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ABSTRACT. This paper solves the problem of determining which Lie groups 

act simply transitively on a Riemannian manifold with negative curvature. The 

results obtained extend those of Heintze for the case of strictly negative curvature. 

Using results of Wolf and Heintze, it is established that every connected, simply 

connected, homogeneous manifold M with negative curvature admits a Lie group 

S acting simply transitively by isometries and every group with this property must 

be solvable. Formulas for the curvature tensor on M are established and used to 

show that the Lie algebra of any such group S must satisfy a number of structural 

conditions. Conversely, given a Lie algebra B satisfying these conditions and any 

member of an easily constructed family of inner products on 6, a metric deforma- 

tion argument is used to obtain a modified inner product which gives rise to a 

left invariant Riemannian structure with negative curvature on the associated simply 

connected Lie group. 

1. Introduction. This paper was motivated by the following problem: 
Which connected Lie groups admit a left invariant Riemannian metric with nega- 
tive (sectional) curvature? We emphasize that throughout the paper, we under- 
stand "negative" to mean "less than or equal to zero". Since the property in 
question is not sensitive to groups linked by a local isomorphism, we deal primar- 
ily with simply connected groups. Results of J. A. Wolf [13] and E. Heintze [4] 
show that the above problem is closely linked with the classification of connected, 
homogeneous Riemannian manifolds with negative curvature. Indeed, if M is such 
a manifold and if M is simply connected, then M is isometric to a solvable Lie 
group endowed with a left-invariant metric. 

In this paper, we give a complete solution to our original problem by show- 
ing that a necessary and sufficient condition for a group to have the property in 
question is that its Lie algebra be what we call an "NC algebra". Roughly speak- 
ing, the crucial properties of an NC algebra 6 are that in addition to being solv- 
able, 4 must contain an abelian subalgebra a complementary to the derived 
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subalgebra n of 6 and that a must contain elements Ho such that ct(HO) > 0 
whenever ci E a* - {O} is the real part of a root of the adjoint representation of 
a on the complexification of n. In addition, there are several technical properties 
linking the structure of n with the extent to which the adjoint action of a on n 
can deviate from a semisimple action. See Definition 6.2 for a precise description 
of NC algebras. We wish to point out that in the announcement of our results in 
[1], Thdordme 3 is incorrectly stated because of the omission of the property 
given here in 6.2(v). 

For the case of strictly negative curvature (see ?7.8), the problem was 
recently solved by E. Heintze [4]. Here one looks only at those NC algebras 
where the derived subalgebra has codimension 1 and most of the technical diffi- 
culties inherent in the general situation are not present. We wish to thank J. A. 
Wolf for bringing Heintze's results to our attention. 

The second part of our work, to appear elsewhere, will use the results ob- 
tained here to study in greater detail the structure of the group I(M) of all isom- 
etries on a homogeneous Riemannian manifold M with negative curvature and 
will push further towards a classification of these manifolds up to isometries. In 
particular, we shall give a complete group-theoretic characterization of those Lie 
groups isomorphic to IO(M) for M a simply connected manifold of the above type. 
See ?8 for further comments on the questions to be dealt with in Part II. 

We conclude this introduction with a summary of the organization of results 
in the present paper. A first good look (?2) into the structure of I(M) for M a 
homogeneous manifold with negative curvature reduces the initial problem to the 
context of solvable groups. Hence, in ?3, we fix a solvable group S endowed 
with a left-invariant metric and compute explicitly the sectional curvature on 6, 
the Lie algebra of S. Imposing the condition of negative curvature, the computa- 
tion shows that if H E 6 is orthogonal to n = [?, 6], then the operator A = 
ad Hln is "almost normal" in the sense that (Re A)2 + [Re A, Im A] > 0, where 
Re A and Im A are, respectively, the symmetric and skew-symmetric parts of A. 
?4 begins with a rather painful clarification of the structure of certain families of 
almost normal operators. For the case at hand, this information shows that @, 
the orthogonal complement of n in 6, is abelian and provides information about 
root subspaces of n relative to the adjoint action of a. More refined structural 
constraints on 6 are obtained in ?5, where in particular it is seen that the non- 
zero real parts of the roots of a in n lie in an open half-space of the dual a* of 
a. These constraints are then collected together in ?6 to form the definition of 
the class of "NC algebras". Finally, in ?7, we prove that when 9 is an arbitrary 
NC algebra, any associated Lie group carries (many) left-invariant metrics with 
negative curvature. We first handle the case when n = [(, ] is abelian by explicit 
diagonalization of the curvature tensor. In the general situation, we begin with 
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any "admissible" metric on X, i.e. an inner product linked to the Lie structure of 
6 by a few simple constraints. By linear "deformation" of this metric, we obtain 
the desired metrics on B. The main point is that the study of linear deformations 
of a metric is in an appropriate sense dual to the study of the fixed metric to- 
gether with linear deformations of the Lie structure on 4 tending to make n 
"almost abelian". 

2. Structure of the group of isometries. 
2.1. Let M be a connected Riemannian manifold and I(M) the group of all 

isometries of M. Equipped with the compact open topology, I(M) has a Lie group 
structure (Myers-Steenrod [111). We denote by IO(M) the connected component 
of the identity in I(M). 

Recall that M is said to be homogeneous if I(M) acts transitively on M. In 
this case, IO(M) acts transitively on M as well, the orbits of IO(M) being open in 
M. Moreover, a homogeneous Riemannian manifold is always complete 
(Kobayashi-Nomizu [9, p. 1761). 

For p E M, let Tp(M) denote the tangent space of M at p, (, )p the 
Riemannian inner product on Tp(M), and IXI = (X, X)p/2 the length of X E Tp(M). 
Let R denote the Riemann curvature tensor on M. The sectional curvature of M 
at p along a two-dimensional subspace V in Tp(M) is given by the formula 

(l) bp(n=-~~p(X y)X, y)pl(IX12 Iy12- (X 

where X, Y are any two independent elements in V. The manifold M is said to 
have negative curvature (respectively strictly negative curvature) at p if 4Dp(V) S 0 
(respectively 'p1(V) < 0) for every two-dimensional subspace V in Tp (M). If M 
is homogeneous, negative curvature at a single point is of course equivalent to 
negative curvature at all points. 

As shown by Wolf [131, a connected, simply connected, homogeneous 
Riemannian manifold with negative curvature admits a transitive solvable group of 
isometries. In [4, Proposition 1], Heintze proved that in the same situation, it is 
actually possible to find in I(M) a simply transitive solvable group of isometries. 
Thus such manifolds can be represented as simply connected solvable Lie groups 
with a left-invariant metric. This justifies the following definition. 

2.2. DEFINITION. A connected, simply connected, homogeneous Riemannian 
manifold with negative curvature will be called a solvmanifold with negative 
curvature. 

In Proposition 2.5, we shall improve slightly the results of Wolf and Heintze 
just mentioned. 

