general form.)

We will look for a solution of the form z(x) = A cos βx +B sin βx.
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Example 2. Find a particular solution of the nonhomogeneous equation

y′′ + 2y′ + y = 10 cos 3x.

SOLUTION Set z = A cos 3x + B sin 3x where A and B are constants which are to
be determined so that z′′ + 2z′ + z = 10 cos 3x.

Calculating the derivatives of z, we have

z = A cos 3x+ B sin 3x, z′ = −3Aa sin 3x+ 3B cos 3x, z′′ = −9A cos 3x− 9B sin 3x.

Substituting z and its derivatives into the left side of the differential equation gives

−9A cos 3x− 9B sin 3x+ 2(−3A sin 3x+ 3B cos 3x) + A cos 3x+ B sin 3x

= (−8A+ 6B) cos 3x+ (−6A− 8B) sin 3x.

Since we want z′′ + 2z′ + z = 10 cos 3x = 10 cos 3x+ 0 sin 3x, we set

(−8A+ 6B) cos 3x+ (−6A− 8B) sin 3x = 10 cos 3x+ 0 sin 3x

which implies

−8A + 6B = 10

−6A − 8B = 0

The solution of this pair of equations is: A = −4
5 , B = 3

5 . Therefore a particular
solution of the differential equation is

z(x) = −4
5 cos 3x+ 3

5 sin 3x.

You can verify that the general solution of the differential equation is

y = C1e
−x + C2xe

−x − 4
5 cos 3x+ 3

5 sin 3x. �

Example 3. Find the general solution of the differential equation

y′′ − 6y′ + 8y = 2 cos 2x− 4 sin 2x. (∗)

SOLUTION First we consider the reduced equation:

y′′ − 6y′ + 8y = 0.

The characteristic equation is: r2 − 6r+ 8 = (r− 2)(r− 4) = 0 and the roots are r = 2, 4.
Therefore the functions y1(x) = e2x, y2(x) = e4x form a fundamental set of solutions of
the reduced equation.
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Next we find a particular solution of (∗). Since f(x) = 2 cos 2x − 4 sin 2x, we seek
a solution of the form z = A cos 2x + B sin 2x. We calculate the derivatives of z and
substitute into the left side of (∗):

z = A cos 2x+ B sin 2x, z′ = −2A sin 2x+ 2B cos 2x, z′′ = −4A cos 2x− 4B sin 2x;

z′′ − 6z′ + 8z = −4A cos 2x− 4B sin 2x− 6(−2A sin 2x+ 2B cos 2x) + 8(A cos 2x+B sin 2x)

= (4A− 12B) cos 2x+ (12A+ 4B) sin 2x;

Now z is a solution of (∗) if

(4A− 12B) cos 2x+ (12A+ 4B) sin 2x = 2 cos 2x− 4 sin 2x

which implies

4A− 12B = 2

12A+ 4B = −4

The solution to this pair of equations is: A = −1
4 , B = −1

4 . Therefore, z(x) = −1
4 cos 2x−

1
4 sin 2x is a particular solution of (∗).

Finally, the general solution of (∗) is:

y = C1e
2x + C2e

4x − 1
4 cos 2x− 1

4 sin 2x. �

Continuing with these ideas, if y′′+ay′+by is applied to z = Aeαx cos βx+Beαx sin βx,
then the result will have the form

Keαx cos βx+Meαx sin βx

where K and M are constants which depend on a, b, α, β, A,B. Therefore, we expect
that a nonhomogeneous equation of the form

y′′ + ay′ + by = ceαx cos βx+ deαx sin βx

will have a particular solution of the form z = Aeαx cos βx+ Beαx sin βx.

The following table summarizes our discussion to this point.

A particular solution of y′′ + ay′ + by = f(x)

If f(x) = try z(x) =

cerx Aerx

c cos βx+ d sin βx z(x) = A cos βx+B sin βx

ceαx cos βx+ deαx sin βx z(x) = Aeαx cos βx+ Beαx sin βx
Note: The first line includes the case r = 0;
if f(x) = ce0x = c, then z = Ae0x = A.
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Unfortunately, the situation is not quite as simple as it appears; there is a difficulty.

