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1. INTRODUCTION

A now classical innovative paper [H.S.A.] by Hinton-Sejnowski-Ackley intro-
duced a class of formal neural networks, the Boltzmann machines, governed by
asynchronous stochastic dynamics, quadratic energy functions, and pairwise interac-
tions defined by synaptic weights. One of the exciting aspects of [H.5.A.] was the
derivation of a locally implementable learning rule linked to a scheme of decreasing

(artificial) temperatures, in the spirit of simulated annealing.

However actual simulations of these machines for pattern classification problems
have run into practical difficulties, the main one being the heavy load of computing
time involved. Thus, the “neural network community” has often had a tendancy to

consider the Boltzmann machines as useless slow learners.

We feel that these speed problems are enhanced by two facts, inherent to the
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original [H.5.A.] presentation : at low temperature T, the stabilization times of
these stochastic networks are eziremely long (they grow exponentially with 1/T),
and moreover the sequential update of neurons, where only one neuron fires at a

time is an obvious crucial cause of lengthy computations.

Hence we have been suggesting the use of learning at constant temperatures
(suitably selected) and the implementation of highly synchromous neural updates,
which in view of the availability of parallel hardware iz quite natural in this context,

This raised the mathematical problem of devising suitable synchronous learning
rules, which we have described in a recent paper [A)], for the pairwise interactions
situation. An interesting new feature was the natural emergence of one-step de-
layed correlations between the activities of pairs of neurons, as crucial indicators for
weights updates,

However, in many low-level vision applications, the use of Markov field ap-
proaches instigated by D. and S. Geman [G.G|, can be reinierpreted in terms of
sequential Boltzmann machines for which the energies are far more general than
quadratic functions and for which cliques of interacting neurons have cardinals higher
than three. We have sketched the reinterpretation of Markov fleld approaches in. the
forthcoming paper [A]. Of course this requires the derivation of new learning rules
for sequential dynamics, general energies and high-order interactions. The proper
formal setup is described here and involves a pair of dual networks : the neural
network S and the clique indicators network I{. The synapses link only individual
neurons to individual cliques, and synaptic weights w, are indexed by cliques €' € K.

Our sequential learning rules for these generalized Boltzmann machines are still
locally implementeble ; they involve the correletion between current cligue activity
Jo(X") and the current score A(X}) of the machine response. We compute these
scores through the introduction of fairly arbitrary loss fumetions which compare
desired and current responses of the machine,

For very specific and simple choices of loss function, these multiple interaction,
general energies, sequential learning rules include in particular a weight update Aw,

proportional to the difference in average clique activity F(J;) between two regimes
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(clamped output and unclamped output) which generalizes by a quite different route

the sequential learning rule derived in [1.8.A.} for quadrafic energy functions and

pairwise interactions.

Of course, it is quite tempting and natural to study these general Boltzmann

imachines in the synchronous case too, in order to gain important speed factors. 1t

turns out that synchronous dynamics with high-order interactions involve a serious

mathematical difficulty : the equilibrium probability distribution M on the set of

global newrons configurations cannot be computed ezpliciily in general. Hence in the

present paper, We use more sophisticated probabilistic tools to compute the gradient

aﬂ,{ , and to interpret the results at the empirical level.

——

8
We have thus obtained here gquite new learning rules for synchronous dynem-

jcs in presence of high-order interactions and general energies. These rules are still

implementable locally. For each clique C they iavolve the sum of strings delayed cor-
relations between the past clique unezpeeted transition activity uc(X“—k‘l,Xn—k)

and the current score AXE) of the machine response. Here again scores involve gen-

eral loss functions, computed at the level of response units and fed back to all clique

indicators. For a clique C, the transition activity between successive configurations

¢ and y is computed by D ec Jo(@emsr ¥s )], 2 quantity which appears naturally in

our gradient computations. Finally we sketch a few results on the choice of oplimal

temperatures T, and obtain interesting physical and probabilistic interpretations of
the gradient, with respect to T of the expected score.

In [A], we have deduced from these synchronous learning rules a set of algorithms
for parameter estimation in synchronous Markou field model fitting, an interesting
pew twist in Markov field approaches for low-level vision models.

The learning rules derived here are currently being tested experimentally in
our research group DIAM at ENS (Paris), using simulations on computers offer-
ing high degrees of parallelization (Cray, connection machine). The possibilities of
implementing generalized Boltzmann nachines on specialized hardware are being
currently evaluated in collaboration with P. Garda and other rescarchers at ENS

Paris and LEF. Orsay. The vision application of synchronous Markov field models
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are currently studied in collaboration with other researchers at ENS Paris (cf. recent

work in collaboration with A. Doutrieux, L. Younes, J. Lacaille).

2, NEURAL NETWORKS WITH MULTIPLE INTERACTIONS

Consider an arbitrary finite set S of “formal neurons”. The state x, of neuron
s will be a variable with values in an arbitrary finite set A. The configuration
% = (z,)ses of the network § is an arbitrary element of 2 = AS,

Fix an arbitrary family I of subsets of S, which will be called the set of cligues
in the network S. The activity of any clique C = {s1---8,} € K will be measured

by an interaction potential

Je(z) = Jo(re, +y2s,).

These interaction potentials are arbitrary numerical functions of the cligue configu-
ration
2o ={Tay, "1 Ts, )

For each clique C € I, introduce a numerical parameter w, € R which will be
called the clique weight. The weight vector w = (we)eck in R¥ will parametrize the
network architecture defined by {4, 5, K, (J¢)cek-

Recall that widely used standard models of format neurons tend to consider
only pairwise interactions, that is to say situations where all cliques have cardinal
< 2. On the other hand, Markov field theory and particularly its application to

image analysis often involve cliques of cardinal > 3.

