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SYNCHRONOUS BOLTZMANN MACHINES AND GIBBS
FIELDS : LEARNING ALGORITHMS

Robert AZENCOTT &)
Ecole Normale Supérieure and Université Paris-Sud

INTRODUCTION

The Boltzmann machines are stochastic networks of formal neurons linked by a
quadratic energy function. Hinton, Sejnowski and Ackley who introduced them as pattern
classifiers that learn, have proposed a learning algorithm for the asynchronous machine. Here
we study the synchronous machine where all neurons are simultaneously updated, we
compute its equilibrium energy, and propose a synchronous learning algorithm based on
delayed average coactivity of pairs of connected neurons. We. generalize the Boltzmann

machine paradigm to much wider types of interactions and energies allowing multiple

interactions of arbitrary order. We propose a learning algorithm for these generalized
machines using the theory of Gibbs fields and parameter estimation for such fields. We give'
quasi-convergence results for all these algorithms, within the framework of stochastic
algorithms theory. The links between generalized Boltzmann machines and Markov field
models sketched here provide the groundwofk for designing generalized Boltzmann machines
capable of performing efficient low level vision tasks. These Boltzmann vision modules are
described in a forthcoming paper. .

The asynchronous Boltzmann machines are widely considered as slow leamners.
However we emphasize here their use at suitably selected fixed temperatures, to avoid long
stabilization times due to vanishing temperatures. Moreover the synchronous versions studied
here are structurally much faster, if implemented on parallel hardware. In collaboration with

" P. Garda (LE.F., Université Paris-Sud) and other researchers at DIAM (Ecole Normale

Supérieure, Paris), we are currently studying the technological feasibility of such specialized
hardware implementations. We feel that Boltzmann machines, in suitable synchronous
versions, and with general energies offer a world of learning networks with \exciting
technological capabilities as well as interesting tentative models for low level human vision.
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1. THE ASYNCHRONOUS AND QUADRATIC VERSION (Hinton-
SeJnovskl-Ackley)

Let S be the (finite) set of formal neurons or units in such a machine. Each neuron s
in S has only two possible states xg =0 and xg = 1. The interaction between neurons s
and t is governed by a synaptic weight wg; , and the global configuration x = (Xg)se § has

an energy

(1.1 . G(x)=—z W, X X,
s.t

The weights are assumed to be symmetric : wgt = Wig .

The dynamics of the machine is stochastic, and controlled by a positive parameter T
called the temperature. We first describe the standard asynchronous version of the machine,
as originally introduced by [H.S.A.]. At each instant n € N, only one of the neurons ‘may
attempt to modify its state. Call s, its index, which is generally preassigned by a
deterministic sequence (s]...Sp...) visiting periodically all neurons s in S, but which can

also be drawn at random in the set S . In either case, whenever the current configuration is

X , and the neuron s attempts to modify its state xXg , the new value Xg of xg is selected at

random with the probability
= U L(x)
P(x =11 current state x) =
Us(X)
1+eT
(1.2) ‘
P (is = 01 current state x) = 11
‘ T Us®)
l1+e

where Ug(x) = Z wgt Xt is the action potennal of x atsite s.

This stochastlc dynamics reaches (in the long run) a probabilistic equilibrium which
gives to each configuration x the Gibbs probablhty

(1.3) » P(x)——-ir—ep G'(rx)

where

(1.4) ' Zr=2exp——(—}-(%)—
’ yeQ

and Q is the space of all configurations on S .

The use of the Boltzmann machine as a pattern classifier involves selecting two disjoint
subsets D and R of S (data units and response units) which together constitute the set V
of visible units in S, while the other units constitute the set of hidden units H=S - (D UR)

The environment provides on the data set D a family of "stimuli" which are random
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conﬁgurations ae A= {O,l}D . To each configuration o € A, we want to associate a
preassigned response configuration B=F(a) e B = (0,1}R, which will achieve the desired
classification of pattern ¢ . The map F: o — F(c) is assumed known to the superviser of
the learning process, at least on a set Aex C A of "examples”.

The goal of learning algorithms for the Boltzmann machine is to adjust sequentially the
weights (Wgp)g te § in the course of alternate periods of "clamped” and unclamped” example
presentation. In the "clamped" sequence, one or several examples are presented successively.
When o is presented, all the visible units D and R are clamped on o and F(a)
respectively, while all the hidden units follow the Glauber dynamics described above. In the
"unclamped" sequence, when example o is presented, the data units are tied to the input
configuration ¢, but all hidden and response units evolve freely, according to the stochastic
dynamics above.