Example 4. Find a particular solution of the nonhomogeneous equation

y′′ − 5y′ + 6y = 4e2x. (∗)

SOLUTION According to the table, we should set z(x) = Ae2x. Calculating the derivatives
of z, we have

z = Ae2x, z′ = 2Ae2x, z′′ = 4Ae2x.

Substituting z and its derivatives into the left side of (∗), we get

z′′ − 5z′ + 6z = 4Ae2x − 5(2Ae2x) + 6(Ae2x) = 0Ae2x.

Clearly the equation

0Ae2x = 4e2x which is equivalent to 0A = 4

does not have a solution. Therefore equation (∗) does not have a solution of the form
z = Ae2x.

The problem here is z = Ae2x is a solution of the reduced equation

y′′ − 5y′ + 6y = 0.

(The characteristic equation is r2−5r+6 = 0; the roots are r = 2, 3; and y1 = e2x, y2 =
e3x are linearly independent solutions.)

In Example 2 of the preceding section we saw that z(x) = −4xe2x is a particular
solution of (∗). So, in the context here, since our trial solution z = Ae2x solves the
reduced equation, we’ll try z = Axe2x. The derivatives of this z are:

z = Axe2x, z′ = 2Axe2x +Ae2x, z′′ = 4Axe2x + 4Ae2x.

Substituting into the left side of (∗), we get

z′′ − 5z′ + 6z = 4Axe2x + 4Ae2x − 5(2Axe2x +Ae2x) + 6(Axe2x)

= −Ae2x.

Setting z′′ − 5z′ + 6z = 4e2x gives

−Ae2x = 4e2x which implies A = −4.

Thus, z(x) = −4xe2x is a particular solution of (∗) (as we already know). �

We learn from this example that we have to make an adjustment if our trial solution z

(from the table) satisfies the reduced equation. Here’s another example.
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Example 5. Find a particular solution of

y′′ + 6y′ + 9y = 5e−3x. (∗∗)

SOLUTION The reduced equation, y′′ + 6y′ + 9y = 0 has characteristic equation

r2 + 6r + 9 = (r+ 3)2 = 0.

Thus, r = −3 is a double root and y1(x) = e−3x, y2(x) = xe−3x form a fundamental set
of solutions.

According to our table, to find a particular solution of (∗∗) we should try z = Ae−3x.
But this won’t work, z is a solution of the reduced equation. Based on the result of the
preceding example, we should try z = Axe−3x, but this won’t work either; z = Axe−3x

is also a solution of the reduced equation. So we’ll try z = Ax2e−3x. The derivatives of
this z are:

z = Ax2e−3x, z′ = −3Ax2e−3x + 2Axe−3x, z′′ = 9Ax2e−3x − 12Axe−3x + 2Ae−3x.

Substituting into the left side of (∗∗), we get

z′′ + 6z′ + 9z = 9Ax2e−3x − 12Axe−3x + 2Ae−3x + 6(−3Ax2e−3x + 2Axe−3x) + 9(Ax2e−3x)

= 2Ae−3x.

Setting z′′ + 6z′ + 9z = 5e−3x gives

2Ae−3x = 5e−3x which implies A = 5
2 .

Thus, z(x) = 5
2 x

2e−3x is a particular solution of (∗∗).

The general solution of (∗∗) is: y = C1e
−3x + C2xe

−3x + 5
2 x

2e−3x. �

Based on these examples we amend our table to read:

Table 1

A particular solution of y′′ + ay′ + by = f(x)

If f(x) = try z(x) =*

cerx Aerx

c cos βx+ d sin βx z(x) = A cos βx+B sin βx

ceαx cos βx+ deαx sin βx z(x) = Aeαx cos βx+ Beαx sin βx

*Note: If z satisfies the reduced equation, try xz; if xz also satisfies the
reduced equation, then x2z will give a particular solution
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Remark In practice it is a good idea to solve the reduced equation before selecting the
trial solution z of the nonhomogeneous equation. That way you will not waste your time
selecting a z that satisfies the reduced equation. �

Example 6. Without carrying out the calculations, give the form of the general solution
of the nonhomogeneous differential equation

y′′ − y′ − 6y = 2 cos x− 2e3x + 10.