3. SEQUENTIAL STOCHASTIC DYNAMICS

Introduce now the sequential energy funciion

(3.1) U) = Z we Je(z)

CeK
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which measures the weighted activity of the cligues. A classical Glauber type of
sequential stochastic dynamics can now be defined to ensure that the sequential
network has at equilibrium (in the long run) a Gibbs probability distribution on the

set ) of configurations, given by

{3.2) G(z) = 7 exp [~ T

(3.3) Z = Z exp [— -[%],

where Z is the partition functionand T is a positive fixed parameter called the
lemperaivre.

In the sequential dynamics, at each instant n € N, only one of the neurons
attempts to modify its state. Call s, its index, which is generally preassigned by an
arbitrary deterministic sequence {3y s, ) visiting periodically all neurons s € §.
Such & sequence can also be random, provided it is ergodic and uniformly distributed
on §. In either case, whenever the current random configuration X" = =, and the
neuron s, = s € § is preassigned as seen above for a possible change of state af time
n, then the new configuration X"*! coincides with X™ at all neurons in [§ — s,],

and the conditional distribution of X *! is given by :
(3.4) P(XM =a]X" =2, X", X") = Gu(a] z5-4)

where Gy(a|z) is the conditional probubility G(X, = a| Xs_, = z) under the Gibbs
distribution G defined in (3.2).

Define the set Ns of neighbours of neurons s as the set of all ¢ € § such as
t £ s and there is some clique C' € K containing both s and 1. Then the local action
potential of configuration z at site s is defined by :
(3:5) ZORYACRIDEL D' wo Jo(2)

{cliques C containings}

and {3.1) classically yields :

EVI(“:INA)/T
Eare}l eV,(a,:cN,)/T

(36) Gulalws=y) =
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which shows that the random updating of neuron s is purely “local” since it involves
only the configuration x restricted to s and its set of neighbours Ns,
As is well known, whatever the initial configuration X* of the network, the limit

distribution is given by :

(3.7 lim P(X" =2)=G(z)

n—+too
where G(z) is the Gibbs distribution (3.1). We point out that this sequential dy-

namics takes place at fized femperature,

4. SYNCHRONOUS STOCHASTIC DYNAMICS

In view of the purely local computations involved in asynchronous random up-
dates, it is quite tempting to parailelize compleiely the random updating, and hence
to define aynchronous stochastic dynamics

Pya (X7 =y X7, X" X0 = T Golws| X5,)
seS
where G is the Gibbs distribution (3.1) above. This simply means that all neurons
s € 5 update their states with simultanecous independent random choices, each one
of the individual random choices being governed by a conditional law computed
exactly as in the sequential case, by {3.5).
Since X™ is obviously again an ergodic Markov chain on the state space Q, the

Lmit distribuiion
(42) M()= lim_ Pyu(X" = 2))

ezists and does not depend on the tnitial configurations X°. However, in general M
does not coincide ot all with the Gibbs distribution G.

Of course M is the invariant distribution for Psy,, and hence calling Q(z,y),
x € 2, y € £ the one step transition of Py, we have :

(4.3) Y M(2) Q(,y) = M(y)

2ER
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which will be as usual noted in matrix form
(4.4) MQ@=M.
Note also that formula (4.1) implies

(4.5) Qe,y) = [[ Glvsl2s-s)

sES
with G4(.].) given by (3.6).

The main difficulty below will be the fact that in the generic case M is only
known implicitly through equations (4.4} (4.5). In fact the only cases where M has
been computed explicitly are those where all cliques have cardinal < 2. We refer to
our paper [A] for a detailed treatment of this important particular case, which of
course includes the case of Boltzmann machines with quadratic energy introduced

by Hinton-Sejnowski-Ackley. Let us recall one of our results from {A] :

4.6. THEQOREM .-— Assume that all eliques C € K are of cardinal < 2. Then ihe

synchronous stationary measure M 1s given by

(47) Mgy =m 1Y exp 7 Vi (a,2m)]

365 acA

where the constent m is determined by 3 o M(z) = 1. Moreover M verifies the

microbelonce equations
(4.8) M(z) Q(z,y) = M(y) Qly, z).

In particular the doubly infinite stationary synchronous Markov chain (¥ ),ez

18 then reversible in the sense that

(49)  Pynl¥™ =y|¥" =) = Bya(Y" = y|Y™ = ) = Q(a,).
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5. LOCAL IMPLEMENTATION OF THE STOCHASTIC DYNAMICS

5.1. A pair of dual networks

A convenient architecture is based on a pair (5, K) of dual networks, where &
is the network of neurons, and K the network of clique indicators. To each clique
C € K is associated o cell called the indicator of clique C, whose state yo belongs

to a finite subset of R, and is given by

(5.2) yo = Je(z).

* 8 e LRI neurons
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Example of a small network with cliques of various cardinals

5.2. Dynamics of the dual networks

The only connections in the pair (5, K) of networks are links between one neuron
s and one cligue indicator C. Namely such a link ezists if and only if s belongs to
C. At this stage such a connection is simply a transmissions channel. From s to
C, this channel transmits the state z, to the clique indicator C, which once it has
gotten hold of all the (z,)ses computes deterministically its state yo = Jo(zc).

Conversely from C to s, the connection transmits the state y¢o to the neuron s,

which can then compute its action potential

Ude)=~ Y.  weoye

C containing s
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by a simple sum over all cliques connected to s. Then the neuron s can use U,(z)
for its own random updating. Detailed setups for the effective computation of such
an update will be proposed elsewhere in a more realistic context, and are easily
imagined (see §9.12).

