1. If a system of n linear equations in n unknowns is consistent, then the rank of the matrix of coefficients is n.

 (a) True
 (b) False

2. If the determinant of the matrix of coefficients of a system of n linear equations in n unknowns is singular, then the system has infinitely many solutions.

 (a) True
 (b) False

3. If the reduced row echelon form of the matrix of coefficients of a system of n linear equations in n unknowns is the identity matrix, then the determinant of the matrix of coefficients is non-zero.

 (a) True
 (b) False

4. If a system of n linear equations in n unknowns is dependent, then the rank of the matrix of coefficients is less than n.

 (a) True
 (b) False

5. If the matrix of coefficients of a system of n linear equations in n unknowns does not have an inverse, then the system has no solutions.

 (a) True
 (b) False

6. If the rank of the matrix of coefficients of a homogeneous system of n linear equations in n unknowns is $n - 1$, then the system has infinitely many solutions.

 (a) True
 (b) False
7. If the rank of the augmented matrix of a system of n linear equations in n unknowns is greater than the rank of the matrix of coefficients, then the matrix of coefficients is singular.

 (a) True
 (b) False

8. If the matrix of coefficients of a homogeneous system of n linear equations in n unknowns has an inverse, then the system does not have infinitely many solutions.

 (a) True
 (b) False

9. If a system of n linear equations in n unknowns is inconsistent, then the reduced row echelon form of the matrix of coefficients is not I_n.

 (a) True
 (b) False

10. If the matrix of coefficients of a homogeneous system of n linear equations in n unknowns is nonsingular, then the trivial solution is the only solution of the system.

 (a) True
 (b) False