On any Riemannian manifold M, the Cartan-Ambrose theorem asserts that 
the stability subgroup in I(M) of any point p E M is compact (see Helgason [5, 
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pp. 167-169]). If M is homogeneous and has only finitely many connected 
components, it follows immediately that I(M)/10(M) is finite. When M is a com- 
plete, simply connected, Riemannian manifold with negative curvature, a result of 
t. Cartan [3, Appendix III] provides a converse to the Cartan-Ambrose theorem 
in the sense that for any compact subgroup K of I(M), there is a point p E M 
fixed by K. The first rigorous proof of this result was given by A. Borel in [2]. 
See also Helgason [5, p. 75]. The existence and conjugacy of maximal compact 
subgroups in any connected Lie group (and thus in any Lie group with finitely 
many components) is established in the work of Malcev [10, p. 176] and Iwasawa 
[7, p. 532]. Combining the results just cited, we see that for M a solvmanifold 
with negative curvature, I(M)/10(M) is finite, any compact subgroup of I(M) fixes 
a point in M, and K is a maximal compact subgroup of I(M) if and only if K is 
the stability subgroup in I(M) of some point p E M. 

2.3. A Riemannian manifold M is said to have no Euclidean factor if M is 
not isometric to the product of a Euclidean space of strictly positive dimension 
and another Riemannian manifold. 

By de Rham's decomposition theorem, (see Kobayashi-Nomizu [9, pp. 192 
and 2401 ), if M is a solvmanifold with negative curvature, M is isometric to a 
product MO x M+ where MO is a Euclidean space and M+ a solvmanifold with 
negative curvature having no Euclidean factor. The factors MO and M+ are 
uniquely determined (up to isometry) by M and the group I(M) is canonically 
isomorphic to 1(MO) x I(M+). 

Since Wolf [13] showed that IO(M+) has trivial center, it follows trivially 
from the above decomposition that IO(M) always has trivial center when M is a 
solvmanifold with negative curvature. 

We now establish an elementary result. 

2.4. LEMMA. Let M be a solvmanifold with negative curvature and G a 
connected subgroup of I(M) acting transitively on M. Suppose that K is a maxi- 
mal compact subgroup of G and S a connected Lie subgroup of G acting trans- 
itively on M. Denote by g, 4, and t the Lie algebras of G, S and K. If 6 n F = 

{0}, S is simply connected, closed in G, and acts simply transitively on M. 

PROOF. Let p be a point in M such that K is the stability group of p in G. 
The action of G on M defines a continuous map F from S onto M such that 
F(s) = s * p. The stability group of p in S is S n K which is therefore closed in 
S. Since its Lie algebra is 4 n F = {O}, S n K is discrete and F is a covering 
map. But M is simply connected, so S n K = {e} and S acts simply transitively 
on M. As is easily checked, dF is everywhere nonsingular and F is a diffeomor- 
phism from S onto M. Let sn be a sequence of elements in S converging to 
g E G. Then sn * p converges to q = g * p. But q = s * p for some unique 
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element s E S and it follows that sn converges to s. Therefore S is closed in G. 
Q.E.D. 

2.5. PROPOSITION. Let M be a solvmanifold with negative curvature and 
G any connected Lie subgroup of I(M) acting transitively on M. Let G = G, G2 
be a Levi decomposition of G (i.e. G2 is the radical of G, G1 is a closed connected 
semisimple subgroup of G, and G1 n G2 is discrete). Then G1 has finite center 
and for each Iwasawa decomposition G1 = K1S1 (K1 maximal compact in G1, 
S1 closed solvable in G1) there is a closed subgroup S2 of G2, nornal in G, such 
that S1 n S2 = {e} and S = S1 S2 is a closed simply connected solvable sub- 
group of G acting simply transitively on M. 

PROOF. As seen in 2.3, the center of Io(M) is trivial. Hence IO(M) and, 
a fortiori, any subgroup of IO(M), is isomorphic to a group of complex matrices. 
In particular, with the notations introduced in Proposition 2.5, G1 has finite 
center. 

Let H = S1 G2. Since G = HK1 and K1, being compact, must leave some 
p E M fixed, we conclude that H is a solvable group acting transitively on M. 

Let K2 be the subgroup of H leaving p fixed. Under the isomorphism of G 
with a matrix group given above, we may regard K = K1K2 as a group of unitary 
matrices, and, by Lie's theorem, H as a group of upper triangular matrices. Thus 
K2 = K n H is abelian and K2 n [H, H] = {e} where [H, H] is the commutator 
subgroup of H. Moreover, K2 must be a subgroup of G2. To see this note that 

Si n G2 = {e} since G1 n G2 is a subgroup of the center of G1 and hence is in 
K1. But S1 and G2 are closed in G and Si normalizes G2; it follows easily that 
the topology on H = S G2 is the product topology, and S1 is diffeomorphic to 
H/G2 under the canonical map 7(g) = gG2. Therefore 7r(K2) is trivial since S, 
has no nontrivial compact subgroups. 

Now let g2, fZ be the Lie algebras of G2, K2, and n2 the derived algebra of 

g2. From above, we have f2 C g2 and V2 n n2 = {O}. Consider the connected 
abelian group A = G2/N2 where N2 is the (closed) connected Lie subgroup of 
G2 with Lie algebra n2. The image of K2 in A lies in the maximal torus T of A. 
The action of G by automorphisms on G2 defines a continuous action of G by 
automorphisms on A. The automorphisms of A leave T invariant, and the auto- 
morphism group of a torus is discrete. Since G is connected we conclude that 
inner automorphisms of G leave K2 fixed modulo N2. By differentiation, the 
adjoint action of G leaves V2 + n2 invariant. Since G1 is semisimple we may find 
a G1-invariant subspace a2 in ?2 complementary to f2 + n2* Define 62 = 

2 + n2' Then 62 is a solvable ideal in g and g2 is the vector space direct sum 
of f2 and 62' Hence 6 = 61 + 62 is a solvable subalgebra of g, complementary 
to F, the Lie algebra of the maximal compact subgroup K = K1K2 of G. If S is 
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the connected Lie subgroup of G with Lie algebra 4, S is clearly transitive on M 
and by Lemma 2.4, S is closed in G, simply connected, and acts simply transitive- 
ly on M. Q.E.D. 

2.6. COROLLARY. Let M be a solvmanifold with negative curvature. Any 
Lie subgroup of I(M) acting transitively on M contains a closed solvable subgroup 
of I(M) acting simply transitively on M. In particular, if S is any connected Lie 
group, and if there is on S a left-invariant metric with negative curvature, S must 
be solvable. 

PROOF. If a Lie subgroup G of I(M) is transitive on M we apply Proposition 
2.5 to G to get the first half of the corollary. Now for S as in the second half of 
the corollary, its simply connected covering S has the same property. By Lemma 
2.4., S must be closed in I(S) and hence S contains a solvable subgroup acting 
simply transitively on the manifold S. But the only transitive subgroup is S itself, 
so S and S are solvable. Q.E.D. 

2.7. Clearly, Proposition 2.5 implies the Wolf-Heintze result recalled above 
which represents solvmanifolds with negative curvature by solvable Lie groups en- 
dowed with left-invariant metrics. This representation will be used throughout 
most of the paper. 

3. Computation of sectional curvature. 
3.1. We continue with the solvable Lie group presentation of our manifolds. 

Let S be a simply connected Lie group with Lie algebra 6. As usual, 4 may be 
regarded either as the tangent space Te(S) or as the collection of left-invariant 
vector fields on S. Assume S is endowed with a left-invariant Riemannian metric 
defined by an inner product (- , * ) on 6. Let V be the Riemannian connection 
on S. By the invariance of this connection under isometries, VXY is a left-invar- 
iant vector field on S whenever X, Y are left-invariant vector fields. We still de- 
note by V the induced mapping from 6 x 6 into B. The classical formula for a 
Riemannian connection (Helgason [5, p. 48]) reduces to 

(1) 2(Vx Y, Z) = ([X, y], Z) + (X [Z, Y]) + ( Y, [Z, XI) 

for X, Y, Z in 6. Clearly Vx is a skew-symmetric linear endomorphism on 9 for 
all XE . 