Hence on the pair (S, K) of dual networks, the sequential and the synchronous

stochastic dynamics are purely local

6. GENERALIZED BOLTZMANN MACHINES AS PATTERN CLAS-
SIFIERS

Consider a stochastic network S with the above structure, defined by
{4, 8, K,(Jo)cex » w = (we)eex }-

Select and fix two arbitrary disjoint subsets D and R in S, the dete units D
and the response units R. Their union DU R will be the set of visible units, and the
other neurons H = § — (D U R) constitute the set of hidden units, to come back to
a terminology introduced by Hinton-Sejnowski-Ackley [H.S.A.].

The environment provides on the data set D a family of inputs which are random
configurations d € AP, To each input configuration d € AP, we want to associate
a preassigned output configuration r = F(d) € A® of the response units. The map
F . AP — AR is for the moment assumed known to the supervisor of the learning
process, at least on a * fraining set” also called a set of ezamples, which is simply a
subset T" of AP,

The stochastic network will now be used to emulate F', assuming the weight
vector w properly adjusted during a previous training period which will be studied
further down.

To compute the response of the network to the input d € AP, the data units
are clamped on the initial stimulus X% = d while the rest of the network starts with

an arbitrary initial configuration, and evolves freely according to one of the two
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stochastic dynamics defined above (sequential or synchronous), at fized temperature
T'. When stochastic equilibrium is (approximately) reached, the response units still
have a random configuration X3 € AT, but the asymptotic distribution of X3 is
well defined, When the data units D are clamped on the input d € AP, the network

configuration z remains in the set
(6.1) = {zeQ=A%2p=d}

which is of course isomorphic to the set AP of configurations for the reduced
network (S — D). Then the sequential equilibrium distribution for the (sequential)
Markov chain (X™) with clamped inputs {X}, = d for all n > 0} is the Gibbs measure

on Q4

1 1
Gd(m) =7 exXp [“ T U("’)] for all z € Q¢
z2'=%" G'e)

zeftd
Clearly, G%(z) coincides with the conditional probability G[X =« | Xp = d] for all
z € Q4

(6.2)

The synchronous Markov chain {X™) with clamped inputs X = d for all n > 0,
has a stationary distribution M? on Q% which is the unique solution of the matrix

equation

MEQ = MY,

Here Qu(z,y) denotes, for z,y € 04, the transition matrix of the synchronous chain
(X") with clamped inputs X} = d. Hence we obviously have
(6.4) Qulz,y)= J[ Gilys|ws—y) forallz,yeQ?
8€E8~D
which in view of (3.6) can be writien explicitly as
Qd(wy)z-i—expl[z Valy a:N] for z,y € ¢
1 Z(.’,l:) T 4 g 8 H
aeS-D
with

Z(z) = H [Z exp %Va(a,mN,].

SsES—D a€A
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The asymptotic marginal distribution of the output X3 for clamped inputs
Xp=De A7 is then obtained by summing M4(z) (or G(z) in the asymptotic
case) over hidden configurations 2y € AR,

The response F,(d) of the machine to the input D € A? will be the random
configuration X3 of response units with n large enough to ensure that stochastic
equilibrium has practically been reached. The pattern classifier F,: AP — AR thus
emulated by the machine is a random mapping, Note that again these classifiers ﬁ,
are emulated at fixed temperature T, The choice of T will be evoked further below
in §10.

The main problem in practical applications is to select the weight vector w € RF
so that F, is as close as possible to a preassigned classifier F' AD -4 AR

To evaluate the performance of the machine as an emulator of F', we introduce
a loss function L{z g, ') for pairs of output configurations. Namely
L. AR AR _ R is an arbitrary positive function, equal to zero whenever zp = 'y,

Now for each configuration & € {2, we can compute the score A(z) of & by
(6.5) Mz) = LIF(zp),2r)]-

A natural Bayesian point of view is to assume that the environment provides inputs
with ¢ fived a priori probability distribution p on AP, Les us point out that the
actual knowledge of p will not be necessary below.

We introduce a random configuration ¥ with values in Q having the distribution
(6.6) P(Y = y)=plyp) G** (y) in the sequential case
(6.7) PoyulY =y) = plyp) M" (y) in the synchronous case
To simulate ¥, we use the Markov chain X™ with clamped inputs defined by the

constraints

Xp=x?
(68) { DE4p

distribution (Xp)=p
and free stochastic dynamics on §— D ; if the dynamics on § — D remains sequential
(resp. synchronous), the limit distribution of X™ is the corresponding distribution

(6.6) [resp. (6.7)] of ¥,

b
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In this context, the ezpected score
(69) £=Bl(y) = m BNX")

is a natural quantity to minimize with respect to the weight vector w ¢ RE which
parametrizes the machine. If F, is the classifier obtained by reading the response

2 of the machine at time n, one has obviously

(6.10) 0= lim ELFXS), B (XD))

n—o0

With our previous notations, we have in the synchronous case
(6.11) =5 plep) M (2) Az)
2€0
while in the sequential case M*P is replaced by G*2.
The learning rule will simply be a gradient descent on the score function, of the

following type : the k'™" update of the weights will be given by
. . [
(6.12) wht! — ot = —ny 'ga (w*)

where ny, > 0 is a slowly decreasing gain coefficient. We shall suggest here the choice
Tk = F4F where the coefficient & > 0, # > 0 remain fized during learning ot fized
given temperature T, and of course should be T-dependent if several temperatures
are used. This slow decrease at speed (£/k) for the gain is classical for gradient
descent algorithms, and has the advantage of at least forcing convergence of the
sequence (w®) k =1,2,-.. whenever the sequence comes back infinitely often in the
neighborhood of an isolated local minimum of the expected score £.

