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Abstract. Our presentation is related to a non-destructive control industrial task: the detection of defects on pairs 
of F-radiographic images. The images are very noisy and have a strong luminosity gradient. Defects are identified 
with intensity valleys. First we present a Bayes-Markov model in order to estimate the noise, the gradient and the 
valley bottom lines of defects for a single image. Then, we define a Markov fusion model for a pair incorporating a 
criterion of similarity between matched images. The proposed Markov models are general and can be used in other 
situations for detecting valley bottoms in noisy images. 

1 Introduction 

Our study is concerned with a non-destructive control 
industrial task (Azencott et al. 1992; Coldefy 1993). 
The data consist of a pair of y-radiographic images of 
the same view of a pipe in a nuclear power station, on 
which we have to detect defects. The defects appear 
as locally dark and oblong areas (Figs. 3a and 3b), in 
very noisy images (Figs. 3d and 3e) with a luminosity 
gradient (Fig. 3c). They are well-known to specialized 
experts and are classified in an atlas of American origin. 
When a y-ray strikes the film, its energy is strongly 
attenuated. Thus, the defects are hardly visible and are 
often similar to acquisition artefacts. Furthermore, a 
same defect appears quite differently in form and in 
intensity on both images (Figs. 3d and 3e) although 
the acquisition process is rigorously identical for both 
films. 

The experts perform the detection and the discrim- 
ination between defects and artefacts by using two 
stacked radiographies they slide one over the other until 
they detect a local contrast enhancement. This contrast 
enhancement corresponds to defects area and appears 
when both films are exactly matched. When defects 
are detected by this way, the films are digitized in or- 
der to be treated by the method described in this paper 
(This method is actually a preprocessing that will be 

used later to perform a 3D reconstruction of the de- 
fects (Chalmond et al. 1993)). Let us emphasize that 
in our presentation, the two images are assumed to be 
matched (except in the last section 8). 

Defect and artefact areas on a given image can be 
regarded as valleys in a very uneven intensity land- 
scape. We do not attempt to precisely estimate the val- 
leys themselves but rather to accurately detect their 
valley bottom lines (VBLs for short). The ground idea 
justifying this method is that the Signal to Noise Ratio 
(SNR) is higher at the valley bottoms sites than any- 
where else inside the valley. 

Detection of valleys on a single image has already 
been developed by several authors (see Gauch and Pizer 
1993 and the references therein). David and Zucker 
(1990) proposed a variational model of valley covering 
by continuous curves from intermediate data called tan- 
gent field. Tan et al. (1991) presented a Markov model 
for edge detection using a dissimilarity region enhance- 
ment. Their method is based on a cost minimization 
and can be viewed as a detection of VBL for a suit- 
able energy. Both methods incorporate a combination 
of global criteria such as curves regularity and local 
information in order to counter the perturbation due 
to noise during the reconstruction. However, for low 
SNR, as in our application, the tangent field or the re- 
gion dissimilarity enhancement are strongly degraded, 
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and these previous algorithms much less reliable. The 
discrimination between valleys created by the noise and 
those due to actual defects is crucial. 

First we present a Bayes-Markov model for discrete 
VBL detection on a single image. We define the dis- 
crete VBL as one pixel wide and connected chains. 
This definition can be compared to Tan et al.'s model. 
Nevertheless we are dealing with non-intersecting and 
isolated valleys. We pay a particular attention to the 
noise model. Discrimination between defect valleys 
and valleys due to the noise relies on an estimate whose 
sensitivity depends on statistical criteria. More pre- 
cisely, we define an energy controlled by a parameter 
representing the minimal level of SNR acceptable for 
valley detection. 

Secondly, we define a joint Markov model for a pair 
of matched images. As a same valley area differs in 
form and in intensity from an image to the other, our 
model is based on fusion criteria. The problem does not 
consist in matching fields from primitives as in (Yuille 
et al. 1990) but in performing a fusion of two differ- 
ent fields of primitives extracted from matched images. 
The model takes into account the information present 
on both films in order to perform a more accurate de- 
tection from which acquisition artefacts are removed. 

