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134 k o P. Peretto

que Paccés & des machines spécialisées doit permettre de combler le handicap de mécanismes neuronaux
éventucllement plus lents, il est encore plus important de comprendre que Popportunité de travailler
dans le cadre des réscaux de neurones peut induire de nouvelles idées de processus d'optimisation. C'est
ce que nous avons essayé de démontrer.

Enfin ta notion méme d'optimisation pour les réseanx de newrones u'a pas nécessairement la meme
connotation que celle que Uon entend en mathématique appliquée. Les problémes d optimisation sont
rangés en classes de complexité. Les problemes faciles au sens de la complexité se résolvent en un
nombre d'étapes qui croit polynomialement avec la taille du probléme, les problemes difficiles sont ceux
dont Ia solution rigoureuse detnande un nombre exponentiel d'étapes. Les réseaux de neurones sont
des systémes pour lesquels on n'est pas trop cxigeant quant i la qualité de la solution. Pour sortir
d'une piéce par exemple il est nécessaire de passer entre les chambranles de la porte et non de trouver la
weilleure trajectoire. Parmi les problémes difficiles il existe une sous-classe de problémes (dits problémes
NP) pour lesquels on peut décider en un temps polynomial s'il existe une solution de qualité donnée
méme si la solution rigoureuse nécessite un nombre exponentiel d'étapes. Si donc on se contente de
solutions approchées la distinction entre problémes faciles et problémes NP disparait et il est vrai que
la difficulté pour un réseau de neurones de résoudre le probléme du voyageur de comimerce qui est un
probléme de type NP est exactement la méme que celle de résoudre le probleme du plus court chemin
qui est un probléme polynomial.
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Machines de Boltzmann synchrones et vision artificielle
Synchronous Boltzmann machines and artificial vision

Robert Azencott

Résumé : Les machines de Boltzamnn asynchrones, introduites par Hinton‘-SeJnovsln
sont a énergies quadratiques et interactions par paire_s. On leur reproche d ap_prendre
lentement. Nous présentons les régles d'apprenpssage pour les m.achlnes_ de
Boltzmann synchrones (bien plus rapides) avec énergies trés générales et u}teractlons
par cliques d'ordre arbitraire. Nous esquissons les.arch_ltectures de réseaux de
Boltzmann synchrones dédiés a l'extraction et l'identification de contours lisses sur

des images digitalisées.

Mots clés : Machines de Boltzmann, réseaux de neurones stochastiques, vision
artificielle, apprentissage synchrone.

Abstract : Asynchronous Boltzamnn machines, introduced by Hinton-Sejnovski, have
quadratic energies and pairwise interactions. They are reputedly slow lea.rners. We
present learning rules for the much faster synchronous Boltzmann mach'mes with
general energies and high order clique interactions. We slgetch the arc}ptectgre of
synchronous Boltzmann networks dedicated to the extraction and identification of
smooth contour lines in digitalized pictures.

Keywords : Boltzmann machines, stochastic neural networks, artificial vision,
synchronous learning.
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LINTRODUCTION

In the spirit of the asynchronous Bolizmann machines introduced by Hinton and Sejnowski
10}, we presen: here a very generas class of stochastic nearal networks, where loca! interactions are
non quadratic and involve cliques of neurons of arbitrary order.

We focus our auention on totally synchronous dynamics, as in Azencott | 3] [5], since they
arc of course much faster than the asynchronous ones. We have derived synchronous rigorous
learning rules, implementable on a dual pair of networks (neurons and cliques). These rules
interestingly involve delayed correlations between current score and transitional clique activity.
Morcover we impose the use of a non vanishing temperature for these networks since stabilization
time grows exponentially at low temperature,

Many low level artificial vision tasks can be modelized by such synchronous Boltzmann
modules, borrowing intuition and knowhow from the asynchronous Gibbs field models (D. and S.
Geman [8] [9], Azencott [1] [2], Geman-Graffigne [9], Chalmond [7]...). We describe here the
architectures of such modules, dedicated to the extraction and identification of smoothed chains of
contours. Currently, at DIAM-ENS, we are conducting a team effort to explore these techniques on
massively parallel machines (Connection Machine at ETCA, Paris), in collaboration with A. Doutriaux
(San Diego), J. Lacaille and L. Youngs (DIAM-ENS). Simultaneously, in collaboration with P. Garda
(CNRS and IEF Orsay), we seek to evaluate and build specialized hardware dedicated to the
implementation of synchronous Boltzmann machines. This work is currently supported by a French
research grant (DRET).