* ig unbounded, or the

Thus for all practical purposes, either the sequence w
sequence £(w") converges almost surely to a local minimum of £.

The main problem is of course to compute -c.‘;-% through a fust and paerallel al-
gorithm implementable on o dual neuronal architecture of the type described in §5
above. In particular -5% should only involve computations confined to the neighbor-
hood NC' of elique C.

Let us tackle first the much easier case of sequential dynamics.
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7. LEARNING RULES I'OR THE SEQUENTIAL CASE

The explicit formulas (3.1) (3.2) (3.3) for the energy U, the Gibbs distribution

G, and the partition function Z immediately give

1 9Z

(7.1 7 T = —%—E[Jc(m)] {or all cliques C € K
we

where X is a random configuration on § having the Gibbs distribution &, and then

(7.2) - aawGC (z) = %G('L‘) [Je(z) ~Te) forallz € O
where
(7.3) Jo=ElJo(=)] =Y Jelz) G(z).

z€EQR

Let d € AP be an arbitrary input, and call Q¢ the set of configurations # with
clamped input zp = d. Let G¢ be the sequential Gibbs measure on Q¢ [¢f. (6.1)),
(6.2)]. We may now apply formulas (7.2) (7.3) to G%. Hence we set for all d ¢ AP

(74) Te(d= 3, Jelz)Gs).
{z€2|zp=d)

and we define the centered activity of cliqgue C by
(7.5) jo(r) = Jo(z) — Jolzp) for all 2 € Q.

Then formula (7.3} yields for all d € AP

G

(7.6) " B

(z) = -;;Gd(:r:) je(z)forz € Qand 2p =d.

From (6.11) we immediately get in the sequential case

(17) =3 pan) M) o (672 ()]

(7.8) = 5= =7 2 Pzp) G (2)jo(z) A(x)
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which is immediately interpretable as

X L Blic(r)\Y)]

(7.9) ~ oo

where the random configuration Y is defined by (6.6).

Since by construction
E[Je(Y)|¥p] = J(¥D)

we see that (7.9) has an interpretation in terms of correlations, by

(110) - = Leor[je(¥), N¥)] =

Jos = T E{coryD [JC(Y),A(Y)]}

1
T
where for all inputs d € AP one defines corg as the correlation with respect to the
conditional distribution of ¥ given {Yp =d}.

Using the sequential Markov chain X ® with clamped inputs introduced in (6.8},

we have obviously
(7.11) corg [Jo(¥), A(Y)] = nlirréo cor {[JC(X"), MX™) XY = d}

and hence using the ergodicity of the chain X” conditioned by X = d € AP we

get

(7.12) cory [JC(Y),)\(Y)] = n]LIr;o [% Z Je(Z7)M2T) -—j(_;-,n 'Xn
=1

where

1 1
Jon = = Jo(Z™)

k=1
> Az
k=1

(Z™) is the sequential Markov chain on (§ — D) with clamped input

7\.n ::\nn =

3le

Zh=dioralln 2 0.

Call cor} [Jo,A) the empirical correlation ot time n between clique activity Jo

and score ), conditioned by Z} =d, k =0,1,--+,n. Fix a random sample ' C AD
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of inputs, selected with the a priori distribution p, which is equivalent to saying that
the iraining set T of inpuls is generated by the environment, and let N = card(I").

Then (7.10) (7.12) yield the practical approximation

’g 1 . 1 n
0 lim v Z corj (Je, A).

(7.13) ——— =z
Gug T Nam—oo N 21

This approximation is of course easy to implement locally through a feedback
from the response units o the clique indicator C, which provides the locally com-

puted score A(X*) = L[F(X}), X%]. This is summarized by the sketch below,

R response
H ——— K —-—— L
hidden «— | cliques -~ score
D data

7.14, Communications between various computing blocks in the dual net-

work with score feedback

In sketch 7.14, the block L computes the instantaneous score between the desired
response F(Xp) to the input X'p and the current machine response Xg, and then

feeds back the score M(X) = L[F(Xp), Xr| to all cliques C' € K.
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7.15. An important example of score function

Let us now apply the preceding result to a particular score function Ly defined
by
Oifr =1¢'
(7.16) Liik(r,7") = rrt e AR
Lifr# 2

Then the associated expected score £y is given by
(7.17) Ly = P[Yr # F(Yp)]

where ¥ is the random configuration defined previously in §6, and hence minimizing

Lrix is equivalent to solving In w € RK

wﬂé%}g{ P[YR = F(Yp)l.

In this case (7.9) becomes

Obur _ 1 o [ic(¥) 1y, = F(yp)}.

(7.19) Towe T

But minimizing £ is equivalent to mazimizing
(7.20) log(1 - £1x) = log P[Yr = R(Yp))

and (7.19) implies

o)
Swe

(21) log(1 — £ix)) = 5 Blic(¥) | Y = F(¥p)]

On the other hand, elementary manipulations and the definition
joY) = Jo(Y) = Jo(YD) yield

(1.22) E[jc(Y)|Yr = F(Yp)] = E{Ejc(Y)|YD; Yr = F(YD)l} |
= E{Eljc(¥)|Yp; Yr = F(¥Yp)] - Jo(YD))

Recall that Jo(Yp) = E[Je(Y)| ¥p) to conclude that

(1.23) log P[¥a = F(¥p)) = B {75(¥p) - J&(Yo)}.

Bwe
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Here for each input d € AP,

(7.24) JL(d) is the capected activily of clique C' ot stochastic equilibrium when
the input ¥p remains clamped on d and the output Y remains clamped on F(d),while
the hidden neurons s € S—D—R evolve aceording to the sequential dynamics. (7.25)
JL(d) is the expected activity of clique C' at stochastic equilibrium when the input ¥
remains clamped on d while all the remaining neurons s € S — D — R evolve freely

according to the sequential stocheatic dynamics.