This article is organized as follows: in the next five 
sections, we describe the Bayes-Markov model for a 
single image. After a global overview of the method 
in section 2, the following sections present the prior 
distribution and the reconstruction algorithm. The sec- 
tion 7 is concerned with the Markov fusion model for 
a couple. Finally, the detection results are presented in 
section 8. 

2 Detection on a Single Image 

Definitions. Let y denote the digitized image and S 
the sample grid. We assume y is an occurrence of a 
random field Y, which results from the degradation of 
a discrete surface d by a white noise W with variance 
o -2 and by a gradient of luminosity/z. The surface d 
is also seen as a realization of a random field D. The 
degradation model is additive: 

Y = t z + D + W .  (1) 

For every occurrence d and every site s 6 S, we 
assume ds < 0 with ds < 0 when s belongs to a valley 
and ds = 0 otherwise. From the VBLs of d, we define a 
binary field g such that gs = 1 when s is a VBL site and 

es = 0 otherwise. The VBLs are defined according to 
three types of features: 

• (fl) curvature feature in d, 
• (f2) depth feature, 
• (f3) geometrical features. 

The field £ is also regarded as the occurrence of a 
random field L. This field is referred as a virtual hidden 
field since it is defined from the hidden field D. At 
this stage, we notice an analogy between our model 
and the Geman and Geman's model for the restoration 
of an image x, that is: Y = X + W, in which the 
virtual hidden field £ is issued from the edge elements 
of x. However, one particular difficulty of our model 
lies in the unknown surface/z. Since the luminosity 
gradient is smooth, we choose/z in the vector space of 
bicubic spline surfaces (Prenter 1971), at a coarse grid 
resolution c which is deduced from the schedule of our 
acquisition. So,/z is represented by the model 

1z = B' ot B, (2) 

where B is the deterministic matrix of the B-spline 
functions at the resolution c (Chalmond 1986). This 
representation has been mainly chosen because of the 
minimal flexion property of the splines (Eubank 1990). 
Thanks to this property, the more the resolution c is 
coarse, the less the spline estimation will be sensitive 
to the valleys. Finally, the unknown elements in the 
considered model are composed of the fields D and L 
and the parameters 0 = (or, o-). 

Bayes-Markov Approach. A now very well docu- 
mented approach consists in defining an energy func- 
tion U ° (d, £ I Y) which expresses our knowledge given 
y on the set of configurations (d, £), then in determin- 
ing a configuration (d, e) which minimizes a functional 
of U °. Starting with the innovative paper (Geman and 
Geman 1984), the Bayes-Markov approach has solved 
numerous applications of this kind (Azencott 1987, 
1992; Chalmond 1988, 1989; Clark 1990; Geman 
1990, 1992; among many others). Indeed, U ° is the 
energy associated to the posterior Gibbs distribution 
on (d, e) given y: Po(d, g. I Y) oc exp -U° (d ,  g. I Y), 
which is rewritten using the Bayes formula 

Po(d, e l Y )  c~ Po(Y I d, e)Po(d, e), 
c< Po(y I d)Po(d, £), (3) 

where Po (d, e) is a prior Gibbs distribution. Before 
presenting in detail the model expression, let us em- 
phasize how much it is crucial to consider the couple 
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(d, e). This is due to the interactions between d and 
e modelized in the joint distribution Po (d, O, which 
constrains both estimations of d and ~. This is one of 
the main points of this approach. For instance, in the 
problem of image restoration cited above and based on 
the model Y = X + W, smoothing y and the detection 
of the edge elements in x are simultaneously performed 
in interaction. In our case, it is also better to define an 
interaction model to perform the restoration of d and 
the detection of the VBLs g, rather than to estimate 
first d and then ~. Notice also that in the restoration 
problem Y = X + W, the introduction of L improves 
the smoothing, although the estimation of e is a side 
issue. In our case the situation is reversed, we mainly 
want to obtain an accurate estimation of e. 

Let us give the expression of Po (Y I d) which is re- 
lated to the noise. W being a white noise, it follows 
that conditionally to d, the random field Y is an inde- 
pendent Gaussian field. Po(Ys I d~) is defined by the 
Gaussian distribution A/'(tts + ds, or2), and thus 

Po(y I d) = (2~r)-n/2exp-U°(y ]d)  

U° (y l d) = ~ f (Y~ - tts - ds)2 ] a2 + logcr . 
sES 

These expressions show that Po(Y I d, e) is reduced to 
Po (Y I d), as it is set in (3). The energy U ° (y I d) 
expresses the distance between the configuration d and 
the data y. 