2.8 "HA EUR - I -

Let S be a finite set of "formal neurons”. The state xg of neuron s takes values in a finite
set A. Call Q=AS the set of configurations x = (xg)se § of the network.

Fix a finite family K of subsets of S, called the set of cliques in the network. The activity
of any clique C e K will be measured by an (arbitrary) interaction potential Je(x) =Jc{xe) where
x is the clique configuration. To each clique C is associated a numerical weight w¢ . Call
w = (w(O)Ce K the weight vector of the network.

Let U(x) = ECe K wC Jo(x) be the weighted activity of the cliques.

The neighborhood Ns of neuron s is the setof all te S with t#s and such that there is

some clique Ce K containing both s and t. The action potential at site s is given by

Vi) = - ) we T = Vyixaxg) 2.1
Css

where the sum extends to all cliques containing s .

Fix a "temperature” T >0, and define the local stochastic update rule for neuron s by

Vsibxy) /T
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If we update only one neuron at a time, with a periodic refreshment of all ngurons, the long run
asynchronous stochastic equilibrium is the Gibbs probability proportional to e UOO/T

However, we focus essentially here on the much faster synchronous stochastic dynamics,
where all neurons are simultaneously updated according to rule (2.1). In this case, the long run
synchronous equilibrium distribution Q(x) exists, but cannot be computed explicitly in general,
unless all cliques arc of cardinal <2, (¢f. Azencott 3.

Let us point out that if all cliques are of cardinal 2, with Jo(x) = Jgrj(x) = -xg X and
xgxp € (0,1}, we fall back on the more traditional description of a single network S with synaptic
weights we = wg and quadratic asynchronous energy. But even in this case, the synchrénogs
energy is not quadratic (¢f. Azencott [3}). Indeed we have shown that for quadratic pairwise
interactions J{g ¢}(x) = -Xg X, the synchronous equilibrium probability distribution is proportional to

e Kp(xX)/T'  where
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The synchronous dynamics with clique interactions can be locally implemented on a pair
(S.,K) of dual networks where S is the set of neurons, and K the set of "clique cells". A clique C
computes its state y¢ by yc =Jc(x) after reading all neurons in C, and a neuron s computes its

action potential V¢(x), after reading all cliques C containing s, by

V() = 2 We Yo -

Cas

Thus the only links in (S,K) lie between pairs (s,C) such that the neuron s belongs to the clique C,

as shown in Figure 1.

. s . ) o ... neurons
O/C O/ (l)\(') o ... clique indicators

S NNLN

Y
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Example of a small network with cliques of vanious cardinals

Figure 1
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3 SYNCHRONOUS LEARNING RULES

Following the paradigm proposed by Hinton-Sejnowski-Ackley, fix the input units [ < §
and the response units R < $ . Cull Qp = AR the sets of input and output configurations. We want
10 use the synchronous machine as an adaptative black box to emulate a given mapping F:Qp - Qp.

For a given input & € Qy, the random output F(a) of the machine will be read as the
configuration of the response units once synchronous stochastic equilibrium has been reached. We
assume that the environment delivers random inputs having a fixed (unknown) a priori distribution
and has thus provided a representative training set of inputs.

To measure the performance of the machine we introduce an (arbimrary) loss function LB,y
on pairs of outputs, verifying L 20 and L(B,B) =0 . Then each configuration x € Q has a score

Mx) = L [F(x) ] (3.1
and the global performance of the machine is measured by its expected score

ow) = tlim E[MX")] (3.2)

n—oe

computed at (synchroneus) stochastic equilibrium. Here X1 is the random configuration after the nth
synchronous update.

We now seck to optimize the network by selecting clique weights w minimizing the
expected score 6(w) . We have computed a theoretical expression for the gradient (do(w))/(dw) ,
and interpreted it at the machine level to obtain implementable very general synchronous learning
rules, which we now describe (¢f. Azencott [5] [6]).

For each pair x, y of configurations, define the transition activity To(x,y) of the clique C
by

Ty = X T (e ¥s) - (3.3)
seC

We may compute (locally) the expected value of TC(x,y), given x , by

T(x) = 2 2 J(xe . a) Plyg=al X o)

seC ac A

and we call uc(x,y) = 1¢(x,y) - T0(x) the centered transition activity of the clique C .

Fix anineger k 2 1. Then we introduce the k-delayed learning rule for which the weight
updates Aw( are given by

Y
AW.C = Z Corit MXH“ X UC(Xn—x ' S(“'”])
i=1

(3.4)

1
1
i

where the small gain 1 has to decrease slowly with the number of weight updates.
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Here n is large enough so that X0 has approximately reached stochastic equilibrium, and
correlations can be estimated empirically by time averages. The ideal learming rules involves
theoretically large delays k . However in concrete situations, k can be kept small.