Since the weight update Awg is proportional to 6_3? log (1 — €11 ), we see that
(7.28) Awg is propotional to the difference in average activity (for clique C) between
two regimes : clamped output and free output. In both regimes the data units remain
clamped on the initial input d € AP which should run through o rendem training
set T C AP “generated” by the environment, in the sense specified above.

In this setup the expectations in (7.23) can correctly be estimated by the or-
dinary average on d € T and for each d and each regime by empirical averages of
clique activity over time.

Of course the learning rule defined by (7.23) (7.24) (7.25) (7.26) generalizes di-
rectly the learning rule proposed by Hinton-Sejnovski-Ackley [H.S.A | for sequential
Boltzmann machines with quadratic energies, in which all cliques C' contain only
two neurons and Jo(x) = =z, %, for C = {s,t}. However we see that the learning
rule (7.26) is linked to a particularly rigid choice of loss function, and is only one
example within the much wider family of learning rules which we have just derived

here,

8. THE GRADIENT OF THE STATIONARY MEASURE IN THE SYN-
CHRONOUS CASE

In the particular case where all cliques in I have cardinal € 2 a direct com-
putation of the gradient M’ of the synchronous stationary measure M, using the

explicit expression (4.7), is possible and we have carried it out in our paper [A],
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deriving from it several natural learning rules.
However we want to handle here the case of general stochastic networks with
multiple interactions, for which M cannot be computed, and is known only implicitly

as the unique solution of MQ = M. From this equation we get
(8.1) M =MQ' + MQ.

An iterative use of (8.1) immediately yields
(8.2) M -MQ™t =MQU+Q+Q*+ - +Q"]
Now we have for all z,y € A5 = 0

im Q%(z,y) = M(y)

n—-4o0
and hence
: tym - I
Jim  MQ(y) = [% M (m)] M{(y).
Since 3,0 M(z) =1, we get
(8.3) lim M'Q" =0

400

and the following result

8.4 THEOREM.— If the ergodic transition matriz Q depends smoothly on a
parameter w € RX, then the invariant probability measure M of @ also depends

smoothly on w end we have
(8.5) M= lm MQU+Q+ - +Q".

Call K, the set of cliques in I containing a given neuron S € S and let

(8.6) glwns) = z exp —;—1 [-— Z we Jc(rsc_a,a)].

agA CekK,
From (3.5) (3.6), we get

L 1
dane) F Eﬁ[_ Z chc(ﬁc—a,y,,)].

CEX,

(8.7) GalYs | 25-4) =
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And hence if C' is an arbitrary fixed clique, we have for s € C

0 log G,

Bwe (?;‘a '.’83‘...3) = - JC($C-syya) + Z JC(-’”C—.&, O‘.) Gs(ﬂ' I 2?.5'—3)

aGA

(88) T

where the notation Je(2 -, a) stands short for Jo(2) with z¢, = 2o and 2, = a.
Of course we also have

0 log G,

Buc (ys|z5-5) =0 for s ¢ C.

(8.9)

On the other hand, the relation (4.5) says that, in the synchronous dynamics,
(8.10) Qz,y) = ] Gilys | z5-s)
€S

and hence we get in the synchronous case

& log Q
Swe

dlog G,
(o,y) = 3 L2870 (g 2sey),

(8.11)
v Swe

In view of (8.8) the right-hand side of (8.11) depends only on zy¢ and ye where
(8.12) NC =U,ecNs

is the neighborhood of cligue C.
To give a probabilistic interpretation of the right-hand sides of (8.8) (8.11),
call X™ n = 1,2, the successive random configurations of the network § in the

synchronous dynamics. Then clearly

(8.13) Gs(a|xs—s)=P (X[ =a|XE_,)
and hence
(814) Y Jolwona)Golales—y) = B |Jo (Xi_,, X2H) | X2_,|.

aEA

Introduce then the notion of transition activity ac(z,y) for the clique C, defined
by

(8.15) ac(z,y) = Z JC'(mC‘m_s:y-?)-
seC
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Note that ac(z,y) depends only on z¢, ye. The expected transition activity at time

n, for clique C, given the configuration X™, is then
(8.16) do(X") = E [ac(X", X )| X"
where Go(z) depends only on xn¢ and is given by

(8.17) Ge(z) = > Jwo-sB)Ce(Blrs—s).

s€C BcA

Introduce now centered transition activity [ac(x,y) — Ge(z)], which we prefer to call

the unezpected transition activity of cligue C.
(8.18) ue(z,y) = ac(e,y) — de(e).

Clearly uc(z,y) depends only on (xy¢) and hence is still a locel notion.

We may now interpret (8.8) (8.11) to get

(8.19) K L Qe )uce),

Using (8.5) (8.19), we now obtain for all z € Q

M = .
(820)  ~To—()=) ), M(@)uc(sy)Qy)Q"y.2).
¢ k=0 z€,ye0

The following result gives a crucial probabilistic interpretation of (8.20).

8,21, THEOREM.— Call (Y"),cz the doubly infinite stationary synchronous
Markov chain of network configurations, having the synchronous transition matriz
Q, and such that every Y™ has the stationary synchronous distribution M. For every

function f:Q — R, every cligue C € K, every n € Z, we have :

822) =X S g ()= 5 3 cor [ ey v

where ug(z,y) s the unexpected transition activity of cligue C' defined by (8.18)

above.
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Proof.— Using (8.20), one gets immediately

+co
(8:23) -7 1) afffz) =2, Bluo(V®, ') Jrt+h).
zER 0

By construction, we clearly have
(8.24) Efuc(Y’, YY) =0

and hence

B [uc(Y®,¥") {(Y*)] = cor [f(¥ ), uc(¥?, v 1)]

a correlation which, in view of the stationary of (Y"), coincides with
cor [f(Y™),ue(Y™4=1, ¥ty

for arbitrary integers n € Z. This proves the equivalence between (8.23) and the
announced formula (8.22).