For each pair of neurons (s,t), the empirical frequencies pg; and Pst Of their

simultaneous activity are respectively computed during the clamped and unclamped phases by
direct observation of xg and x . The current value of the weight wg; is then incremented

by the rule
8 '~
(1.5) . Aw,, = T (pst-pst)

where € is "small".

This interesting algorithm derived by [H.S.A.] has.the obvious advantage of using
only local computations. However, it is highiy stochastic in nature, so that its convergence is
not obvious from a mathematical point of view. Roughly, it approximates gradient »d}escent
for a Kullback distance between marginal distribution on the set of visible units. Even after
proving convergence, the optimal qualities of the limit are not obvious either. We will come
back on both of these problems below. ’ ‘

2. THE SYNCHRONOUS AND QUADRATIC VERSIONS

Boltzmann machines are reputed to be fairly slow as compared to deterministic
versions. These statements deserve to be qualified, but we shall not do it in this paper. In any

case, the idea of simultaneously updating all neurons s € S is fairly tempting in view of the

"availability " of highly parallel computing machines such as the connection machine, since
the speed increase couldpresumably be of the order of Cardinal(S) .

In this synchronous dynamics, at time n , if the current configuration X(n) =x,
every neuron s selects at random its next state is , according to the probability distribution

(1.1). All these simultaneous choices are independent of each other. The new state is then the
configuration X = (Xg)ge § - :
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Contrary to naive expectations, the long run limit of this stochastic synchronous

dynamics is not the Gibbs measure (1.2) associated to G(x) . In fact, if we define the

synchronous energy by

LU.(x)}
2.1) Ky (x) = -2Tlog[1+eT :
s

where Ug(x) = }E wgt Xt is the action potential at site s , then we can state the following

proposition.
2.2. PROPOSITION.- Assume the synaptic weights wgt to be symmetric. The limit

probability distribution fo}' the synchronous dynamics is given by the new Gibbs measure

=1 1
(2.3) | @) = e | 1K, )]
where
K0T
PT = 2 cv
yeQ

and K is given by (2.1). Note that X(x) is temperature dependent in this formulation.
The details of the computation will be given elsewhere ; they are similar to previous
computations of that type (¢f. Little [L], Peretto [P], Trouvé [T]). Let us point out a few
consequences of formula (2.3). :
Call Ng the set of asynchronous neighbours of neuron s, namely the setof te S
such that the local conditional laws verify ‘
(2.4) : P(xg=Alx,,te S-5) = P(x;=A1x,,te Ny
for A=1,0. Intuitively, the neighbours of s are those which "directly" interact with neuron
S . _ ’
Then for the asynchronous standard limit distribution P, associated to the energy G ;
one has obviously
(2.5) : N, = {te Slw,#0}.
However, for the synchronous limit distribution Q an easy computation shows that the set
of synchronous neighbours Ng of netron s is the union of all the (N - s) such that Ny,
contains s . More precisely ’
Ny = {te S suchthatthereisa ue S for which wy,#0 and w, =0} .
Thus the cardinal of ﬁs is genérally larger than Ng in standard setups.

An easy computation shows that ar very low temperature T , the synchronous ehérgy
is equivalent to

Kpx) ~ -

(2.6)

Kix) ~ (
On the other hand, at ver
(2.7)
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K ~- Y U

if {s1U,(x)>0} =@
(s1U,G)>0) :

(2.6)
K ~ 0 if {slUx)>0}=@.
On the other hand, at very high temperature T , the synchronous energy can be replaced by

2.7) KT(X) ~ —%Z Uy(x) .

One interesting consequence of (2.7) is that at very high temperature, ihe synchronous
equilibrium distribution forces the effective stochastic independence of all neurons, with
neuron t firing at a constant frequency py={(e4 )/(1 +ev ) and u; =1/2 E wg; . Hence, at
very high temperature, the synchronous machine is in total disorder and no learn;iné. can be
achieved. . o

Also formulas (2.6) (2.7) show clearly that in general the synchronous and
asynchronous limit may be extremely different. .

This raises the problem of the feasibility of learning algorithms on the synchronous
Boltzmann machines. Actually, we shall derive a new learning algorithm in this case.