The probability Po(d, e) is a Gibbs distribution 
whose energy is [U ° + U3]: 

Po(d, e) o¢ exp - [U2°(e I d) + Us(d)]. (4) 

The energy U ° expresses the features fl, f2 and f3, and 
the energy Us takes into account the low occurrence 
rate of valleys in the images. 

To carry out this Markov approach, we first have to 
construct the prior energy [U ° + U3] (sections 3 and 4), 
and then to minimize the posterior energy (section 5): 

U°( d,g I Y) = U°(Y 1 d) + U°(g I d) + Us(d). (5) 

Because of the unknown parameter 0, this optimization 
will raise some particular difficulties. 

3 Construction of U2 

The field L, given d, is regarded as a Markov random 
field with Gibbs distribution Po(e I d) ¢x e x p - U 2  ° 
(£ I d). Ideally, ~ is organized as a finite set of one pixel 

wide and connected chains of sites s with label £s = 1 
and presenting the features fl ,  f2, f3 which express our 
prior knowledge. The energy U~(£ I d) corresponds 
to the interaction between the VBL and these features. 
It takes high values when VBL configurations do not 
satisfy them, and low values otherwise. This energy is 
the sum of two terms 

U°2(g I d) = u~xt(£ I d) + U~n(£). (6) 

The energy U~ xt depends on 0 but U~ n does not. Here, 
the index 0 is dropped in order to simplify the expres- 
sions. U~ xt incorporates the features f l  and f2: it favors 
VBLs whose each discrete point is near an "indica- 
tor line" of curvature in d (see below) and is situated 
deep enough under the surface it. U~ n incorporates the 
feature f3: it favors smooth, long and one pixel wide 
VBLs. 

3.1 Energy U~ xt 

Indicator Lines of Curvature. At each site s, we want 
to extract from d a characteristic of curvature in order 
to define the feature fl .  First, we recall some classi- 
cal definitions of differential geometry. Let d be the 
continuous surface from which the discrete field d has 
been sampled, and M be a point on this surface. We 
denote Pl < P2 the principal curvatures o f d  at M, and 
rl, r2 the principal axes respectively associated to Pl 
and P2 (DoCarmo 1976). In image analysis, principal 
curvatures are widely used as basic characteristics (see 
for instance (Parent and Zucker 1988)). If the surface 
~r contains no fiat areas, we define its indicator lines 
as the set of points M for which P2 > 0 and rz is 
an horizontal vector. Figure 1 presents examples of 
such indicator lines. In Fig. la, it is a line of parabolic 
points. In Fig. lb, it is the union of two lines of hyper- 
bolic points. 

In the discrete case, a point on d with coordinate 
s ~ S is assumed to be close to an indicator line of 
d if it is a local minimum of d in a (2l + 1) x 1 
window centered at s, whose direction is the orthogonal 
projection on the sample grid of the principal vector ~2 
associated to the largest principal curvature P2 of d at 
s. 72 and P2 are computed by discretization. We set 
Ts = 1 for such a site and Ts = 0 otherwise. When 
77.,. = 1, s is referred as a site offeature fl .  

In practice, in order to regularize the discrete first 
and second derivatives of d, the principal curvatures 
are computed from a smoothed version of d obtained 
by convolution with a 5 x 5 Gaussian filter whose pa- 
rameter is chosen equal to 1. Note that T = T(d) is a 
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(a) 

(b) 

Fig. 1. Two examples  of  indicator l ines of  curvature: (a) Pl = 0, 

P2 > 0; (b) Pl < 0, ,o2 > 0. 

deterministic function of d. This operation is very ef- 
ficient for smooth surfaces. The whole set of points of 
feature fl  is a set of one or two pixels wide and irregular 
chains almost covering the valley bottoms. The field T 
can be regarded as a perturbated VBL field which has 
to be regularized and from which short lines has to be 
removed. 