From a practical point of view, (Y™),ez cannot be simulated in general sines
M is unknown. However, large segments of that chain can easily be approzimately
simulated to an arbitrary degree of accuracy. Indeed, let (X™)n=0,1,2,... be the (ens-
ily simulated) sequence of random configurations obtained by synchronous stochas-
tic dynamics with arbitrary initial configuration X® For N large, the sequence
(XN4m), —0.1,2,. has finite joint distributions arbitrarily close to those of (Y3t onn
for arbitrary fixed j € Z. This suggests several practical approximations of (8.22)
based on (X7).

Define first the cumulative transition activity of cligue C, between instants i and
Jywithe <541, by

-1
(8.25) cume(iyj) = Y ug(XF, X1,

-,

o
i

Several practical approximations are summarized in the following theorem :

8.26. THEOREM,— Let (X*) n = 0,1,2, -+ be the chain of configurations

obluined by synchronous dynamics with arbitrary initial configuration X°, Let C be




35

an arbitrary clique in I, weo its weight, and cume its cumulative transition activity

[ef. (8.25)]. For every function f:Q — R, the following three limits exzist

(8.27) Jim cor [F(X™H), cume(n,n + k)]
(8.28) n-lil-}}oo cor [f(XZ“),cumc(n,Zn)]
(8.29) nﬁrfm cor [f(X™), cume(0, )]

and they coincide with [-T 37 o f(z)ga;‘ké- (z)], where M is the synchronous sia-

ttonary distribution on ).

Proof.— The proof of Th. 8.2 is an easy technical variation on the crucial formula
(8.22) and details will be given elsewhere. In fact, it can also be shown that all limits
(8.27) (8.28) (8.29) are uniform with respect to the clique C' € K, the function f, and
the weight vector w provide ||f||e and |lw|| remain bounded. Speeds of convergence
for those three limits can also be computed explicitly.

Of course in view of (8.24), correlations in (8.27) (8.28) (8.20) may be replaced
by expectations, Also, using the ergodicity of X", these correlations can be correctly
estimated by long time averages such as, for (8.27),

(8.30) lim

g—o0

SR

q
> AXHHE) cumg(n G+ 5+ k)
=1

with a similar expression for (8.28).

9. LEARNING RULES IN THE SYNCHRONOUS GENERAL BOLTZ-
MANN MACHINE

We place ourselves in the general case of an encrgy function involving interac-
tions of arbitrary orders and with synchronous dynamics. For the simpler case of

synchronous machines with only pairwise interaction, we refer to [A].




36

Formula (6.11) for the expected score implies
o) ug = . #le0 (5472 (0)] @)

To compute [-‘.3—3—; Mee(2)) forzp=de€ AP we can apply the results of §8 to
the reduced network § — D, with energy function Ud(zg—p) = U(z) for all z such
that zp = d, and synchronous stochastic dynamics on S-—D.

Call X" the synchronous Markov chain with clamped inputs defined in (6.8) by
(9.2) Xp=X% and  {distribution Xp =p}.

To the notion of transition activity ag of clique C, we have associated its ex-
pected, unexpected, and cumulative versions @g, ucy, cume. Since the busic network
is here reduced to § — D, we iniroduce the reduced versions of ag, Ge, uc, cumg,

defined by

(9‘3) GC(way) = Z JC($C—says)

s€CN{S—D)

(9.4) Tolz) = Z Z Jo(voms ) Galo| 25-s)

SECN(5—-D) a€A

(9.5) uele,y) = ac(z,y) — e(z)
j=1

(9.6) cumg(i,j) = ¥ ue(X¥, X*H),
k=i

The direct application of (8.27) yields for each input d € AP
(9.7)
oM .
- Z Mz) (z) = T lim coryg [/\(X""'k),cumc(n,n + k)]

n,k—o0

[-’Bs—n EAS‘D,J:D_Ed]

where as in (7.10), corq(V, W) denotes the correlation of V and W with respect to

the conditional distribution given X% = d.
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Using (9.1) we then obtain

o 1

(9.8) im E {corxg [,\(X“"'k); cume(n,n + k)] }

B ch T nk—oo

and as in §8, the correlations given X}, may be replaced in (9.8) by ezpeciations given
XY as well as empirical correlations given Xj,. From (9.8), we now deduce a family

of synchronous learning rules.

9.9. Approximate learning rules for the synchronous case

Consider a general Boltzmann machine with multiple interactions and syn-
chronous dynamics. Fix a loss function L on pairs of outputs and a desired input-
output mapping F : AD — AR, Let Mz) = L[F(zp), zg] be the associated score of
configuration z € {1,

Fix a training sei I of inputs, generated by the environment, so that [ is a finite
random sample of the real life ¢ prior: distribution p of inputs. Fiz the temperature
T. Choose then two “large” integers n, k and two positive parameters «, 8. To n, k,
T, @, B, we now associate en approzimate learning rule LR for which the g update

of weight we, C € K, is defined by

1
(9.10) Dwe = 5= > Awe(d)
der*
o 1 n+k i
(9.11) Awg(d) = [— Z MXYeume(§ ~ k,7)
Btaln 27,

where for all j in (9.11) the Markov chain X7 has clamped inputs Xp = d and
synchronous dynamics on (§ — D). As in 9.6, cumc is the (reduced) cumulative
transitional activity of clique C' over a past of length k.