SOLUTION The first step is to solve the reduced equation y′′ − y′ − 6y = 0. The
characteristic equation is r2 − r− 6 = (r+ 2)(r− 3) = 0. Thus, y1(x) = e−2x, y2(x) = e3x

forms a fundamental set of solutions of the reduced equation and

y = C1e
−2x + C2e

3x

is the general solution of the reduced equation.

Now we need a particular solution z of the given equation. To find z we make use of
the Corollary to Theorem 3 in the preceding section. That is, we’ll find a particular solution
z1 of

y′′ − y′ − 6y = 2 cos x,

a particular solution z2 of
y′′ − y′ − 6y = −2e3x,

and a particular solution z3 of

y′′ − y′ − 6y = 10.

Then z = z1 + z2 + z3 will be a particular solution of the given equation.

From Table 1, z1 has the form z1(x) = A cos x + B sin x and z2 has the form
z2(x) = Cxe3x. To find z3 note that 10 = 10e0x which is simply the case r = 0 in the
first line of Table 1. Thus z3 has the form z3(x) = De0x = D. A particular solution z

of the nonhomogeneous equation has the form

z(x) = A cos x +B sin x+ Cxe3x +D.

where the constants A,B, C,D are to be determined.

The general solution of the equation will have the form

y = C1e
−2x + C2e

3x + A cos x+ B sin x+ Cxe3x +D. �

You can verify that y = C1 e
−2x + C2 e

3x − 7
25 cos x− 1

25 sin x− 2
5 xe

3x − 5
3 is the general

solution.
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So far we have only considered the nonhomogeneous differential equation (1) in cases
where the nonhomogeneous term f is a constant multiple of one of the functions erx, cos βx,
sin βx, eαx cos βx, eαx sin βx, or is a sum of such functions. In general, the method of
undetermined coefficients can be applied in cases where

f(x) = p(x)erx

f(x) = p(x) cos βx, or p(x) sin βx,

f(x) = p(x)eαx cos βx, or p(x)eαx sin βx

where p is a polynomial, or where f is a sum of such functions. This follows from the
fact that the expression y′′ + ay′ + by applied to

z =
(
A0 + A1x+A2x

2 + · · ·+ Anx
n
)
erx

will result in an expression of the form P (x)erx where P is a polynomial of degree n

(or less); y′′ + ay′ + by applied to

z =
(
A0 + A1x+A2x

2 + · · ·+ Anx
n
)
cos βx

will result in an expression of the form P (x) cos βx+ Q(x) sin βx where P and Q are
a polynomials of degree n (or less); and so on.

The general version of the method of undetermined coefficients can be summarized as
follows:

(1) If f(x) = p(x)erx where p is a polynomial of degree n, then

z(x) =
(
A0 + A1x+A2x

2 + · · ·+ Anx
n
)
erx.

(2) If f(x) = p1(x) cos βx+ p2(x) sin βx where p1 and p2 are polynomials of degrees
k and m, respectively, then

z(x) = (A0 +A1x+ · · ·+Anx
n) cos βx + (B0 + B1x+ · · ·+ Bnx

n) sin βx

where n = max {k,m}.

(3) If f(x) = p1(x)eαx cos βx + p2(x)eαx sin βx where p1 and p2 are polynomials of
degrees k and m, respectively, then

z(x) = (A0 + A1x+ · · ·+ Anx
n) eαx cos βx + (B0 + B1x+ · · ·+ Bnx

n) eαx sin βx

where n = max {k,m}.

Note: If any term in z satisfies the reduced equation y′′ + ay′ + by = 0, then use xz as
the trial solution; if any term in xz satisfies the reduced equation, then x2z will give a
particular solution.

Here are some examples.
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Example 7. Find a particular solution of

y′′ + 4y = (3 + 2x)e−2x. (∗)

SOLUTION The functions y1(x) = cos 2x, y2(x) = sin 2x form a fundamental set of
solutions of the reduced equation y′′ + 4y = 0.