Construction o f  U~ xt. The expression of U~ xt is 

u e x t ( ~  = 2 I d) - E les=l log P(gs = 1 I d~) 
s 

- ~ le,=01ogP(6 = 0 1 d , ) .  (7) 
$ 

Before presenting in detail the expression of P ((~ ] ds), 
let us give the basic ideas which guide the forthcoming 
development. The energy U~ xt corresponds to a local 
and independent analysis of the data d at each site. It is 
built from P (e.~ I d J estimating the presence/absence 
probabilities of a valley at each site. This energy favors 
valley detection at sites s which have been previously 
detected as sites of feature f l  and where the SNR is 
greater than a given empirical threshold k (feature f2). 
The SNR threshold k guarantees that the detected site 
belongs to a true valley. So, weak valleys are identified 
with low noise frequencies and are ignored. 

P(G = 1 I ds) is defined as the product of two 
probabilities, say P1 and P2, as follows. The event 
es = 1 is true only if s belongs to the "bottom of a 
deep valley" what we denote by s • V. Let us examine 
P(es = 1 I de) with regard to the event s • V. We 

write 

P(£s = 1 I d s ) =  P(£s = 1 , s  e V l dA 

=Pl (£s  = 1 I s  • 12, ds)P2(s • "V l ds). 

The expression of Pl can be simplified. As a matter 
of fact, when one observes s • ~2, the event gs = 1 
only depends on the value of Ts (d). Let ~P denote this 
function. So we write 

Pl(es = 1 I s • 12, d J = P,(es = 1 p g ( d ) ) ,  

= * ( r s ( d ) ) .  (8) 

This probability is empirically chosen. Since a site s 
such that Ts (d) = 1 is regarded as a potential point of 
VBL, qJ(1) is chosen close to 1, and ~(0)  close to 0. 
Choosing ~(1)  strictly lower than 1 allows to regular- 
ize the VBLs: the value of this probability defines how 
distant can be the fields T and g. 

Let us present the probability Pz. Deciding that s • 
V, given y~, relies on the classical statistical hypothesis 
test upon the mathematical expectation of a random 
variable (Brownlee 1965): 

7-/0: E(Ys Ids) =/xs ,  versus 7-/1: E(Y~ I d~) < IZs. 

Let us recall (Y~ Ids)  is a Gaussian variable .M(/Zs + 
d~, aZ). Thus, the hypothesis 7% is equivalent to s ¢ 
since we have d~ = 0. The classical decision rule ac- 
cepts 7% if [(ys - l zs) /a  < - k ]  and 7-tl otherwise, k 
is the E-percentile of the Gaussian distribution A/'(0, 1) 
for a given small probability E, i.e. ~ ( - k )  = E, where 

refers to the cumulative distribution function. By 
definition, the power of a statistical test is the proba- 
bility of deciding ~1 when 7-La is true and it is given in 
our case by ~ ( - k  - ds /a) .  We define P2 by 

P2(s E "V Ids) = ~ ( - k  - ds/cr). (9) 

Note that k represents the confidence value of the 
statistical test. Its calibration is easy because it de- 
fines the minimal SNR required for valley detection. 
For instance, in the Gaussian law table, one reads 
qb(-1.65) = 0.05. Finally, with (8) and (9), we get 

P(£s = 1 ] d~) = * ( T , ( d ) )  ~ ( - k  - d s /a ) .  (10) 

In our model, this term of f~  xt governs the interaction 
between g and d, a point which we have emphasized in 
section 2. Clearly, the knowledge of d contributes to 
the determination of (, and conversely the knowledge 
of £ influences the determination of d. For instance, 
when £~ = 1 then we are led to prefer a configuration d 
maximizing (10) (remember that ~(Ts (d)) = P(G = 
1 ITs(d))). 
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3.2 Energy ui2 n 

The role of  the second energy term U~ n is to organize 
the field ~ in one pixel wide and connected chains of  
sites s with label £s = 1 in order to satisfy the feature 
f3. As very small valleys can be regarded as acquisition 
artefacts, this energy tends to suppress short chains. Its 
expression is 

in ~ g,.,. Hv, (e), u2 (e) = 
s 

Urn(e) =/311.,=o +/321.s=1 
q- lns=2(/33,1 la&_3r/2 -- ~33,21as<Jr~2) 

+ ln,>3h(ns), 

with the following notations: 

• V~ is the 3 × 3 neighborhood of the site s (s ex- 
cluded), 

• ns = card {t E ~. ] e I = 1}, 
• as, only defined when ns = 2, is the absolute value 

of the angle between the two vectors s - s '  and s" - s  
where the sites s '  and s" belongs to Vs and are such 
that £s, = 1 and £s" = 1, 

• all 13 are unknown positive parameters. 
• h(nD is a fixed positive function strongly penalizing 

all local configurations where ns >_ 3. In that case, e 
can not be identified with a discrete curve anymore. 