Then for large n, k, and card(T), the learning rule LR will tend to achieve local
minimization of the expected score £.

We now give another interpretation of the synchronous learning rules LR. In-

deed the empirical correlation between score and past cumulative transition activity
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can be rewritten as

k 1 n+k . N N
Z[E Z /\(XJ)MC(XJ—a’XJ_I+1)

j=1tk

t=1
which is the sum of k empirical correlations between score and delayed unezpected

transition activity. This points out the importance of delays in automatic learning
processes for synchronous networks. As easily seen, for 1 large, the correlation be-
tween A(X7) and uc(Xj—*,XJ'“"“) tends to zero of ezponential speed, and hence in

many situations, only a fairly moderate number k of delays are significant.

9.12. Implementation of synchronous learning rules

Just as in the asynchronous case, the learning rule (9.10) (9.11) requires a
feedback of the score A(X™) to all clique indicators C € K. Thus the communication
scheme is similar to the sketch 7.15 described above.

Coonsider the pair ($, K) of dual networks introduced in Section 5, fiz an inpul
d e AP, and call X™ the configuration of neurons at time n. The flow of parallel
computations — communications between configurations n and n-+1 can be roughly

described as follows, the date units D remaining clamped on the input d € AL,

(9.13) At the end of period n, the memory of each clique C' has stored precisely

o the local configuration X

o the past unexpected transitional activities
ué‘:uc(xj—l’x]') j=n,n—1,---,n—k+1

o the cumulative transitional activity

n

cump = Z ul,

j=n—k-+1
¢ the empirical correlation
n
ncorg = Z MX?)eumd,,
j=1
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(9.14) For each possible individual neural state a € A, execute the following loop

of parallel computations

9.14.1. each clique C' computes for each s € C the lateral activity
7(3'(3! a‘) =Je(Xeo,, a)

and transmits ye(s,a) to the neuron s € C,
9.14.2. every neuron s € 5 — D computes
1
me(a) = exp ~7 Z weye(s, a)
[¢ET)
and transmits 7,(a) to all cliques C' containing s.
9.14.3. - if A is not exhausted, go back to the beginning of loop (9.14)
- if A is exhausted, go to (9.15).

(9.15) Every neuron s € $ — D computes a (random) state X+ with distribution
P(XrH! = q) = 3’—‘5‘52, where my = 37 4 7,(e), and transmits X! to all cliques

¢ containing s.

(9.16) The score A"t = A(X ™1} is computed in the L-block (¢f. 7.15) and fed
back to all cliques C,

(9.17) Every clique C' computes successively

o my =) o4 Ma(a) for all s € CN(S ~ D)

* 3e(X") = Loeon(s-D) Laea 1¢(s,2) T4
ac(X™ X" = ¥ cons—py Jo(Xb_ X3T1)
o ugt = ac(X5_,, X" —Ge(X")

. cumg}'1

— n ntl nt+1-—k
=cumg + g — U

(n+1) corg"'1 = ncorf + A"t1 cumgH
During the learning phase, for each input d in the training set I', the algorithm
9.18) -+~ (9.17) is iterated with clamped input,until the correlations cor} stabilize

with an upper bound on n of course). Call cory ¢ this limit correlation.
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The weight vector w will be updated after each complete pass of the training

set I'. If the current pass corresponds to the g"-update of w, this update Awg is

given by
(9.18) Awg = —ﬂ——:-u_—é- a—;!%lrf‘j dZ: corg,c.

er
Recall that we assume the training set ' of snpuis o be a finite random sample
“generated” by the environment, This last point is crucial for the validity of (9.18)
and has often been overlooked in the neural network literature. As pointed out by
Boutrlard [BO] in another context, the empiricel a priori distribution exhibited by the

training sel should be close to the a priori distribution of real-life inputs.

10, OPTIMAL CHOICE OF THE TEMPERATURE

As was pointed out several times, the general Boltzmann machines considered
here are meant to operate at fized temperature T'. However T is a natural and im-
portant parameter, and hence we may try to optimize the choice of T in the learning
phase. Note however o crucial point : since the machine is actually parametrized by
[ﬁi—], no generality is lost in principle if T =1,

Introduce as befote the desired input-output mapping F' : AP — AR anda
loss function L : A% x AR = Rt ; call £ = limp_oo E[A(X™)] the expected score.
To choose an optimal T, it is natural to use gradient descent to minimize £ in
T € R+, Thus after each complete pass of the training set {d'---d™} of random
inputs {provided by the environment}, we may introduce a temperature update

14
(10.1) AT proportional to — g—T

with small decreasing gain as for Aw.

The computation of & is an easy consequence of the computation of ££,

10.2 PROPOSITION,— (onsider a general Bollzmann machine with etther syn-

chronous or sequential dynamics, Select o learning rule as in §7 and 9 above for the
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veight vector w, and cell Aw the corresponding weight update after one complete

ass of the training sel. The gradient descent in temperature is then given by

__1 __ 1 2
10.3) AT = - = [2 wo Awg| = ~ = A(o]l?).
CeX
ndeed one has for the exzpected score £
o¢ 1 oL
104) %—mf[z’wcm}'

'roof— For any function g : R — R, one has trivially, if flw,T) = g(%)

v 1 ,,w of 1 P
30 =79 (F) o Fp=-—mlw.d (7))

hich proves immediately (10.4) and hence (10.3).