For instance in the case when all cliques have cardinal €2, we have proved that k =1 is
the correct delay value. Actually, in the simplest case where interactons are quadratic and involve only

nuirs of neurons, the synchronous learning rule becomes (Azencott [37). for a natural choice of the

score function
Awy, = 1 [+ a9 - @e+ 8y ] (3.5

where g, Qg are respectively the empirical frequencies of the event {X‘; = XrthLl =1} inthe
clamped case and the unclamped case. Recall that in the clamped case, the machinc has its output units
xg forced to coincide with the correct answer F(xp) .

Extensive testing of the simplest delayed rule (3.5) has been carried out on a Cray 2and a
Connection Machine by J. Lacaille, A. Doutriaux, L. Youngs. This learning rule functions quite well
at suitable fixed temperatures and all our learning experiments have been satisfactorily completed with
a few hundred passes of the training sets, after a few trials to adjust the learning parameters.
Moreover, so far, it has always been possible to reduce the stabilization time (necessary to reach
stochastic equilibrium) to less than 50 synchronous updates in actual classification, and to less than
10 synchronous updates during learning.

During learning, temperatures were either kept fixed or slowly modified to reach an optimal

non zero limit level. We have derived (and used) a schedule of temperatured updates

AT proportional to [ %z Wy AWSI:\ .
5,1

4. SYNCHRONOUS BOLTZMANN MACHINES AND ARTIFICIAL VISION

Numerous examples of the use of asynchronous Gibbs fields to model and implement low-
level artificial vision tasks have appeared since the initial impetus provided by D. and S. Geman {81.
Part of this expertise can be transfered to the design of high order interaction, synchronous,

Boltzmann machines with general energies, specialized to perform low an medium level vision tasks.

The input layer [INL 1] of the network is a 16 % 16 rectangular array of pixels, with an 8bit

coding of pixel intensities. The output layer [OUTL] describes a finite family of piecewise smooth,
continuous contour lines. The first hidden layer [COL 2] has a column of nine {0,1} neurons
"above" each pixel site s . The neurons 91; k ={0,1...,7} code the plausible contour orientations
{0,7%/4,...,77/4} atsite s and the ninth cg indicates the presence/absence of contour, Each of the gk
is totally linked to the 5% 5 window ceniered at s in [INL 1. The eight neurons 92 GZ are all
pairwise connected, and all connected to ¢y . Horizontal links are placed between 65 and Btl
whenever s and t are immediate neighbours.
Of course all the weights defined so far and below are translation invarianis.
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. The layer [LINK 3] provides "link" neurons, Agy placed above the midpoint of each clique
pfmv {s,t} of immediate neighbours in [INL]. Each of the Ag, takes the values {-1,0,1) indicating
i pixels s and t arc linked by a contour line, and its orientation. Each of the Ag is linked to ¢y, ¢
m allthe 6K 8K k=0 .7 inlayer [COL 2]. The layer [LINK 3} is locally analyzed by a lay; olf
cliques [CL 4], which includes one clique C per group of four pixels. Each such clique C contains
all the A5 which lieina 4 x4 window. The action potential Jo(A) gives a high score to dcsirabk;,
link patterns and a low score to undesirable ones. A deterministic explicit parallel algorithm [RC 5]
recodes the link configuration A into a finite family of ordered contour chains of linked pixels, of
type [s1s2 ... sp] with variable length p and provides "gap ncurons” py, linking “last pixel” 57 of
one chain and "initial pixel” t of another whenever Is - th is small,

‘ A standard smoothing method associates to each point s of a contour chain a descriptor
&g = (v, K gg) regrouping local speed, curvature, and smoothing error at s .
Gap neurons pg; are linked to descriptors &g and §; and all pg,; with Is - ul small.
This [GAP 6] layer finalizes the contour chaining. It is now possible to select, using the
smooth speeds v , a new layer [LINK 7] of link neurons 'Xst which we link to [COL 2] and
[LINK 3} by obvious feedback vertical synapses.