The parameter 131 penalizes isolated detections, and 
/32 controls the length of the VBLs. Finally, fl3,2 favors 
regular chains whose local tangent variation as is lower 
than yr/2, whereas fl3,t controls the remaining local 
configurations. The energy U~ n is minimized by fields 
g containing long and regular chains. 

The parameters fl and the values of h(ns) are "cal- 
ibrated" by the "qualitative box" method (Azencott 
1987, 1992) as follows: we define arbitrary minimal 
or maximal probabilities of observing some typical 
configuration £. Then the Gibbs distribution P(g.) o( 
exp-ui2n(£)  provides linear inequalities for the vec- 
tor fl and guides its determination. For instance, sup- 
pose that £ is the null field except at one site s where 
£s = 1. The probability of  observing £ is proportional 
to P ( Q  (x e x p - i l l .  We want the null field £ to be 
more likely than ~ and thus we write P(£ ) /P (£ )  > r, 
for a suitably high number r > 1. Since u~n(£) = 0 
we get: 

fll > log(r) .  

Proceeding in this way for all parameters, we finally 
select a vector of  parameters/3 satisfying seven linear 
inequalities. 

4 Energy U3 

The introduction of the energy U3(d) can be justified 
from several points of  view. First, the role of  U3 is to 
penalize the fields d with too many valleys. Its expres- 
sion is 

U3(d)=~"~ld,<O g2, (11) 

where the parameter x, like k above, is an Gaussian 
E-percentile. In the next section, it will be more 
detailed. 

Let us now make a short note that a non-probabilistic 
reader can omit. In the forthcoming development, we 
explain how we have determined U3 and why this 
energy is mathematically grounded. At first glance, 
the calculation of the local probabilities P(g.x I d s )  
from the joint distribution Po(d, g.) given in (4) is 
not necessarily coherent with the previous defini- 
tion (10). So, we should prove that there exists 
an energy U3 such that a joint probability Po(d, g.) 
verifies: 

Po(d, £) o~ exp - [U2(£  I d) q- U3(d)], 

with 

P(g,  = 1 I ds) = q J ( T , ( d ) ) ~ ( - k - d s / a )  Vs. (12) 

After a rather technical development, it is shown in 
(Coldefy 1993) that the energy expression 

U3(d) = - y ~  la~=o log(p)  - Z ld,<0 log(1 -- p) .  
g s 

(13) 
which is associated to the distribution 

P(Ds = O) = p, 

P (D ,  < O) = I - p, 

satisfies (12). With tc 2 = log[p/ (1  - p)],  the expres- 
sion (13) is equivalent to (11). Note that (11) is not 
the unique expression which satisfies (12), but it yields 
very simple analytical forms for the estimation purpose, 
as we shall see below. 

5 Optimization 

We simultaneously have to reconstruct the fields (d, e) 
and to estimate 0 = (c~, a ) .  The estimation is based 
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on (1) or similarly on the posterior energy (5) that we 
recall: 

U° (d, e I Y) = U°I (Y I d) + U° (e I d) + U3(d). 

If 0 was known, we should compute a local minimum 
of U ° with respect to d and g. In that case the clas- 
sical methods, either stochastic (Geman and Geman 
1984) or deterministic (Besag 1989) use the local con- 
ditional probabilities associated to Po (d, e I Y) during 
an iterative process refreshing the value of every pixel. 
Unfortunately, this process is very expensive in com- 
putation time since we have to compute T for every 
considered field d. 