Classically, the curvature tensor R defines for X, Y E 6 a skew-symmetric 
linear endomorphism R(X, Y) on 6 given by 

(2) R(X, Y) = [Vx, Vy] - 

where [Vx, Vy] = vxV - vyvx 
By 2.1(1), S has negative curvature if and only if 
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(3) Q(X, Y) = (R(X, Y)X, Y)O> 0 for all X, Y E 4. 

Obviously, the operations V, R, Q are completely determined by 4 and ( ,*>. 

We shall then say, by abuse of language, that the Lie algebra X, endowed with the 
inner product ( *, * ), has negative curvature if (3) holds. 

3.2. Whenever we have a Lie algebra 6 endowed with an inner product, we 
make constant use of the natural identification of A2 6, the space of alternating 
2-tensors on 9, with o(g) the space of skew-symmetric linear operators on 6. This 
identification is the unique linear mapping from A26 to o (4) which to the elemen- 
tary tensor X A Y associates the linear endomorphism on 6 defined by 

(4) Z -(X, Z)Y-(Y, Z)X forZE 6. 

Moreover, A2 is systematically equipped with the inner product defined, 
forX, Y, U, VE t,by 

(5) (XAY, UA V)=(X, U <Y, V)-(X, VXY, U). 

In particular if A E o(t) - A2 X, (4) and (5) yield 

(6) (A, U A Lo = (AU,O1AV,U)=(AU, O for U, V E 6. 

The covariant differentiation V may then be viewed as a linear map X 5x 
from 4 into A24 defined by 

(7) VxY = ?h((ad X)Y - (ad X)tY - (ad Y/X) for X, Y E 4, 

where the superscript t denotes transpose with respect to ( * * ). 
The curvature tensor becomes then a symmetric linear endomorphism of 

A26 defined on elementary tensors by 

(8) R(X A Y) = [Vx, Vy] - VjX, yj for X, Y G . 

The elementary curvature form Q defined by (3) becomes the restriction to 
elementary tensors of the quadratic form L (R(L), L) on A2 2. Thus for 

S, Y E 6 we write indifferently 

(9) Q(X, Y) = Q(X A Y) = (R(X A Y), X A Y) = (R(X A Y)X, Y) 

using scalar products in A2 the first time and in 6 the second time. The fact 
that R is a symmetric endomorphism of A2Z may be deduced readily from stan- 
dard identities (Helgason [5, p. 69] ). 

We note that a sufflcient condition for 0 to have negative curvature is that 
R be a positive semidefinite linear endomorphism on A2 2. However, easily con- 
structed examples show that this condition is not necessary. In the next two 
sections, we shall focus on obtaining structural constraints on t and ( *, * > when 
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6 has negative curvature. The following formula for Q will be used repeatedly. 

3.3. LEMMA. Let t he a Lie algebra, ( *, * ) an inner product on X, and R 

the associated curvature tensor. The associated elementary curvature form is, for 
S, Y E X, given by 

(R(X A Y), X A Y) = 3/4(ad X)YI2 + ?h((ad X)2 Y, Y) + ?((ad Y)2X, X> 

(1 0) + ((ad X)tX, (ad Y)Y) - 141(ad X)tY + (ad y)tXI2 

where IZ12 = (Z, Z forZ E &. 

PROOF. This formula occurs elsewhere in the literature in similar forms 
(e.g., Jensen [8, p. 312] and Heintze [4, p. 4]). The proof consists of straight- 
forward but lengthy calculations using (7) and (8). 

3.4. LEMMA. Under the same hypotheses as in Lemma 3.3., we have 

(11) (R(X A Y), X A/ Y) = ((ad X)tX, (ad Y)tY - '/41(ad X)tY + (ad }tXI2 

whenever X, Y E 6 and [X, Y] = 0, while 

(12) (R(H A X), H A X) = I(ad H)X12 - Ilh(ad H - (ad H)t)XI2 

whenever X E t and H E 6 is orthogonal to [t, 41. 

PROOF. Formula (11) follows trivially from (10), while (12) follows from 
(10) by easy manipulations and the observation that H orthogonal to [6, 6I 
implies (ad X)tH = 0 for all X E 9. Q.E.D. 

3.5. If (t, ( , - )) has negative curvature, we know, by Corollary 2.6,that 
9 must be solvable. Hence there exists a nonempty orthogonal complement a to 
[4, z] = n in C; for H E a, (12) shows that A = ad H must verify IAXI2 > 

1?(A - At)X12 for all X E n. Trivially, {ad H: H E a} generates a solvable sub- 
algebra of g1(n), the Lie algebra of all linear operators on n. Our first task is to 
study, in general, the properties of a vector space 21 of linear operators which 
generates a solvable linear Lie algebra and each of whose elements satisfies the 
above condition. 

4. Almost normal operators. 
4.1. DEFINITION. Let A be a linear operator on a finite dimensional real 

or complex Hilbert space '. We say that A is almost normal if 

tAV12 > IY/2(A - A *)v12 for all v E &, 

where A* is the adjoint of A. 
4.2. Notations and remarks. For !, a real Hilbert space, ,C denotes the 

complexification of 4D equipped with the complex inner product 
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(u1 +Viu2 w1 +iW2)= (VlWd) + (v2w2) + i(-(vl, W2) + (V2, W1)). 

The complexification of a linear operator A on 1 is the linear operator AC 
on V defined by AC(v + iw) = Av + iAw. Note that (A*)c = (AC)*. Occasion- 
ally, we will abuse notation by continuing to write A in place of AC. An easy 
computation shows that A is almost normal on V if and only if AC is almost 
normal on c. Although our main interest is in developing information regarding 
families of almost normal operators on real Hilbert spaces, we shall filnd it con- 
venient to obtain this information by restriction from the complex setting. 

Given a linear operator A on V, we define 

Re A = ?(A + A*), Im A = (A -A*), A 12 =A *A, 
(1) 

N(A) = 1A12 - Irm Al2 = (Re A)2 + [Re A, Im A]. 

As usual, for N a selfadjoint operator, the notation N > 0 (respectively, N > 0) 
means that N is a positive (respectively, positive definite) operator. Obviously, 
Definition 4.1 may be regarded as saying that A is almost normal if N(A) > 0. 
Since an operator is normal if and only if [Re A, Im A] = 0, we conclude that 
every normal operator is almost normal. 

The identity operator on a subspace L of 1 will be denoted by IL, When 
there is no possibility for confusion (in particular, for L = >), we shall simply 
write I in place of IL. When J is a skew-symmetric operator commuting with A 
(for example, J a pure imaginary multiple of I in the complex setting), note that 
N(A + J) = N(A) and hence A is almost normal if and only if A + J is almost 
normal. The study of almost normal operators is complicated by the fact that 
the adjoint of an almost normal operator need not be almost normal. Indeed, 
let A be the operator on R3 defined by the matrix (a1)1 X<j3 with distinct non- 
zero diagonal elements and ai1 = ai,a11(aii - a11)- 1 for i # j. Then N(A) > 0 but 
det N(A*) < Q. 

4.3. LEMMA. Let A be an almost normal operator on T and L an A-invar- 
iant subspace of i. Then A IL is an almost normal operator on L. If A I L is skew- 
adjoint, then A leaves invariant the orthogonal complement L1 of L. 