A particular solution of (∗) will have the form z = (A + Bx)e−2x where A and B

are to be determined. The derivatives of z are:

z = (A+ Bx)e−x, z′ = −2(A+Bx)e−2x +Be−2x, z′′ = 4(A+ Bx)e−2x − 4Be−2x.

Substituting z and its derivatives into the left side of (∗), we get

z′′ + 4z = 4(A+ Bx)e−2x − 4Be−2x + 4(A+Bx)e−2x = [(8A− 4B) + 8Bx]e−2x.

Thus z is a solution of (∗) if

[(8A− 4B) + 8Bx]e−2x = (3 + 2x)e−2x which implies 8A− 4B = 3 and 8B = 2.

The solution of this pair of equations is A = 1
2 , B = 1

4 , and

z(x) =
(

1
2 + 1

4 x
)
e−2x

is a particular solution of (∗). �

Example 8. Give the form of the general solution of each of the following nonhomogeneous
equations:

(a) y′′ − 3y′ + 2y = (1 + 2x− 4x2)e2x.

(b) y′′ + 4y′ + 4y = (3 − 5x)e−2x.

SOLUTION (a) The reduced equation is y′′ − 3y′ + 2y = 0. The characteristic equation
is

r2 − 3r + 2 = (r− 1)(r− 2) = 0.

Thus, y1(x) = ex, y2(x) = e2x forms a fundamental set of solutions of the reduced equation.

According to the summary above, a particular solution z should have the form

z = (A0 + A1x+A2x
2)e2x

but A0e
2x satisfies the reduced equation. Therefore we need to multiply the trial solution

by x and try
z = (A0x+ A1x

2 + A2x
3)e2x.
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Since none of the terms in this z satisfies the reduced equation, this is the form of a
particular solution.

The general solution of the equation will have the form

y = C1e
x + C2e

2x + (A0x +A1x
2 +A2x

3)e2x

where A0, A1, A2 are constants which are to be determined.

(b) The reduced equation is y′′ + 4y′ + 4y = 0. The characteristic equation is

r2 + 4r + 4 = (r+ 2)2 = 0.

Thus, y1(x) = e−2x, y2(x) = xe−2x forms a fundamental set of solutions of the reduced
equation.

According to the summary above, a particular solution z should have the form

z = (A0 + A1x)e−2x

but A0e
−2x and A1xe

−2x satisfy the reduced equation. Therefore we need to multiply
the trial solution by x and try

z = (A0x+A1x
2)e−2x.

But A0xe
−2x also satisfies the reduced equation so we need to multiply the initial z by

x2. Since none of the terms in

z = (A0x
2 + a1x

3)e−2x

satisfies the reduced equation, this is the form of a particular solution.

The general solution of the equation will have the form

y = C1e
−2x + C2xe

−2x + (A0x
2 + A1x

3)e−2x

where A0, A1 are constants which are to be determined. �

Summary of Sections 3.4 and 3.5

The method of variation of parameters can be applied to any linear nonhomogeneous
equation but it has the limitation of requiring a fundamental set of solutions of the reduced
equation.

The method of undetermined coefficients is limited to linear nonhomogeneous equations
with constant coefficients and with restrictions on the nonhomogeneous term f .

In cases where both methods are applicable, the method of undetermined coefficients is
usually more efficient and, hence, the preferable method. �
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Exercises 3.5

Find the general solution.

1. y′′ − 2y′ − 3y = 3e2x.

2. y′′ + 2y′ + 2y = 10ex.

3. y′′ + 6y′ + 9y = 9e3x.

4. y′′ + 6y′ + 9y = e−3x.

5. y′′ + 2y′ = 4 sin 2x.

6. y′′ + y = 3 sin 2x+ x cos 2x.

7. 2y′′ + 3y′ + y = x2 + 3 sin x.

8. y′′ − 6y′ + 9y = e−3x.

9. y′′ + 5y′ + 6y = 3x+ 4.

10. y′′ + 4y′ + 4y = xe−x.

11. y′′ + 6y′ + 8y = 3e−2x.

12. y′′ + 2y′ + y = xe−x.

13. y′′ + 9y = x2e3x + 6.