Furthermore 0 is unknown. So, a feasible approach 
consists in seeking a local minimum by using an itera- 
tive process which alternates between the estimations 
of (0, d) and e. This process belongs to the class of 
the numerical relaxation algorithms (Cea and Glowin- 
ski 1973), and are sometimes referred as "coordinate 
descent" algorithm. It is a two-stage minimizing pro- 
cedure which begins to search a first estimate of (d, g.). 
Then this estimate is iteratively improved as follows: at 
each iteration, with ~ equal to the estimate obtained at 
the previous iteration, compute [arg mino.a U ° (d, ~)]; 
then with (0, d)  equal to this last estimate, compute 
[argmin~ U°(d,  ~)1. This type of algorithm has been 
widely used ((Ord 1975; Chalmond 1986), among 
many others), and has been precisely studied in some 
specified contexts (see for instance (Carrol 1988)). Its 
convergence is generally very fast. This algorithm be- 
ing quite technical in our application, we put stress on 
the presentation of the first estimation. 

First Estimation. This method is a two-step proce- 
dure: 

1. first we compute (0, d) minimizing the energy 
(U ° + U3) subject to the constraint that the dis- 
crete field d verifies ds < 0 for all s; 

2. secondly, the Maximum Posterior Marginal (MPM) 

estimate of e is obtained from U~ (e [ d). 

The step 1 is described in the Appendix. In the step 
2, ~ is the MPM estimate calculated from U2(e I d). 
We recall its definition (Chalmond 1982; Marroquin 
1987). Let g* be the "true" field of the VBLs. The field 

minimizes the mean cost Ea(c(e)) where C(e) = 
}--~-s le~¢e~, and hence is given by: 

'¢ s ~ 8, ~s = arg max Pg (Ls = x I el). 
x=O,1 

The probabilities Pg(L.,. = x [ ~l) are estimated by a 
Monte-Carlo algorithm using a Gibbs sampler (Geman 
and Geman 1984). 

General Algorithm. From the first estimation, the 
general relaxation algorithm can continue, by comput- 
ing alternatively the estimation of (0, d) and the estima- 
tion of L But instead of minimizing (U ° + U3) over 
(0, d) as before during the step 1, now we minimize 
the global energy U ° (d, e I Y). So we have to modify 
the expression of the system (17), since the differenti- 
ation of this energy in (0, d) leads to a new expression 
of ds. 

Comments on U3. The expression of d in (17) al- 
lows us to give another justification of the choice of 
U3. In this one, the estimation of d is performed with 
respect to the weighted noise variance tea 2 (As in the 
Section 3.1, this term could be derived from a statis- 
tical hypothesis test for which O(- tc /2)  = E). Here 
we want emphasize that ignoring U3, is equivalent to 
choose K = 0 and then to estimate valleys that are not 
significant. 

6 A Simpler Method 

A natural idea would have been to completely separate 
the estimations of (0, d) and £. This is the first ap- 
proach we have considered in (Chalmond and Coldefy 
1991) and we now describe briefly. First we minimizes 

U° (Y I d) over (0, d) and then U~ (£ I d) over L 
For the first optimization, we adopt a multiresolution 

representation. # is defined at a coarse resolution c ac- 
cording to (2): Iz = B'~ otcBc and d at a fine resolution 
f according to: d = B~f ot fBf ,  (c = 5 f  in our appli- 
cation). The surface d is supposed to be orthogonal to 
the surface/z. The estimations are 

/2 = 7~c(y), 

£¢ = 7'f (y --/2), 
~2 = Z ( y  s _ /2s  -- cls)2/#(S). 

s 

The second optimization is based on the MPM principle 
as it is described in the previous section. 

This simple approach, we refer as "rigid", apparently 
yields good results, but has some drawbacks. Due to 
the valleys the estimation of/x is biased, and thus the 
valleys are under estimated. The sophisticated method 
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Fig. 2. A profile of an image with its estimated trend/2: (a) rigid 
method; (b) adaptative method. 

presented in the previous sections, we refer as "adap- 
tative", alleviates this drawback. This is illustrated in 
the Fig. 2. 

7 Joint Markov Model for a Pair of Matched 
Images 

We are now dealing with a pair of matched images in or- 
der to perform a more accurate detection of the defects. 
For instance, acquisition artefacts which are randomly 
and independently distributed on each film have to be 
removed from the detection. On the opposite, a valley 
with low depth on one of the images but corresponding 
to a deep valley on the other one have to be identified 
as a defect valley. 