0.5 PROPOSITION.~ Consider o general sequential Bolfzmann machine with
vergy function U. Let (X"} n = 0,1, .- be the sequential Markov chain for which
‘%=X for alln, and XD has the a priors distribution of tnputs generated by the

wironmend, Let £ = lim, oo B[A(X™)] be the espected score. We then have

ol 1 . n "
0.6) 5 =TS nll_,ngo E {corxg [U(X"™), MX )]}
here as in 7.10, cor xo denotes the conditional correlation given X% = ... = Xy,

roof— Call ¥ the random configuration defined by (6.6). From formula (7.10) and
0.4), we get immediately

01 57 = 75 E{ om0 )

¢ e U(y) = Y oex wo Jo(y). Then (10.6) is a direct consequence of (10.7).

. L8, Another probabilistic interpretation

Let G be the Gibbs distribution on & associated to energy U at temperature
Since log G(y) = —y-(ﬁ-)-

1
log G(y) = — = Uly) ~log 2
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where log Z is a constant, we get the interesting interpretation

(10.9) =~ 25 {oorv, g 601, ok

so that the sequential temperature update AT should be proportional to the average

correlation between the log likelihood and a random configuration and its score,

10.10. Global transition energy for synchronous networks

Consider now a synchronous Boltzmann machine with energy U = 30 o we Jo
and data units D. In (9.3) (9.4) (9.5), we have defined the notions (reduced to S- D)
of clique transition activities ac(w,y) as well as their expected and unexpected ver-
sions ac(z), vz, y).

We now introduce three global quantities, the fransilion energies a(z,y), the
ezpected transition encrgy o(x), and the unezpected transition energy u(xz,y) defined

for pairs ,y € @ of global configurations, by

(10.11) ‘afz,y) = Y weae(e,y)
Cek

(10.12) ax) =Y weic(s)
CelR

(10.13) u(z,y) = Y weug(z,y)

Cel

with a¢, @¢, uc given by (9.3} (9.4) (2.5).
It turns out that a, @, u have interesting global interpretations in terms of
the synchronous Markov chain (X") on § with clamped inputs on D which verifies

X3 =X for all # > 0. For each input d € AP, let
(10.14) V={reQ=A4%|zp=d}

and for z,y € Q, call Qq(z,y) the transition matrix of X™ given X} =4
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From definitions (9.3) (9.10) (3.5), we get for z,5 € Q

(10.15) a(z,y) Z Valya, T ns)
$€S-D

where the V, are the local action potentials (c¢f. (3.5)). In view of the explicit
expression (6.4) of Qu(z,y), from (10.15) we deduce for z,y € 0y

(10.16) ~ % a(2,9) = log Qu(=,y) +log Zu(2)

where Zy(z) has been defined in {6.2).
On the other hand, (9.4) (10.12) and (6.4) give the interpretation of a(z) as a

conditional expectation
(10.17) a(z) = Y Qulz,y)a(z,y) forz ey
yERy

Now a comparison of (10.13) (10.16) (10.17) provides trivially a new interpretation
of u(x,y) for z,y € Qy

(10.18) —%u(w,y) log Qalz,y) Z Qa(x, 2) log Qa(z, 2).

7€Qg

Thus we now introduce the entropy entq(z) of the transition distribution Qa(z,.)

classically defined by
(10.19) entg(2) = Z Qa(z,y) log Qulz,y)
#€0Ra
and interpret (10.18) in the following statement
10.20 PROPOSITION.— For an arbitrary input d € AP, let Qalz,y), z,y € Ny
be the transition matric of the synchronous chain (X™) with clamped inputs Xp=d.

Let enty(z) be the eniropy of Qu(z,.). Then the global unezpecied transition energy

U= e we e of the network is given by

(10.21) %u(m,y) = —log Qa(2,y) — enta(x) for all 2,y € Q4.
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We now introduce the cumulative transition in energy of the network along a

sequence (X' X i+1... X4} random configurations, defined by

j—1
(10.22) cum(i, ) = Z‘ W((XF XM = Z we cume(i, 7).
k=i Cell

In view of (10.21), we see thai [-qu cum(z’,j)] can roughly be interpreted as o cenlered
version of the joint log likelihood of the sequence (XXM XI) given X} = d,
Of course, from a practical point of view, the ectual computation of cum(s,j) is
far easier to obtain by formula ¥¢ we cume(d, f) since the cum,(7,7) are locally
computed by each clique C' during the learning process. We may now interpret %

in the synchronous case.

10.23 PROPOSITION.— Consider a general synchronous Boltzmann machine,
with date units D. Fiz o desired mapping F, a loss function L and let A(z) be the
associated score function. Let (X™) be the synchronous Markov chain with clamped
inputs X[y = XY} generated by the environment with a fized & priori distribution of

inputs. Then the ezpected score £ = limp—co E[MX")] verifies

(10.24) g% = % . lf_n}oo E {corx?J [AMX™TH), com(n, n + k)]}

where cum(n, n+k) is the cumulative transition energy elong the sequence (X" X"+ ...

XY defined by (10.20) (10.22). As before, corg denotes conditional correlation

given X = d.
Proof — Formula (10,24) is a direct consequence of (10.4) and (9.8).

10,25, Interpretation
Note that in view of (10.21) (10.24) (10.1}, we see that the temperature updaie
AT = —y % is proportional to the average correlotion, ol stochastic equilibrium,

between the current score M X™) and the centered log likelihood of the infinite past
(XX,
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.0.26. Practical temperature adjustment

We point out that the updates AT of the temperature computed here deal only
sith one aspect of the performance, namely the expected score. However another
spect of the performance is crucial in applications, namely the speed of stabilization
f the Bolizmann machine. Indeed, for very low temperatures, stochastic equilibrium
s reached only after a very long time, and this second criterion should be taken
nto consideration when the temperature is adjusted. We shall come back to this

yroblem in a forthcoming paper.
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