14. y′′ + y′ − 2y = x3 + x.

15. y′′ − 2y′ + 5y = e−x sin 2x.

16. y′′ + 2y′ + 5y = e2x cos x.

Find the solution of the given initial-value problem.

17. y′′ + y′ − 2y = 2x; y(0) = 0, y′(0) = 1.

18. y′′ + 4y = x2 + 3ex; y(0) = 0, y′(0) = 2.

19. y′′ − y′ − 2y = sin 2x; y(0) = 1, y′(0) = −1.

20. y′′ − 2y′ + y = xex + 4; y(0) = 1, y′(0) = 1.

Determine a suitable form for a particular solution z = z(x) of the given equation.

21. y′′ − 2y′ − 3y = 6 − 3xe−x + 4 cos 3x.

22. y′′ + 2y′ = 2x+ x2e−3x + sin 2x.
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23. y′′ + y = x2 − 1 + 3 cos x− 2 sin x.

24. y′′ − 5y′ + 6y = 2e2x cos x − 3xe3x + 5.

25. y′′ − 4y′ + 4y = 2xe2x + x2 − 1 + 2x cos 2x.

26. y′′ + 5y′ + 6y = 2e2x cos x − 3xe3x + 5e−2x.

27. y′′ + 2y′ + 2y = 4e−x + 2e−x cos x+ 9.

28. y′′ + 2y′ + 5y = 4e−x sin 2x+ 2e−x cos x.

Find the general solution of the given differential equation.

29. y′′ − 4y′ + 4y = 2 sin x+ 3x−1e2x.

30. y′′ − 2y′ + y =
ex

x2 + 1
+ 2e2x.

31. y′′ + 9y = 3 cos x− 9 sec2 3x.

32. y′′ + 4y = 5e4x + 3− sec2 2x.

Exercises 33 and 34 are concerned with the differential equation

y′′ + ay′ + by = f(x)

where a and b are nonnegative constants.

33. Suppose that a, b > 0. Show that if y1(x) and y2(x) are solutions of the equation,
then y1(x) − y2(x) → 0 as x→ ∞. What happens if a = 0 and b > 0?

34. If f(x) = c, c a constant, show that every solution y(x) of the equation has the
property y(x) → c/b as x → ∞. What happens if b = 0? What happens if
a = b = 0?
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3.6 Vibrating Mechanical Systems

Undamped Vibrations

A spring of length l0 units is suspended from a support. When an object of mass m is
attached to the spring, the spring stretches to a length l1 units. If the object is then pulled
down (or pushed up) an additional y0 units at time t = 0 and then released, what is the
resulting motion of the object? That is, what is the position y(t) of the object at time
t > 0? Assume that time is measured in seconds

We begin by analyzing the forces acting on the object at time t > 0. First, there is the
weight of the object (gravity):

F1 = mg.

This is a downward force. We choose our coordinate system so that the positive direction
is down. Next, there is the restoring force of the spring. By Hooke’s Law, this force is
proportional to the total displacement l1 + y(t) and acts in the direction opposite to the
displacement:

F2 = −k[l1 + y(t)] with k > 0.

The constant of proportionality k is called the spring constant. If we assume that the
spring is frictionless and that there is no resistance due to the surrounding medium (for
example, air resistance), then these are the only forces acting on the object. Under these
conditions, the total force is

F = F1 + F2 = mg − k[l1 + y(t)] = (mg − kl1) − ky(t).

Before the object was displaced, the system was in equilibrium, so the force of gravity,
mg plus the force of the spring, −kl1, must have been 0:

mg − kl1 = 0.

Therefore, the total force F reduces to

F = −ky(t).

By Newton’s Second Law of Motion, F = ma (force = mass × acceleration), we have

ma = −ky(t) and a = − k

m
y(t).

Therefore, at any time t we have

a = y′′(t) = − k

m
y(t) or y′′(t) +

k

m
y(t) = 0.

When the acceleration is a constant negative multiple of the displacement, the object is
said to be in simple harmonic motion.