We assume that the two digitized images yl and y2 
are matched: for every site s c S, we get the couple 
(y~, y2). The model (1) is replaced by 

y1 = / z l + D  I + W  1, 

yZ = iz2 q_ D 2 + W 2. 

The surfaces d 1 and d z can be seen as two perturbated 
occurrences of a same field d. Our main unknown is the 

hidden random field ~ representing the VBL field ofd.  
Let 21 , 91 be the estimation of d 1 , o-1 respectively, and 
2 z, 52 be the estimation o fd  2 , or2 respectively, obtained 
from the previous method. 

In fact, we forget d I and d z and we work only with 
their estimation 31 and 32 . Then we have to define 
an energy taking account of their weak similarity. We 
suppose that L is a Markov random field conditionally 
to 31 and 2 2 associated to the fusion energy: 

HO(e I 2 ~, 3 2) = H~Xt( e I 21 ,22)  "[- u~n(e), (14) 

where 0 = ( (rl, (~2). The first term quantifies the qual- 
ity of the VBLs which are present on both images. The 
second term is the same energy described above quanti- 
fying shape criteria for the VBLs. Before introducing 
the expression of H~ xt, we need to define some new 
fields. 

New Data Fields. For every site s, we deftne the mean 
field 3~ = (23 +2~)/2.  We can not assume that a valley 
observed on 33 always corresponds to a valley on 31 
and 32 . Indeed, it may be due to an artefact present 
only on one of the images. Thus we define the fields 
31 and 32 by: 

3¢ = eli if Ts(3 3) = 0, 

= 2 )  if Ts (33 )= l ,  

where j is the nearest site from s, if it exists, in a 
prescribed centered window such that Tj (31) = 1, and 
j = s otherwise. Clearly, 3~ is defined in a similar way. 
These fields allow us to detect the presence/absence 
of artefacts on each image. Furthermore, we take into 
account the fact that because of the noise a same val- 
ley may differ in form and in intensity from an image 
to the other. The size of the window corresponds to 
the maximum of the disparity that we accept between 
the films. So, for each site s such thai Ts(~ 3) = 1, we 
will associate the values of 21 and 2 2 corresponding 
to the nearest VBL candidates (if it exists) previously 
detected by T(3 t) and T(SZ). We then preserve the 
depth of both valleys. 

Energy H~ xt. Its expression is: 

HyXt(e 21 2 I '22) = - Z  le~=l logP(g.~ = I I 8s)  
$ 

- E le~=0 log P(gs = 0 I 8~), 
s 

(15) 
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8t 2 3~) and P(gs I 3s) are the proba- where 3s = ( s, 3s, 
bilities defined by: 

P(es = 1 ! 6~) = *(Ts(63)) * ( - k i  - 82/$1) 

® I - k 2  - (61/ 1 + 6s 
(16) 

in which kl and k2 are two ~-percentiles (cf. section 3). 
This energy favors detection at sites s which are 

previously detected by T(6 3) and whose SNR is great 
enough on both images. Theoretically, we should sup- 
press the last term in (16) but in fact a valley may have 
very different SNR on both images. So we prefer to 
detect a valley at a very low SNR on one of the im- 
ages if it corresponds to a deep valley on the other one. 
So we choose kl < k2, kl being high enough to avoid 
detection of artefacts. 

Finally, the true field of the common VBLs is esti- 
mated by the MPM estimate for the energy H. 

8 Experimental Results 

Although both radiographies are obtained according 
to the same process (it is the same view of the pipe) 

digitized images within a pair differ by a translation 
shift and a small rotation. This is due to the high res- 
olution of the discretization. So seeking the VBLs 
leads also to match the two images. Unfortunately, the 
presence of noise prevents matching by means of clas- 
sical techniques (maximization of the correlation for 
instance)• Then for this application, we developed a 
specific three steps method: 

• First, we detect defects on each image separately 
according to the model U given in (5). We obtain 
two binary fields of VBLs, let say ~1 and ~2, which 
are transformed into grey level images gl and g2 by 
convolution with a 5 × 5 filter• 

• Secondly the shift and the rotation between both im- 
ages are estimated by a first maximization of a func- 
tional of gl and g2 quantifying the similarity at low 
resolution level and by a second maximization of a 
similar functional at high resolution level. Then the 
user has to validate this operation. 