PROOF. Denote by P the orthogonal projection of t on L; let A1 = PAP, 
A2 = (I - P)A(I - P), and Z = PA(I - P). With respect to the orthogonal direct 
sum - L E) L, we may view A as the matrix of operators 

[Al Z1 

[? A2] 

Then 
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NA=[A* 0 JA Z 1+[ImAl Z/2 12 
LZ* A2L0 A2 -LZ*2 ImA2J 

(2) 
N(Al) - Y4JZ*I2 AZ + (rm A)Z + Z Im A2)1 

[Z*A1 - l/(Z*Im A1 + (Im A2)Z*) N(A2) + 341ZI2 J 

Consequently, N(A) > 0 implies N(A1) > 1/41Z*12 > 0 so A1 = AIL is almost 
normal. Moreover, if A1 is skew-adjoint, 0 = N(A1) > 4lZ*I2 implies that Z = 

Z* = 0 so A leaves L' invariant. Q.E.D. 

4.4. LEMMA. Let A be an almost normal operator on '. Then i has an 
orthogonal decomposition into A-invariant subspaces t 0 and tI where A Ito is 
skew-adjoint and the eigenvalues of A 1> 1 have nonzero real parts. 

PROOF. From the remarks made in 4.2, we may assume that ! is a com- 
plex Hilbert space. Suppose that v is a nonzero vector in !> and X a pure imagin- 
ary scalar such that (A - XI)kV = 0 for some integer k > 1. Set v, = (A - V)k- 1V 

and v2 = (A - XI)k-2V. Suppose v, # 0. Since Avu = Xvu, the restriction of A 
to the one-dimensional space spanned by vi is skew-adjoint. By Lemma 4.3, A 
leaves invariant the space of vectors orthogonal to v-. Hence 

0 = ((A - X)(v2 - (u2, uVl>Vl/I1 12), V) 

= ((A - I)V2, Vu) = (VI, v) 

which is a contradiction. Therefore v1 = 0 and by a trivial induction, Av = Xv. 
Now define !>o as the sum of generalized eigenspaces corresponding to pure 

imaginary eigenvalues of A. Lemma 4.3 and the argument just given imply that 
!Do is an orthogonal direct sum of eigenspaces. Therefore A I , is skew-adjoint so 
another application of Lemma 4.3 implies that t, = t) is A-invariant. Clearly, 

i), is the sum of generalized eigenspaces corresponding to eigenvalues of A with 
nonzero parts. Q.E.D. 

4.5. We remark that Lemma 4.4 provides the following characterization of 
almost normal operators. Let A be a linear operator on a finite dimensional real 
or complex vector space V. By the primary decomposition theorem, V has the 
direct sum decomposition V = VO + V1 where VO is the sum of generalized 
eigenspaces corresponding to pure imaginary eigenvalues of A and V1 is the sum 
of generalized eigenspaces corresponding to eigenvalues of A with nonzero real 
part. Then V admits an inner product relative to which A is almost normal if and 
only if AI vo is semisimple. We just proved the direct statement. For the con- 
verse, one may construct an inner product on V as follows. Take any inner 
product on VO for which AlV is skew-symmetric. After complexification if 
necessary, take any basis vl, ... ., v, of V1 in which the matrix of AIV,1 is upper 
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triangular. In the basis d1ul, . . ., d, u,v where d, > ... > d,, the matrix of 

Alv will have arbitrarily small off diagonal entries for proper choices of the di. 
Hence, for suitable choices of the d,, A lV will be almost normal relative to the 
inner product on V1 for which d1v1, . , dnun is an orthonormal basis. The 
definition of the inner product on V is completed by taking VO and V1 orthogonal. 

4.6. LEMMA. Let A be an almost normal operator on &, L an A-invariant 
subspace of V, P the orthogonal projection of A on L. Suppose that the operator 
(I - P)A(I - P) is skew-adjoint. Then A leaves L' invariant. 

PROOF. First consider the following special case: AI = AIL is invertible on 

L and A2 = (I - P)A(I - P) = 0. Then for any nonzero vector v E L1, Av E L, 
so there exists a vector w E L such that Av = Aw. By Lemma 4.3, the space 
orthogonal to (w - v) is left-invariant by A. Consequently, for u = Aj 7w E 

11w112 = (w - V, AIu) 

= (w - v, A(u - ((u, w - uX/iw - vII2)(w - V))) = 0. 

Thus Av = 0 and we conclude that AILi = ?- 

For the general case, we may assume as before that ID is complex. Then 
the hypothesis that A2 is skew-adjoint implies that L- is spanned by nonzero 
vectors v with the property that there exists a pure imaginary scalar X such that 
Av - Xv E L. Fix such a vector v and let !' denote the A-cyclic subspace of b 
generated by v, i.e. $' = span {AkV: k> 0}. By Lemma 4.3, Ale,' is an almost 
normal operator on !'. By the remarks made in 4.2, the operator B = A l.' - 

is almost normal on V'. By definition, B leaves L' = V' n L invariant and 
Bv E L'. We now claim that BI L' is invertible. An easy induction on n shoWs 
that if Bv * 0, the intersection of L with the span of {Akv: 0 < k < n} is the 
span of {BkV: 1 S k < n}. Hence there is an n such that L' is the span of 
{BkV: 1 < k < n}. Assume that for some w = c kn CkBkVu we have Bw = 0. 

Then 

O =Bw =B2 (iE ckBk-v) 

Using Lemma 4.4, we get B(z11k<n ckBk-V) = O, i.e. w = O. Hence the hy- 
potheses for the special case are verified, and we conclude that Bv = 0, i.e. Av = 

Xv. It follows that A leaves L- invariant. Q.E.D. 
4.7. DEFINITION. Let 2I be a finite-dimensional real vector space, 1 its 

dual, (%*)C the space of complex valued linear functionals on 21. When , C VI*, 
ker ,u denotes the kernel of ,. We say that two elements X, = , + iv1, X2= 

,u2 + iv2 in (2j*)C are equivalent (denoted X1 ~') if ker j1 = ker '2 C 
ker(v2 - v1). 
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Obviously, this defines an equivalence relation on (21*)C. Note that p1 + 
jV1 'I ? iv2 ifand only ifpl = c4u2 and v1 - v2 = dPu2 where c, d are real scalars 
with c 1 0. 

4.8. THEOREM. Let !L be a real vector space of linear operators of a 
(finite-dimensional) complex Hilbert space t. The elements of i are almost nor- 
mal and the Lie algebra generated by I is solvable if and only if there exist %I- 
invariant subspaces VP, 1 S p S m, of t, and elements )p = ,p + ivp, 1 < p < m, 
in (21*)c such that 

(i) i = < q3 p .mVp X 
(ii) for each p = 1, . . , m there is on VP an almost normal operator Ep 

whose eigenvalues have nonzero real parts and such that, for all A E %I, A I= 

pp(A)Ep + ivp(A)ID, . 
It is possible to choose the decomposition in such a way that the equivalence 

classes (Definition 4.7) of the )p in (%1*)c are distinct; under this extra condition, 
the subspaces VP and the equivalence classes of the Xp are uniquely determined 
by 21 (up to reordering). 