3. A SUITABLE LEARNING ALGORITHM FOR THE SYNCHRONOUS
MACHINE

Assume that the environment induces on the set A = {0,1}P ana priori probability
distribution Vv , so that each stimulus &t € A appears with frequency V(o) . .
Call Qy =A xB the set of all configurations on the visible units {D U R} . When
the machine is coupled to the environment through the data units D, a random configuration
Y € A is presented on D, and the machine provides a random respbnse Z e B when
equilibrium is reached. Call 6 the probability distribution of the pair (Y,Z). at equilibrium.
Ideally, we would like to select the weights (wg) such that ® becomes as close as
possible to 8 where
(3.1) { 8(c.p)
: 0B =0 if B#Fo), oae A,feB.
Recall that F is the désired classification map. More practically, we shall assurme that 6
has been replacedhl‘:y a probability 8 on Qv such that
(3.2) % 0(ax,B) = (1-¢)0(ct,B) whcg 6(a,B) =0
8a.p) = eM when 6(c.,) =0
and €>0 is small. The actual value of € is irrelevant, and M = card{Q - support 6} .

v(e) ifP=Floa) , coe A

il

f

Al
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One way of evaluating the distance between ® and 8 is thus to compute the Kullback
distance

' ~a CICT)
(3.3) d@®,6) = - B(op) log
PICE 3

The vector of optimal weights w = (Wgt)s te Sx§ should then minimize d(6,6) . In
particular, we should try to have the zero gradient condition

(3.4) grad,, d(6,6) = 0
and a natural gradient algorithm is of course to update current values of w by Aw where
(3.5) Aw is a (small) multiple of [- grad,, d(8,8)] .

This approach can be carried out in the synchronous case, in view of the explicit formula
given above for the synchronous energy, and the computations, which will be given

elsewhere, present no serious difficulty ; as a particular case of the general formula (6.6)
below, one obtains for the synchronous update Awg;

M |, clamped unclamped
(3.6) Ajym:h Wt = T [E (Yst) -E ('Ys[)]
where 7 is a small scalar/and R
\" o e
(3 . 7) ’Y ¢ = X + xs
s g l1+e TG

Here Eclarnped(f) represents the theoretical cxpected value of the random variable f(x)
when all visible units are clamped on the pairs (stimulus, desired response). Similarly,
Eunclampedf) represents the same quantity when only the input units D are coupled to the
environment. '

Note that from a practical point of view, these mathematical expectations E(f) can and

must be estimated by natural time averages of f(x) at equilibrium.

To understand better the physical nature of Yy , note that

Ux)
e

1+ eUs(x)/r
répr,esents the local probability of replacing xg by 1, when the global actual configuration is

X , in the natural synchronous updating of all the (x)ye s - Hence, these quantities are

. Ps x) =

locally computed by the machine in a systematic fashion. However, using that remark, we
can now give an extremely intuitive interpretation of E(ygy) . Call n an arbitrary instant in

the time clock of the synchronous machine. Call X(n) the configuration of the machine at
time n, and Xs(n) the state of neuron s at time n. Then in the clamped case, as well as in

the unclamped case, we have
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(3.8) E(y) = lm E[X,@ Xm+1)+X®m) Xm+1)]
n—eo

and thus the interesting formula

(3.9 ‘ E(Yst) = Qg+ Gy

where Qg is the probability of successive firing for neuron s and neuron t . Hence, the
meaningful local quantities in synchronous Boltzmann machines turn out to be the
(equilibrium) probabilities qg of delayed co-firing for ordered pairs (s,t) of neurons. We
shall keep the notation qg for the clamped case and use the notation ast for the unclamped
case.

The natural time average estimates for qgq, zlst are of course the empirical
frequencies of delayed cofiring (at equilibrium) ;
(3.10) _1—11_1? [Xs(n) Xo+D+Xm+ 1D X0 +2)+... +Xn+N) X(@n+N+ 1)]

which point out the relevance of delayed correlations betrween neighboring neurons in the
synchronous activity of the machine. .
We thus propose the following natural synchronous learning algorithm
(3.11) Agyneh Vst = % [+ q) - @ + 8]
where qgt qgs dst s are estimated by the empirical frequencies of delayed cofiring (3.10).
Note that the computations involved are purely local and extremely simple. ‘
The mathematical results on stochastic gradient algorithms ([B.M.P.] [Y]) strongly
recommends the use of a slowly decreasing coefficient m (the "gain" of the algorithm) to

make convergence possible. A mathematically classical choice is

_ C
(3.12) | Nk = o

where c,b remain constant during learning and the integer k € N denotes the index of the

current weights updating.

4. CONVERGENCE OF THE LEARNING ALGORITHMS

It turns out that the learning problem for Boltzmann machines wether synchronous or
asynchronous is quite similar to the problem of maximum likelihood estimation for partially
observed Markov fields. Thus most of the sophisticated probabilistic technique§ used by
Younes in his doctorate thesis (cf. [Y]) are relevant in this contéxt.