106



Since k/m > 0, we can set ω =
√
k/m and write this equation as

y′′(t) + ω2y(t) = 0, (1)

a second order linear homogeneous equation with constant coefficients. The characteristic
equation is

r2 + ω2 = 0

and the characteristic roots are ±ωi. The general solution of (1) is

y = C1 cos ωt + C2 sin ωt.

In Exercises 3.6 (Problem 5) you are asked to show that the general solution can be written
as

y = A sin (ωt+ φ0), (2)

where A and φ0 are constants with A > 0 and φ0 ∈ [0, 2π). For our purposes here,
this is the preferred form. The motion is periodic with period T given by

T =
2π
ω
,

a complete oscillation takes 2π/ω seconds. The reciprocal of the period gives the number
of oscillations per second. This is called the frequency , denoted by f :

f =
ω

2π
.

Since sin (ωt+ φ0) oscillates between −1 and 1,

y(t) = A sin (ωt+ φ0)

oscillates between −A and A. The number A is called the amplitude of the motion.
The number φ0 is called the phase constant or the phase shift . The figure gives a typical
graph of (2).

t

A

A
y

Figure 1
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Example 1. Find an equation for the oscillatory motion of an object, given that the period
is 2π/3 and at time t = 0, y = 1, y′ = 3.

SOLUTION In general the period is 2π/ω, so that here

2π
ω

=
2π
3

and therefore ω = 3.

The equation of motion takes the form

y(t) = A sin (3ω + φ0).

Differentiating the equation of motion gives

y′(t) = 3A cos(3t+ φ0).

Applying the initial conditions, we have

y(0) = 1 = A sin φ0, y′(0) = 3 = 3A cos φ0

and therefore
A sin φ0 = 1, A cos φ0 = 1.

Adding the squares of these equations, we have

2 = A2 sin2 φ0 +A2 cos2 φ0 = A2.

Since A > 0, A =
√

2.

Finally, to find φ0, note that
√

2 sin φ0 = 1 and
√

2 cos φ0 = 1.

These equations imply that φ0 = π/4. Thus, the equation of motion is

y(t) =
√

2 sin (3t+ 1
4 π). �

Damped Vibrations

If the spring is not frictionless or if there the surrounding medium resists the motion of the
object (for example, air resistance), then the resistance tends to dampen the oscillations.
Experiments show that such a resistant force R is approximately proportional to the
velocity v = y′ and acts in a direction opposite to the motion:

R = −cy′ with c > 0.

Taking this force into account, the force equation reads

F = −ky(t) − cy′(t).
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Newton’s Second Law F = ma = my′′ then gives

my′′(t) = −ky(t) − cy′(t)

which can be written as

y′′ +
c

m
y′ +

k

m
y = 0. (c, k, m all constant) (3)

This is the equation of motion in the presence of a damping factor.

The characteristic equation

r2 +
c

m
r +

k

m
= 0

has roots

r =
−c±

√
c2 − 4km
2m

.

There are three cases to consider:

c2 − 4km < 0, c2 − 4km > 0, c2 − 4km = 0.

Case 1: c2 − 4km < 0. In this case the characteristic equation has complex
roots:

r1 = − c

2m
+ iω, r2 = − c

2m
− iω where ω =

√
4km− c2

2m
.

The general solution is

y = e(−c/2m)t (C1 cos ωt+ C2 sin ωt)

which can also be written as

y(t) = Ae(−c/2m)t sin (ωt+ φ0) (4)

where, as before, A and φ0 are constants, A > 0, φ0 ∈ [0, 2π). This is
called the underdamped case. The motion is similar to simple harmonic motion
except that the damping factor e(−c/2m)t causes y(t) → 0 as t → ∞.
The oscillations continue indefinitely with constant frequency f = ω/2π but
diminishing amplitude Ae(−c/2m)t. This motion is illustrated in Figure 2. �

t

y

Figure 2
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Case 2: c2−4km > 0. In this case the characteristic equation has two distinct
real roots:

r1 =
−c+

√
c2 − 4km
2m

, r2 =
−c−

√
c2 − 4km
2m

.