PROOF. The sufficiency is obvious since if (i) and (ii) hold, 2I is clearly an 
abelian subalgebra of tt(), and N(A I,p) = .pp(A)2N(EP) > 0 (see Remarks 4.2). 
The necessity will be proved by induction on n = dim V, the case n = 1 being 
trivial. By Lie's theorem for solvable linear Lie algebras [5, p. 134] there exists 
an %I-invariant subspace L in V having codimension 1. By Lemma 4.3, {AIL: 
A E %I} is a vector space of almost normal operators on L. By the induction 
hypothesis, we find for p = 1, . . . , m, subspaces Lp of L, pairwise nonequiva- 
lent elements Xp = ,p + ivp in (%*)c and operators Ep on Lp verifying (i) and 
(ii). 

Define Zp(A) = PpAQ where Pp is the orthogonal projection of t on Lp 
and Q = I - 1p Pp is the projection on the one-dimensional subspace LV. When- 
ever .pp(A) = 0, AIL is skew-symmetric by (ii), and Lemma 4.3 implies that 
A(L') is orthogonal to Lp; hence pp(A) = 0 implies Zp(A) = 0. Since A -+ 

Zp(A) is linear and vanishes on ker ,up, we may write Zp(A) = upp(A)Zp for some 
fixed map Zp from L' into Lp. Clearly, Zp is uniquely determined if pp - 0. 
For U,up 0, we take Zp = 0. On the other hand, by linearity of A -> QAQ, 
there is a unique X = ,u + iv in (W*)c such that QAQ = (ji(A) + iv(A))I L" 

Assume first that Zp = 0 for all p. If X - XP for some p, define tp = Lq 
for q # p, VP = Lp E L', and replace Ep by Ep + (c + id)Q where ,u = cpp, 
o = vp + dpp. If N is not equivalent to any of the Xp, define VP = Lp for 
1 < p < m, Vm + I = L, Xm + 1 = X, and Em + I = I L" In both cases trivial 
verifications show that (i) and (ii) still hold. 

Assume now that for some p, Zp # 0. By Lemma 4.6, ,p(A)Zp = 0 
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whenever ,u(A) = 0. Consequently, both pp and ,u are nonzero, and , = c,pi for 
some scalar c. We will show below that ker ,up C ker(v - vp) and hence X X1P. 
Assuming this has been shown, we must have Zq = 0 for all q p since the Xp 
are in distinct equivalence classes. The induction step is completed as above by 
replacing Lp by Tp = Lp e L' with Ep now replaced by Ep + Zp + (c + id)Q 
where v = p+ dp. 

We now prove the claim X - Xp. Fix A1 in 91 with jup(A) = 1 and let 
AO E ker 1,p. For t E R define Np(t) = (Pp + Q)NV(A1 + tAO)(Pp + Q). Regard 

Np(t) as an operator on Lp 0 L'. Since ju(Ao) = 0 implies Zq(AO) = 0 for all 
q, formula (2) implies that Np(t) is represented by the matrix of operators 

N(Ep) -1 ZP*12 BpZp + i t (v9 - vp)(A o)Zp 

(3) Np (t) = 3 m 
Zp*Bp - it (v vp)(Ao OZ c2Q + E 1 l*q(A1)i2J 

where Bp = Re Ep - % Im Ep + i(v - vp)(A l)IL p/2. By hypothesis, Np(t) > 0 
for all t. But Np(t) = Np(O) + tWp where Wp = i(v - vp)(Ao)(Zp - Zp)/2. 
Clearly this is possible only if (Wpv, v) = 0 for all v E Lpe L1. Since Wp is 
selfadjoint, we conclude that Wp = 0; on the other hand, Zp is a nonzero map 
from L' to Lp so that Zp - Zp* is nonzero, and Wp = 0 implies P(AO) = vp(Ao). 
We have thus demonstrated our claim ker pp C ker(v - vp) and the existence of 
the decomposition described in Theorem 4.8 is proved. Its uniqueness will be an 
obvious consequence of the following corollary. Q.E.D. 

For l, as in Theorem 4.8 and X E (2I*)C, define TA = {v E b: for some 
k > 1 (A -,X(A))kV = 0}. If Vx # 0, X is called a root of 1 andV. a root 
space of lt. 

49. COROLLARY. Let 21 be a real vector space of almost normal endo- 
morphisms of a complex Hilbert space V. Assume the linear Lie algebra generated 
by 21 in g (V) is solvable. Then 21 is abelian and hence V is a direct sum of root 
spaces of ?,. Root spaces V. and V' are orthogonal whenever X is not equiva- 
lent to X'. The unique decomposition of V described in Theorem 4.8 is given by 

"P = zAA IA where the elements Xp, 1 < p S m, are pairwise nonequivalent 
in (21*)C. Finally, if X e (21*)c is purely imaginary, we have AIT, = X(A) for 
allA E 1. 

PROOF. In view of Theorem 4.8(i), 21 is obviously abelian. Starting from 
a decomposition V = %,tp corresponding to pairwise nonequivalent Xp E (2I*)C, 
we get a root space decomposition of t relative to 21 by finding a primary decom- 
position for each subspace VP relative to the action of Ep. Thus for each 



336 ROBERT AZENCOTT AND E. N. WILSON 

eigenvalue c + id of E we get the root X = cpp + i(dup + vp) - Xp of S1. It is 

then obvious that 'p = lAAx which proves simultaneously the uniqueness 

(up to permutation) of the equivalence classes of the XP, and of the subspaces 

I I Moreover, if X is not equivalent to X', tA and TA' lie in distinct subspaces 

tp and '> and hence must be orthogonal. The last statement in Corollary 4.9 

is a consequence of Lemma 4.4. Q.E.D. 

It is easy to translate the results of Theorem 4.8 and Corollary 4.9 to the 

case when !D is a real Hilbert space. We shall do it in the next section in the 

particular context of solvable Lie algebras. 

5. Structure of solvable algebras with negative curvature. 

5.1. Notations. Let 6 be a (real) solvable Lie algebra. Denote by n = 

[j, 61 the derived Lie .algebra of 1. As Theorem 5.2 will show, in the situation 

of interest to us, 6 will have, as a vector space, a direct sum decomposition 6 = 

a + n with an abelian action of a on n. Whenever we have such a decomposition, 

we define, as usual, for X E (a*)C the subspaces nic of nC by 

nc = {X E nl (ad H - X(H))kX = O for some k > 1 and a H E a}. 

We call X a root of a in n whenever nci # 0 and call nic the associated root 

space of a in n. Then nc is the direct sum of the root spaces nc. 

For X = a + i1 E (a*)C, we define nt= nin (nic +nc)= nc If 
(a+ i() is a root of a in n, we call nit ,3 a generalized root space of a in ni. 

Clearly, n is the direct sum of the generalized root spaces %p 
?4 has shown the interest of the following equivalence relation on (a*)C: 

for X = a + i1,B, = y + iS, in (a*)C we say that X is equivalent to j, (X ',g) 

whenever ker a = ker y C ker(, - 6). 

5.2. THEOREM. Let 6 be a Lie algebra endowed with an inner product. 
Assume that 6 has negative curvature. Then 6 is solvable and the orthogonal 
complement a of n = [9, 6] in 6 is abelian; moreover, for all H E a, ad H and 

(ad H)c are almost normal on n and nC, respectively. In particular, the con- 

clusions of Theorem 4.8 and Corollary 4.9 apply to the operators (ad H)C, 

HE a.(2) 

PROOF. We have seen in 3.5 that 6 must be solvable and that the operators 

ad H, H E a, are almost normal on n. Then, by Remarks 4.2, (ad H)c is almost 

normal on nc. The subalgebra of gI(niC) generated by 2I = {(ad H)f, H E Q} 

is obviously solvable since 6 is solvable. Hence Theorem 4.8 and Corollary 4.9 

apply to % and nc. In particular 21 is abelian. Hence n has a generalized root 

(2) The authors wish to thank the reviewer for the following information: "Commu- 

tativity of a was independently proved by Ernst Heintze at the end of 1973. Heintze did not 

publish, but he showed the result to some people at Berkeley". 
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space decomposition n = Ena,, Fix a root a + i,B = X of a in n, and suppose 
H E ker a. Thus ad HI, ,, has purely imaginary eigenvalues and is almost normal 
(Lemma 4.3); it must then be skew-symmetric by Lemma 4.4. 