• Finally according to the Markovian model H given 
in (15), we detect common VBLs on both images 
shifted and rotated• 

Let us now present our results in non-destructive con- 
trol. In order to reduce the computation time, original 
images are reduced from 512 x 512 to 128 x 128 after 

Fig. 3a. y-image yi. Fig, 3b• y-image y2. 

Fig, 3c. A column profile of y 1. 
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Fig. 3e. Second image after removing the luminosity trend: 
Fig, 3d. First image after removing the luminosity trend: yl _/21. y2 _/2z. 

Fig. 3f Estimated valley surface: ~1 Fig. 3g. Estimated valley surface: ~2 

Fig. 3h. Indicator lines of curvature: T(dl). Fig. 3i. Indicator lines of curvature: T(~t2). 

filtering. Note on Figs. 3a and 3b, that the SNR of 
the defects is very Iow. This is due to the luminos- 
ity gradient (Fig. 3c) and to the noise. Figures 3d 
and 3e show both images after removal the luminosity 
gradients. Note that the defect areas are perceptibly 
different within the pair. We present the estimation d 
o fd  for both images on Figs. 3f and 3g (the vertical line 
is not a defect but an artefact present on both images). 
The noise explains the erratic behavior of the detected 
bottom lines T(d) (Figs. 3h and 3i). 

Figures 3j and 3k show the first Bayesian-Markov 
detection of the VBL fields £ on each image separately. 
Final detection based on the pair of images is presented 

on Fig. 3t. Only valleys present on both images are 
now detected. Whereas valleys detection on d~ and t~ 2 
which do not match are removed, defect valleys with 
very low SNR on one of the images are still detected. 
Total computation takes 3 minutes on a Sun Spark2 
station. 

The practical interest of these results is that it gives 
to the experts a quantified decision which does not 
change arbitrarily when conditions change. Further- 
more, as our method mimics the vision task done by 
the experts who slide the two films one over the other, 
it provides a computed artificial task well accepted by 
them. 
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Fig. 3j. Detection of VBLs from the first image: ~1. 
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Fig. 3k. Detection of VBLs from the second image: ~'2. 
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Fig. 31. Final detection of VBLs from the couple: ~. 

A p p e n d i x  

Here we describe the step 1 of the first estimation. Our 
method uses two relaxation algorithms, the second one 
being called by the first one (Coldefy 1993). Derivating 
(U ° + U3) with respect to d and 0 and setting these 

derivatives to zero, the est imates/2,  d and b are the 
solution of  the system 

/2 = P ( y  - ~¢), 

1 Z ( Y s  - /2s  - cls) 2, 
6 = ~'-].s I[ds = O] s 

Vs, cls= ys - /2s if  ys < /2s - 2x~r, 

= 0 otherwise, (17) 

where 7 ~ denotes the projection on the spline space 
(2), and I is the indicator function I(A) = 1A. An 
approximated solution is obtained by using a relaxation 

0 algorithm for minimizing (U 1 + [/3) alternatively over 
/z and (d, a ) ,  as follows. 

If  ~ , -1  denotes the estimation of d at the  iteration 
n - I of  this algorithm, then those of /z  at the iteration 
n is 

/2n = T'(y - •n-1). 

The next estimation of  d and ~r is itself obtained by 
applying a second relaxation algorithm to the function 
[U~" 'a ) (y  I d) + Ua(d)]. I f d  n'p-1 and bn.p-1 denote 
the estimations of  d and o" at the iteration p - 1 of  this 
second algorithm, then the estimations of  d and cr at 
the iteration p are 

~n,p = ~ 1 [,, r,n ~n.p-l~2 
ZS  I[ ~ns'p-I "~'0] ,~v \JS--I'~s-- s ] ' 

Ys, d n'p = Ys - / 2 s  n if  Ys </2~ -- 2 tctn'p, 

0 otherwise. 

This second procedure stops when ~n.p does not 
change anymore, and then we set ~n ~ 6-n.p and 
aCs n - d; 'P. The convergence is very fast, only three it- 
erations are approximately necessary. The whole setup 
of  the step 1 is initialized with/20 = P(y) and d o = 0, 

6° = ~ ~s Y]~s (Ys - /2°)  2, and converges within fifteen 

iterations. 
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