The general solution is

y(t) = y = C1e
r1t + C2e

r2t. (5)

This is called the overdamped case. The motion is nonoscillatory. Since
√
c2 − 4km <

√
c2 = c,

r1 and r2 are both negative and y(t) → 0 as t→ ∞. �

Case 3: c2 − 4km = 0. In this case the characteristic equation has only one
real root:

r1 =
−c
2m

,

and the general solution is

y(t) = y = C1e
−(c/2m) t + C2t e

−(c/2m) t. (6)

This is called the critically damped case. Once again, the motion is nonoscillatory
and y(t) → 0 as t→ ∞. �

In both the overdamped and critically damped cases, the object moves back to the
equilibrium position (y(t) → 0 as t→ ∞). The object may move through the equilibrium
position once, but only once. Two typical examples of the motion are shown in Figure 3.

t

y

t

y

Figure 3

Forced Vibrations

The vibrations that we have considered thus far result from the interplay of three forces:
gravity, the restoring force of the spring, and the retarding force of friction or the surround-
ing medium. Such vibrations are called free vibrations .
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The application of an external force to a freely vibrating system modifies the vibrations
and produces what are called forced vibrations . As an example we’ll investigate the effect
of a periodic external force F0 cos γt where F0 and γ are positive constants.

In an undamped system the force equation is

F = −kx+ F0 cos γt

and the equation of motion takes the form

y′′ +
k

m
y =

F0

m
cos γt.

We set ω =
√
k/m and write the equation of motion as

y′′ + ω2y =
F0

m
cos γt. (7)

As we’ll see, the nature of the motion depends on the relation between the applied frequency
, γ/2π, and the natural frequency of the system, ω/2π.

Case 1: γ 6= ω. In this case the method of undetermined coefficients gives the
particular solution

z(t) =
F0/m

ω2 − γ2
cos γt

and the general equation of motion is

y = A sin (ωt+ φ0) +
F0/m

ω2 − γ2
cos γt. (8)

If ω/γ is rational, the vibrations are periodic. If ω/γ is not rational, then
the vibrations are not periodic and can be highly irregular. In either case, the
vibrations are bounded by

|A|+
∣∣∣∣
F0/m

ω2 − γ2

∣∣∣∣ . �

Case 2: γ = ω. In this case the method of undetermined coefficients gives

z(t) =
F0

2ωm
t sin ωt

and the general solution has the form

y = A sin (ωt+ φ0) +
F0

2ωm
t sin ωt. (9)

The system is said to be in resonance . The motion is oscillatory but, because of
the t factor in the second term, it is not periodic. As t→ ∞, the amplitude
of the vibrations increases without bound.
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A typical illustration of the motion is given in Figure 4. �

t

y

Figure 4

Exercises 3.6

1. An object is in simple harmonic motion. Find an equation for the motion given that
the period is 1

4π and, at time t = 0, y = 1, y′ = 0. What is the amplitude? What
is the frequency?

2. An object is in simple harmonic motion. Find an equation for the motion given that
the frequency is 1/π and, at time t = 0, y = 0, y′ = −2. What is the amplitude?
What is the period?

3. An object is in simple harmonic motion with period T and amplitude A. What is
the velocity at the equilibrium point y = 0?

4. An object in simple harmonic motion passes through the equilibrium point y = 0 at
time t = 0 and every three seconds thereafter. Find the equation of motion given
that y(0) = 5.

5. Show that simple harmonic motion y(t) = C1 cos ωt + C2 sin ωt can be written as:
(a) y(t) = A sin(ωt+ φ0); (b) y(t) = A cos(ωt + ψ0) .

6. What is the effect of an increase in the resistance constant c on the amplitude and
frequency of the vibrations given by (4)?

7. Show that the motion given by (5) can pass through the equilibrium point at most
once. How many times can the motion change directions?

8. Show that the motion given by (6) can pass through the equilibrium point at most
once. How many times can the motion change directions?

9. Show that if γ 6= ω, then the method of undetermined coefficients applied to (7)
gives

z =
F0/m

ω2 − γ2
cos γt.
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10. Show that if ω/γ is rational, then the vibrations given by (8) are periodic.

11. Show that if γ = ω, then the method of undetermined coefficients applied to (7)
gives

z =
F0

2ωm
t sin ωt.
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