Calling Q the orthogonal projection of 4 on the orthogonal complement of 

naf, formula 3.4(12) for the elementary curvature form yields then, for X E nap 

(R(H A X), H A X) = -14IQ o (ad H)tX12 

and hence, by negativity of the sectional curvature, Q o (ad H)X = 0. In partic- 
ular this implies that [H, K] is orthogonal to n04 for all K E a. Since the 
bracket operation is alternating bilinear and ker a has codimension 6 1, we con- 
clude that [a, a] is orthogonal to n,'P. Since n = En<,,p [a, a] is orthogonal 
to the derived subalgebra n of 4 and hence is {0}, i.e. a is abelian. Q.E.D. 

5.3. Consequences. Let 4 = a ?3 n be a solvable Lie algebra with negative 
curvature as in Theorem 5.2. 

Let ao = 0. We select and fix elements a1, a2, ... , a.m in a* such that 
the real part of any root of a in n is a nonzero multiple of some unique a1 

(O 6 j S m). Next, we choose a finite set of pairwise nonequivalent elements 

,p + ipp in (a*)C satisfying the following conditions: 
each root of a is equivalent to g,p + ivp for some unique index p; 
each pp is equal to ac for some j (O 6 j 6 m); 

,p and vp are independent whenever both are nonzero; 
if vp 0 0, there exists an index q such that 11q = ,up, Vq = p. 

The existence of such a set follows easily from the definition of equivalence 
given in 4.7. 

(i) Denote by Sp C nc the sum of all root spaces nc with X + ivp . 
By Theorem 4.8 and Corollary 4.9 we have the orthogonal direct sum decomposi- 
tion nC = `ptop; moreover, there exists an almost normal linear operator E on 
nc such that for all p and all H E a, E leaves tp invariant and ad HITp= 
gp(If)E I,p + ipp(J) If g,p = 0, the restriction of E to tp is clearly arbitrary; 
we take it to be zero. Otherwise, E4-, is uniquely determined and all of its 
eigenvalues have nonzero real parts. Obviously, E commutes with the action of 
a and leaves n invariant. In particular, the subspaces n,, , and nC are E-invariant. 

(ii) From (i), it follows that for any root X of a in n, the image of nC 
under E* or Re(E) is contained in the sum of root spaces nC for which v is 
equivalent to X. 

(iii) Two root spaces nC and nC are orthogonal whenever X is not equiv- 
alent to ,u. In particular . and n.,8 are orthogonal whenever 'y and a are 
independent. 

(iv) Let X = a + i, be any root of a in n. Write a = coa for some c# 0, 
j = 0, 1, . .. , m. Then, there exists d E R such that, for all H E a, 
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ad Hi n cai(H)EI n + i(I(H) + daVI(H))I. x ~~x 
(v) Forj = 0, 1, ..., m, let n C n be the sum of all generalized root 

spaces na3 for which a is a nonzero multiple of ae1. Thus nc = 2; and 
n = eO?,lm ni as an orthogonal sum of vector spaces. For all i and all H E n, 

ni is invariant under E, Et, ad H, and (ad H)t. Let E, be the composition of E 
with orthogonal projection from n onto n1. For H E n, the expression for ad H 
given in 5.3(i) implies that the operator ad H - 1 j<m oj(H)Ei is skew-symmetric. 

(vi) The following notations will be used frequently. We set n+= 

3 .m hence n = n e n 

We denote by A the (finite) set of all oa E n* such that, for some ,B E a*, 
a + i3 is a root of a in n. 

For ae E a*, we call H., the unique vector in a such that (Ha,, H) = oe(H) for 
all H E a. We set (oa, ) = (H,,, Hg) and jaj2 = (c, o3 for a, , GE a*. 

5.4. LEMMA. Let t be a solvable Lie algebra endowed with a scalar product 
(*,* ). If t has negative curvature, we have (using the notations of 5.1 and 5.3): 

(i) (ad X)tX E n for all X E nO; 

(ii) for all a E A,XEfE na ,HE a, 

((ad X)tX, H) = -Ia(H)IO-I2([Ha,, X], ,; 
(iii) in any a-invariant subspace of nxi,0 there exists a vector X such that 

([Ha X], X) > O; 
(iv) if a E A and na> n i 0 o (where i is the center of n), then (a, 'y) 

>0 for all y E A. 

PROOF. Let X E nx ,j, and H E ker o. Then, by Lemma 4.4, ad HlnaX is 
skew-symmetric, so ((ad X)tX, H) = -(X, (ad H)X) = 0. In particular, taking 
a = 0 and ,B arbitrary in a*, we get (i). For a E A, X E n,,p we see that 
(ad X)tX is orthogonal to ker a, i.e. Pa ((ad X)tX) is a multiple of Ha, where P, 
is the orthogonal projection of 6 on a. Hence 

P. ((ad X)tX) = Io{2((ad X)tX, Ha)Ha - 1012([Ha, X], X)Ha 

from which (ii) follows. 
Now let o be an a-invariant subspace of n0 . Since a is abelian, we may 

find Z = X + iY in oc n nfCl such that (ad H)CZ = (ca(H) + if(H))Z for all 
H E a. Hence 

([H X], X) = Iod2 IX12 _ (0, P)(X, y1), ([Ha , Y], y)1'> 
2 12yI2 + (1 , 3XX 15. 

At least one of these expressions is strictly positive and (iii) follows. 
Now nf l n s is a-invariant since a acts by derivations on n. Given y E A 

with n,, 
0 O we use (iii) to find vectors X E n fl P n i and Y E n ,8 such that 

P.((ad X)tX) = cH,a, P,((ad Y)tY) = -dH, 
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with c and d strictly positive. Since X E i, (ad X)tX is in a. The curvature 
being negative, formula 3.4(11) yields 

cd(a4 'y) = ((ad X)tX, (ad Y)tY) > (R(X A Y), X A Y) > 0 

and hence (oa, y) > 0. Q.E.D. 

5.5. PROPOSITION. Let t be a solvable Lie algebra endowed with a scalar 
product. Assume t has negative curvature. Then (using the notations of 5.1, 

5.3) no is contained in the center of n and [n, n] is contained in n+ = 

E i<mn . In particular, nO is an abelian subalgebra of t and n+ is an ideal 
of t . 

PROOF. Let n = nl D ... D nr+ 1 = 0 be the lower central series of n, 

i.e. 11k+1 = [nk , n] for k > 1. We will show by induction that 

(1) nk is orthogonal to [n, no] for all k > 1, 

(2) nk is orthogonal to no for all k > 2. 