Here of course the parameter to be discovered is the unknown vector of weights w
and hence may be high-dimensional. Consider again the problem of minimizing in w the
function ¢(w) = d(8,9) , defined by (3.3).
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As is easily checked, the function w — ¢(w) is often not convex, and hence the

stochastic gradient algorithms proposed for learning in synchronous or asynchronous

Boltzmann machines may very well be trapped in local minima of ¢ . Note here that our
statements concern learning at fixed temperature which we consider as quite relevant in
artificial vision applications for instance, as will be explained elsewhere.

In generic situations, the theory of stochastic gradient algorithms following the hnes of
[B.M.P.] and [Y], can thus only prove guasi-convergence of learning algorithms. This
means essentially that if the successive learned values w(k) , k = 1,2,... of the vector of
weights come back inﬁniteiy often within any single well of the energy landscape associated
to the function ¢, then the sequence w(k) becomes ultimately trapped at the bottom of that
well. Hence for all practical purposes, either the sequence w(k) explodes, or it is bound to
achieve Jocgl optimisation, in generic Boltzmann machines.

Another result of the same kind is that if the starting point w(0) for the vector of
weights lies close enough to a non degenerate absolute minimum w of ¢(w),and if the
coefficient 1 regulating the gain is small enough, then the learning algorithm will converge
towards the absolute minimizing weight vector W . From a practical point of view, this last
point means that small variations of the environment characteristics can be successfully
corrected by learning once the machine has initially been properly tuned.

As for learning using decreasing temperature schedules, it can be studied through

. similar stochastic techniques, but we shall come back to this question elsewhere.

5. GENERAL BOLTZMANN MACHINES WITH MULTIPLE INTER-
ACTIONS

In the standard quadratic Boltzmann machines, interaction between neurons is limited
to pairs of neurons. Actually, one can usefully develop a learning theory for much more
geenral stochastic machines, within the formalism of Gibbs measures.

As a first and innocuous generalizing step assume that each neuron may now take a
finite family of values A € A instead of the only values 0,1 . Consider an arbitrary family
I" of subsets C of S.Each C in I" will be called a clique of neurons, and its degree of
activity will be quantitatively measured by an interaction potential Jo(x) =J(xg ... Xg ) if

C={s] ... sx} : These interaction potentials are arbitrary numerical functions of the clique
configuration XC .
For each clique Cc T introduce a numerical parameter we € R which will be called

the clique weight . The vector w = {wc}cer Wwill be called the weights vector and will

define completely the generalized Boltzmann machine.

Indeed we intrody
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Indeed we introduce the asynchronous energy function

.1 GO = ), We T

Cel
which measures the weighted activity of the cliques to compute the global activity of the
configuration. A classical Glauber type of asynchronous stochastic dynamics can now be
defined to ensure that the asynchronous machine has at equilibrium (in the long run) a Gibbs
probability distribution on the set Q of configurations given by

(5.2) P(x) = L @7

’

where ZT is as before the partition function, and T a positive fixed temperature parameter.

Define the set Ng of neighbours of neuron s as the setof all te S such that t#s
and there is some clique C e I' containing both s and t. Then the local action potential at
s is defined as Ug(x) = Ug(xs,xN ) by
(5.3) Ul %) = - D, W I

{Csas})
And the proper random updating of a single neuron s is here to select the next state Xg € A
with the probability
UyGloxy )T
7a)
piXy = —;—@(1—%@_'
A ) ]

To compare this setup with the standard asyhchronous quadratic Boltzmann machine,
take the set I of active cliques to coincide with the set of arbitrary pairs of neurons, and

(5.4)

interaction potentials
(5.5) Jc(x) = J{S,t}(x) = -2 XX, .
Then the weight we of the clique C = {s,t} is simply thé synaptic weight wg¢ , and the
random updating (5.4) is exactly the one we recalled earlier in (1.2).

The problem is now to define a suitable learning algorithm for the asynchronous
generalized Boltzmann machine. To do this, we have to compute the distance &(w) = d@,é)
between clamped and unclamped distributions on Qy and evaluate the gradient d¢/ow .

A direct computation shows that orie has

(5.6) T%’L(w) -E

and thus the natural learning algorithm for asynchrénous general Boltzmann machines
consists in updating the vector w of clique weights by

c ‘clamped [JC] B Eunclamped [JC] |
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(5.7) Awe = %{Emclamped(Jc) ‘Echmped(JC)}

where the (small) gain M decreases slowly at the rate T(k) = c¢/(b+k) where k is the weight
update index.