INL 1

COL2

HI/

CL4 |4 |LINK 3 | &——

~[[&]—
wn

@ ¢« | CHAINS A
N/

L

§ |¢————]|CHAINS

I

3

IOUTL l LINK 7 | ——

Figure 2 ; Te f

' . hains ex i
Underlined boxes are computed from incoming data by explicit deterministic nets (parallel
algorithms). Layers COL 2, LINK 3, GAP 6 have internal synapses.
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4.2. Modular / ini

The previous network contains essentially two synchronous Boltzmann modules that require

training : the block [INL 1] [COL 2} {LINK 3] [CL 4} and the [GAP 6] layer. Moreover the feedback
weights [LINK 7} — [LINK 3] have to be tearncd. The number of input neurons is 2048 one-bit
units, the analyzing layers [COL 27 {LINK 3] represent about 3300 one-bit units, the clique layer [CL
4] includes 64 chigues. The [GAP 6] layer involves about %00 one-bit units. However, the
connectivity is highly local : 43 synapses per cell in [COL 2], & synapses per cell in [CL 41,
21 synapses per cell in [LINK 3]. Moreover, the rotation and translation invariance of weights limits
the number of unknown weights 1o about 120 parameters for the first 4 layers. Since reasonable initial
cuesses for these weights are easily provided using the the extended experience available in contour
detection by relaxation methods, we see that actual training of such a network must be intrinsically
quite fast, if massive parallelization is available. Hence such a module, once roughly trained on
standard images, should exhibit interesting fast adaptative behaviour to deal with noisy environments
or specific families of images.

It is also fairly clear that actual training of such a network should and can be done in stages,
using the strongly hierarchical and modular structure, and the fact that "good answers” at intermediary
levels are easily computable on standard images. Thus a preliminary training of [COL 2] can precede
the joint training of [COL 2} [CL 4] [LINK 3]. Similarly [GAP 6] can be trained separately, before the
final tuning of the global architecture.

Various versions of this architecture are currently studied by J. Lacaille at DIAM-ENS, and
actual simulation results will be published elsewhere. We point out that multiscale analysis in the
lower layers of this network are quite feasible, and in fact useful to handle noisy or blurred contours.
Note also that coarser grain analysis in [COL 2] and [LINK 3] makes sense if limits are imposed on
the density of one-bit units by the computing resources actually available.

Finally for actual implementation of such networks with specialized hardware, the possibility

of regrouping several units into single multivalued neurons is also quite possible.

4.3. line_classificati p_in
This task has been undertaken in collaboration with A. Doutriaux (CESTA Toulon and U.
San Diego) and L. Younes (DIAM-ENS) who in particular handled all simulations on the ETCA

Connection machine, with the technical support of P. Clermont.

Figure 3

A typical boat outline after elementary thresholding (on infrared images)
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‘The images studied here were infra-red pictures of single boats at sea, digitalized on 64 gray-
levels per pixel, with standard 512 x 512 pixels. The goal was to classify these boats in 4 categories,
defined a priori.

The original exumples, werz submitted 0 deforrictions (by oblique affinities and symmetries)
as well as 1o artificial noise to increase the size of the global set available to 275 examples, out of
which 25 examples were kept as a control set and 250 used as a training set.

We decided to extract, by standard contour analysis algorithms, a description of each boat
outline as a chained sequence of small straight line segments ; typically the number of segments for an
extracted chain was in the range [75-100).

The chains of segments were recoded in the following way : first they were locally smoothed
by standard least square fitting, and then reparametrized so that the total length of each smooth outline
became equal 10 one. Then they were resegmented into 50 arcs of length 1/50 . For each of these arcs,
3 characteristics were computed : the mean orientation 8 , the mean curvature p , and the local
smoothing error £ .

The 150 data (51,5@) i=1...50 were used to activate three input layers (6;,p;.€;)
i=1...50 of {0,1} neurons using adaptative thresholding.

The five hidden layers included three "local analysis" layers (6i,6i,§i) i=1..50 and two
"jomnt- evaluation layers" (o;) i=1...50 and Bp i=1...50.

The output layer had only four neurons (four classes only).

Connections were essentially local ; each éi was connected to the inputs €, 6;_.1, 6;4]
and o B; . Similar connections for ;, & .

Each o was connected to B;, 6;,pj€; and to the four output units. Each f; was
connected to a;, 61,5i,§i and to the four output units.

Thus we had a synchronous neural net of 402 neurons connected to a coding layer of 150
neurons. The number of weights (including all thresholds) was small : about 2000 weighs.

The synchronous learning was completed in about 500 weight iterations. On a 16 K-
connection machine, the total CPU time for learning was 2 hours.

Performances of this simple network were quite encouraging : on the training set (250
examples), the percentage of correct recognition was 97 %. On the global set (275 examples), the
percentage of correct recognition was 95 %.
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