We then clearly get Proposition 5.5 bv taking k = 1 in (1) and k = 2 in (2). 
Statements (1) and (2) are trivial for k = r + 1. Now take j > 1 and 

assume (1) and (2) hold for all k >j. Let YE ni n (nui+ 1) 'and XE no. Then 
[X, Y] is in ni+ 1 n [n, nO] = 0 by (1). The curvature being negative, formula 
3.4(11) gives (ad X)tY + (ad Y)tX = 0 since the definition of Y implies (ad Y)tY 
E a while (ad X)tX E n by Lemma 5.4(i). But (2) implies (ad Y)tX E a since 
the range of ad Yln is in ni+ 1. Therefore we obtain for all Z E ni, 0 = 

((ad X)tY, Z) = (Y, [X, Z]). 

Thus ni n (ni+ )- is orthogonal to [no, n]. By the induction hypothesis 
nJ+l is orthogonal to [no, n] ; hence (1) holds for k = j. 

Now assume j > 2 and take X E ni n nO. By (1), [X, Y] Eni l n 

[no, n] = 0 for all Y E n. Hence X is in the center of n, so that the range of 
(ad X)t is in a. In particular by Lemma 5.4(i), (ad X)tX = 0. Using again 
formula 3.4(11) we conclude that (ad X)tY + (ad Y)tX = 0 and hence 
((ad Y)tX, Z) = 0 for all ZE n, YE n. Thus Xis orthogonal to [n, n] = n2. 

Since X E ni C n2 we get X = 0, and hence ni n nrO = 0. Being a-invariant, 
ni is a sum of generalized root spaces nrt6p for which a must be nonzero. Hence, 
in view of 5.3(ii), ni is orthogonal to no, which proves (2) for k = j. Q.E.D. 

5.6. PROPOSITION. Let t be a solvable algebra endowed with a scalar 
product. Assume t has negative curvature. Then (using the notations of 5.1, 
5.3) there is an element p in a* such that (oa, p) is strictly positive for all ae E A. 

PROOF. As in Proposition 5.5 we use the lower central series {nk: 1 S 
k < r} of n. Set Ar+ i = 0 and Pr+ I = . For k > 1, define Ak and Pk 
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inductively by Ak = {a G A: n fl, n nk 0 0 for some 3, and (o, pi) = 0 for all 
1 > k + 1}, Pk = Z2aeAka We make the following inductive hypothesis: if a E 

Ak, y E A, and (r, pl) = 0 for all > k +1, then (, r) > O and [na p nnk, a] 
=0 for all ,B, S. 

For k = r, this hypothesis is valid by Lemma 5.4(iii) and the fact that nr is 
central in n. Now, let j > 1 and suppose the induction hypothesis holds for all 
k > j + 1. Fix aE Ai, yE A with (, pl) = ? for all l>j + 1 and take XE 

na, nn ni, YE nz 6 . By the Jacobi identity, for all complex roots X, p E (a*)C, 
[nc, nc] C nc ,,, which implies, by construction of the n (see 5.1), that 

[X, Y E (na+ {+& +5 la+ ,&) n ni 1. Suppose [X, Y] i O. Then o + 'y = 

O by Proposition 5.5, and oa + y is in A,+ 1 By the induction hypothesis, (oa + 
'y, ,) > 0 for all , E Ai+ 1 and thus we have the contradictory inequality 0 = 

bi+ l' a + y) > la + yl2 > 0. We conclude that [X, Y] must be zero. Now let 
W E nt . By 5.3(iii), if a and t are independent, ((ad X)tX, WM = (X, [X, W]) = 

0. If a and t are dependent, [X(, W] = 0 by the above argument where t plays the 
part of -f. Hence (ad X)tX is in a. Then for Y E nU',, we conclude from Lem- 

ma 5.4(ii) that 

((ad X)tX, (ad )t) = (a, y)Io{2IyV2([Hf, X], XX[He,, Y] Y). 

By formula 3.4(11), negativity of the curvature implies that this expression is > 0. 
Selecting X and Y as in Lemma 5.4(iii), we get (oa, y) > 0 which gives the induction 
hypothesis for k = j. 

Now, for any a E A, let k(o) be the unique index for which (oa, Pk(5)) 0 O 
and (cx, Pk) * 0 for all k > k(a) + 1. Note that the above argument implies 
k(o) > j whenever n,i n n i 0 o for some P. Moreover (oa, y) > O for all 'y E 

Ak(a), So (a, Pk(a)) iS strictly positive. Take c between 0 and 1 such that 

cE I(o, Pj)l < (, Pk(a)) for all o E A 
j-l 

and define p = Pr + cprPi +*** + crpI. 
We have, for all ae E A 

(a, P) - Crk(a)((a, Pk(a)) +* + Ck(a)1l(ot, p1)) 

so that 

k(a))1 (os, p) > C | k(a) 1 (c, > 0. Q.E.D. 
\ ~~~~j=l / 

5.7. REMARKS. Let t = a e n be a Lie algebra endowed with an inner 
product for which it has negative curvature. Consider two roots (a + i,B) and 
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(y + i8) of a in n with nonzero real parts. If a and Py are proportional, we must 
have y = cce for a strictly positive constant c in view of Proposition 5.6. This has 
useful consequences concerning the Lie algebra structure of n. 

By the Jacobi identity, for all a, ,B, y, 8 

(3) [na'p, nr,7 I C na+ S+5 + ni1+ 7 4_36. 

On the other hand, our deflnition n, = 1co,,,PE* ncci J now implies nij = 

c>o3e* ncg, In particular the subspaces ni, 0 < < m, are subalgebras of n. 
One sees similarly that for i 0 k, [np, n k] and [ni, [ni, 'lk] ] are orthog- 

onal to ni e nk, since cai + dak cannot be proportional to a. or ak for c, d > 0. 
5.8. We are now going to use the structural information gathered about 

solvable Lie algebras with negative curvature to establish more explicit formulas 
for the covariant differentiation operator V and the curvature tensor R. These 
computations do not use any assumption on the negativity of sectional curvature, 
but only structural constraints on the pair (6, ( *, * )) which we list as follows: 

(i) t is a solvable Lie algebra, endowed with an inner product. The orthog- 
onal complement a of n = [6, 6] is abelian. 

(ii) There are elements c,, 0 < j < m, in a* with ao = 0, and a1, . .. , am 
pairwise independent such that n = )O3<j?m j where, for each j, n, is the sum 
of all generalized root spaces n,t9 for which ae is a positive multiple of ai. 

(iii) no is contained in the center of n and = mni is a subalge- 
bra of n. 

(iv) There exists a linear operator E on n which leaves each subspace ni 

invariant and commutes with ad H for all H E a. Moreover, for P, the orthogonal 
projection of n on ni and E. = E o PJ, ad H - ElSjmaj(H)E, is skew-symmetric 
for all H E a. 

We introduce some additional notations. Forj = 1, . . , m, write H, in 
place of Ho,.; thus, (Hi, H) = ao(H) for all H E a. The conventions of ?3.2 are 
systematically used to identify A24 with the Lie algebra of skew-symmetric oper- 
ators on t. For X E n, we define Dx E A2n C A24 as the component in A2n 
of Vx E A2 t, i.e. Dx = P o Vx o P where P is the orthogonal projection of 6 
onto n. It follows from 3.1(1) that for X, Y E ni, 

(4) DxY = ?2{[X, Y1 - (ad XIn)tY- (ad YIn)tX}. 