Of course in the now classical quadratic case, for clique C = {s,t} , the expected
value of 1/2 Jo =- xg x¢ is simply (- pgt) where pg; is the probability of simultaneous
firing for neurons s and t, at equilibrium. Practically a good estimate of E(J¢) is provided
by a direct time average of the clique activity JC(x) . Thus, computations remain local and
just as feasible as in quadratic machines.

The network should then be viewed as a double network S UT" where to each index
Ce T is associated a cell or processor which we call a clique indicator and whose states
belong to a finite subset of R . Namely, whenever the network S is in configuration x, the
state yC of the clique indicator C is

(5.8) Yo = I . ,

The connection between neuron s € S and clique indicator C e T exists if and only
if s belongs to the clique C . Moreover, this connection is.simply a message transmission
channel. From s to C , it transmits the state Xg to the processor C , which once it has
gotten hold of all the (Xg)ge ¢ computes deterministically its state yo=JC Xg,s5€ O).

Conversely from C to s, the connection transmits the state yc , that is the
corresponding cell activity, with the weight w . Then by a simple sum over all cliques C
connected to s, the neuron s can compute its action potential

(5.9) UM = - ey
C containing s

and then neuron s uses this number for its own random updating. Several detailed setups

corresponding to this random update can easily be proposed and will be described elsewhere.

' o ... neurons
(0] o ... clique indicators

Example of a small network with cliques of various cardinals

The configuration x of S thus provides a direct computation (a deterministic one) of the
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The updating of the weights requires essentially a time monitoring of the clique
indicator activity, a simple computation which can be done by a local processor included in
C.

Hence the asynchronous generalized Boltzmann machine looks like an interesting
learning tool, in pattern recognition. Indeed in artificial vision, many tasks of low-level vision
have been studied through Markov field modelizations following the breakthrough papers of
D. and S. Geman (see [A] [C] [G] [GG] among many others). Many of these models can be
suitably reinterpreted in the context we have just described, to design asynchronous
generalized Boltzmann machines which achieve low-level vision tasks such as contour
detection and segmentation. We shall come back to this exciting topic in another paper.

6. THE SYNCHRONOUS GENERAL BOLTZMANN MACHINE

For a general Boltzmann machine, the study of the synchronous equilibrium energy is
much more difficult than in the case of standard Boltzmann machines. The difficulty here is
not linked to the fact that we abandon quadratic forms, but to the existence of multiple
interaction of order 2 3, which prevents the explicit computation of the synchronous
equilibrium distribution. We have recently solved this problem in [A]. In this brief note, we
shall limit ourselves to the much easier case of general Boltzmann machines with pairwise
interactions only. .

Call Jgi(xg,Xp) the _iﬂteraction potentials corresponding to pairs {s,t}: and wg; the
weight of the clique {s,t} . The action potential Ug(xg,xS.g) is given by (5.3) as before and
the synchronoﬁs energy Kr(x) for this Boltzmann machine can be computed using
microbalance equations, to show that :

6.1 Ky(x) = -T Y log {2 o s "]
s AeA

with synchronous equilibrium distribution

(6.2) Qx) = L KT

One can now check that the gradient of the Kullback distance d(@,é) involves the average
delayed interactions

6.3) 4, +d, = lim EfI, [X00X0+ D] +J, X0+ DX®]
n—eo
where X(n) is the global neuron configuration at time n .
These average delayed interactions can be correctly estimated by empirical delayed
interactions
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(6.4) I{I—{Jst [X,@.X @+ D]+ ... + T, [X, 0+ N- DX, (n + N)]} :
which we still denote by dg; in the clamped case and dg; in the unclamped case.

Then one can prove that the synchronous learning algorithm by gradient descent must
compute the update Awg, of the clique weight wg; by

(6.5) Aw,, = %[(3“*3“) -y~ )]

‘with a slowly decreasing gain m , as before in (3.12). Recall that in the standard quadratic

case 1/2 Jg(xgxp) is (- XgXy) so that these formulas do generalize those of § 3.

7. FURTHER EXTENSIONS

One may want to evaluate the clique activity from several quantitative points of view

and weight these points of view according to their relative importance. This is handled by
vector valued interaction potentials J¢ and clique weights we .

It is also possible to imagine more realistic partially synchronous updates, in which at
each tick of the clock, only a fixed proportion of the neurons S are drawn at random and
allowed to perform simultaneous random updates. As long as the probability of having 3 or
more simultaneous updates within a single active clique is kept small, the theory of learning
for partially synchronous updates should strongly resemble the totally synchronous update
for pairwise interacting machines. Hence, in such cases, learning by using average delayed
interactions as described above should still perform a good gradient descent.
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