5.9. LEMMA. Let t be a solvable Lie algebra endowed with an inner product 
and suppose the structural conditions 5.8(i)-(iv) are satisfied. Let V be the co- 
variant differentiation operator and R the curvature tensor on t. Recall that 
Re(A) and Im(A) stand for the symmetric and skew-symmetric parts of an opera- 
tor A. We then have 
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(5) VH= Im(ad H) for H E a; 

m 
(6) Vx =2 Re(E1)X A H + DX for X En; 

j=1 

m 
(7) R(X A H) = E ot(H)N(Ej)X A Hi + [DX, DH] D1X,HI 

j=1 

for X E n, H E a, where N(E1) = (Re Ej)2 + [Re E,, Im E,]; 
m 

R(X A Y)= , (DX Re(Ej)Y - Dy Re(E1)X - Re(E,)[X, YI) A Hi 
j=1 

(8) m 
+ E (ai, ak) Re(Ei)X A Re(Ek)Y + [DX, DY] - D[X, Yl 

j,k=1 

forX, YEn; 

(R(XA Y),XA K- YA H)= (3[X, Y]/2 + (ad X)tXI2,hY-kX) 

g9) + (X, [X, kY] + [kX, Y]) 

- (Y, [hX, Y] + [X, hY]) 

for all X, Y E n, H, K E a, where h = Re(ad H), k = Re(ad I). 

PROOF. The orthogonality of a and n yields (ad X)tH = 0 for X E A, 
H E a. Hence 3.2(7) implies 

VH = ?(ad H - (ad H)t) = Im(ad H) 

for H E a and 

(10) VXH Re(ad H)X 

for H E a, X E n. In view of 5.8(iv) and 3.2(4), (10) may be rewritten as 

m m 
VXH = - E a,(H) Re(E;)X = E (Re(E1)X A H)H. 

j-1 j=1 

Using the definition of Dx given in 5.8 and skew-symmetry of Vx, this implies (6). 
It is easily deduced from 5.8(i)-(iv) that, for H E a, the skew-symmetric 

operator J(H) = ad H - ZLI 1a1(H)E1 commutes with E1, (E)t, ad K, and (ad K)t 
for all j = 1, . . ., m and all K E a. In particular, the operators Im(ad H), H E 
a, form a commutative family. 

To obtain formulas (7) and (8), one substitutes the expressions for Vx and 
VH given by (5) and (6) into the expression 3.1(2) for the curvature. We omit 
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the details, but point out that the computation makes use of the commutative 
properties just observed for the operators J(H) as well as the rule (easily deduced 
from the conventions in 3.2) that [A, X A Y] = AX A Y + X A A Y for X, Y E 

4 and A a skew-symmetric operator on t. 
To prove formula (9), we first use 3.1(2) and 3.2(6) to obtain for X, Y E n, 

KE a, 

(11) (R(X A Y), K A X) = ((VxxVy - Vy Vx - V[X,y])K, X). 

By skew-symmetry of Vx and (10), we may write, with the notation Re(ad K) = k, 

(Vx V yK, X)= - (V yK, VXX) = (k Y, VxX) 

and use 3.2(7) to evaluate VxX. Similar computations transform (11) into 

(R(X A Y), K A X) = -(kY, (ad X)tX) + (kX, (ad X)tY + (ad Y)tX)12 
(12) 

+ 3([X, Y], kX)/2. 
Using the formula analogous to (12) for (R(X A Y), H A Y), (9) is deduced by 
elementary manipulations. Q.E.D. 

5.10. LEMMA. Let t be a solvable Lie algebra endowed with an inner pro- 
duct and suppose the structural conditions 5.8(i)-(iv) are satisfied. 

(i) Call a 0 the space of elements H E a such that a(H) = 0 for any root 
a + i,( of a in n. The restriction of the curvature tensor R of g to a A a and 
(a0 + n 0) A 6 is identically zero. 

(ii) Call L the orthogonal complement of ET1 n A1A Hi in n A a. Denote 
a typical element in n A a by L = It Xt A Kt with Xt E n, Kt E a. For Pi, 
1 S1 <? m, as in 5.8(iv), the following three properties are equivalent: 

L is in L; 
Et ai(Kt)PjXt = O for j = 1, 2, . . . , m; 

Et Re(ad Kt)Xt = 0. 
(iii) R(L) and L are orthogonal in A2 S. 

PROOF. Formulas (5) and 3.1(2) imply R(a A 4) = {O} since, as seen in 
Lemma 5.9, the operators Im(ad H), H E a, commute with one another. 

For X E nos 5.8(iii) implies that Dx = 0. Using (6), we obtain 

(13) vx=0 forXEno. 

Since n c is an ideal in 8, (13) and 3.1(2) imply RQ(nA 6) = {O} 
For H E no, Re(ad H) = 0 by 5.8(iv) and hence VH = Im(ad H) = ad H is 

a skew-symmetric derivation of 4. But for any skew-symmetric derivation L of 6, 
a tedious but routine computation based on 3.2(7) shows that 
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(14) [L, VX] = VLX for allX E. 

In particular, for H E a0, 3.1(2) gives R(H A X) = 0 for all X E 6. This com- 

pletes the proof of 5.10(i). 
Let L be as in 5.10(ii) and j > 1. With the help of formula 3.2(5), the 

orthogonality of TtXt A Kt and n1 A H, is seen to be equivalent to Et(KtPj(Xt) 
= 0. Since N(E) = Re(E)2 + [Re(E), Im(E)] > 0, we see that the kernel of 
Re(E) is contained in the kernel of N(E) and hence is invariant under Im(E). It 
follows from 5.3(iv) that the kernel of Re(E)In. is a-invariant and spanned by root 
vectors corresponding to roots with zero real parts. Since ni n nO = {0t we 
conclude that Re(E)Inj = Re(E,)Ini is invertible. But 5.3(iv) implies that 

a,(Kt)Re(E,) = P,Re(ad Kt) for all t. Hence Ttctj(Kt)Vj(Xt) = 0 if and only if 

Pi Et Re(ad Kt)Xt = 0 and this proves (ii). 
To check (iii), we simply note that formula (7) implies that R(n A n) is 

contained in 21,n1 A Hi + n A n and this space is orthogonal to L in A2 . 
Q.E.D. 

5.11. THEOREM. Let 6 be a solvable Lie algebra endowed with an inner 
product. Assume that 8 has negative curvature, so that * = a e n with a abel- 
ian, n = [ , g] . Then n is the orthogonal direct sum of a-invariant subspaces 
no and nl having the following properties. 

(i) n? - En? a where the sum is taken over all roots a + if3 of a inn and 
= {X E ad XI, ;= 0 whenever a and y are independent}. 
(ii) ad HI nl is normal for all H E a. 

PROOF. Throughout the proof we shall use the notations and results of 5.1 
and 5.3. We begin by establishing several technical formulas. 

Let L C n A a be as in Lemma 5.10. We show first that whenever X, Y E 

n, H, K E a, and X A K - Y A H E L, then 

(X, [Re(ad K)X, Y] + [X, Re(ad K)Y1) 
(15) 

= (Y, [Re(ad H)X, Y] + [X, Re(ad H)Y]). 

Indeed, for any real scalar t, let Zt = (X + tH) A (Y + tK) = X A Y + 

t(X A K - Y A H). Since the sectional curvature on * is negative, (R(Zt), Zt)? 
0 for all t. By Lemma 5.10(iii) and the fact that R is a symmetric linear operator 
on A2 X, we conclude that 

0 < (R(Zt), Zt) = (R(X A Y), X A Y) + 2t(R(X A Y), X A K - Y A H0 

for all t. Obviously, this condition can be satisfied only if 

(16) (R(X A Y),X A K- Y AH)= 0. 
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