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A b s t r a c t .  We present a general method for matching segmented parts 
of objects by energy minimization. The energy is designed in order to 
cope with possible imperfections of the compared segmentations (merged, 
or missing regions), and relies on the comparison of shape and positional 
descriptors. The minimization of the energy is performed by a simulated 
annealing procedure 

1 Introduction 

Structural representations describe objects by a list of elementary parts (or com- 
ponents, or primitives) and relations between them. Such representations may 
be used for a large range of objects. One-dimensional representations describe 
curves as objects outlines ; it may be a polygonal approximation of the curve, 
a list of feature points, the sequence of its concave/convex parts ([11]). Many 
segmentation procedures have been designed to provide 2D and 3D decomposi- 
tion. Representation by line segments or feature points are also commonly used. 
Recognition is then performed by comparing these representations, and graph- 
matching paradigms and algorithms have been designed by many authors. 

In any case, when comparing two objects, at least one representation is di- 
rectly extracted from observed data. In fact, most of the methods dedicated to 
object recognition assume the existence of of prototypes, for which a presum: 
ably perfect representation is computed once and for all, and consider that  an 
instance of one of them is observed and must be recognized. The protype which 
provides the best match to the observation is selected. However, the extraction 
of the structural representation from real data  is a difficult task. It is, for exam- 
ple, hardly possible to design a perfectly reliable image segmentation procedure, 
because of the inherent ambiguities of 2-D images (shadows, specularities, occlu- 
sions. . .) .  Thus, at least one of the compared structures will be imperfect, and 
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sometimes both, since an exact description of the prototypes need not be always 
available. Matching (and comparison) has to cope with these imprecisions. A 
general approach for inexact graph matching has been presented in [9]. In this 
reference, trangressions of relational constraints between the matched primitives 
are allowed up to a certain amount. However, for many representations, typical 
variations may strongly affect the structures. The case of segmented images is il- 
lustrative : one of the most frequent perturbations is oversegmentation, in which 
case the graph structure may be drasticMly changed. This corresponds to a union 
of nodes in the graph, which cannot be ignored by the matching process. In [12], a 
solution is provided by the use of augmented association graphs. Our approach 
in the present work aims at the same objective, that is comparing structured 
representations in which similar objects may yield significant differences in the 
structures, albeit with substantial differences. 

A first difference with the most frequent approaches is that our primary 
goal is not explicitely recognition, but merely comparison. We want to design a 
method to decide whether two representations are similar or not, and incidentally 
quantify this similarity (of course, recognition would be the goal of a second 
stage). In addition, we do not assume that one of the representation is perfect, 
so that both objects will be treated in a symmetric way. 

So, our matching paradigm is not one-to-one but many-to-many, in order 
to handle possible unions of components in one representation before matching 
the other. Aggregating primitives yields a new, simpler, but less informative, 
representation of the object. It is always possible to simplify in that way the 
originM representations so that they become similar, or at least comparable. 
This provides the principles of our method : object views will be considered as 
similar if slight simplifications of their representation can be matched so that 
they have a similar structure. 

A large part of the paper deals with the problem with a more or less gen- 
eral formulation. We assume a decomposition into components, but we do not 
explicitely place a graph structure on the representation, the relationships being 
described by a family of descriptors, which are real valued functions of sev- 
eral components. A simplification of this structure is formalized as an operation 
which permits to agglomerate parts, or to discard them. In such a context, we 
design a method for matching, then comparing representations. Our approach is 
variational and we design a cost function which is smM1 for a correct matching. 
The construction of the cost function is based a general framework, in which we 
include unspecified features which depend on the application. 

In the second part of the paper, we complete the cost function in order 
to deal with the particular case of comparing segmented views of objects.This 
application is a part of a global project on multi-view object recognition. 

2 G e n e r a l  f o r m u l a t i o n  

Let an object representation, 7r be composed with a certain number, N, of 
parts (N depending on the object), which we shall write 7r = (R1, . . . ,  RN). The 
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representation 7~ is characterized by a family of relational descriptors, which 
describes the relationship between the elements of 7~ : let q be a positive inte- 
ger, the order of the description, and :Pq be the collection of all the subsets of 
{1 , . . . ,  N} with less than q elements : for each C E Pq, denote by 7~c the collec- 
tion (R~, i E C), and the descriptor associated to C is a feature he  (7~) computed 
from 7~c. Note that he  can be multi-dimensional (even infinite dimensional : for 
example the regions boundaries in the case of segmented images of objects). In 
our experiments, the order q is limited to q = 2. One basic principle is that  two 
representations T~ and 7~ ~ will be considered to be similar if their descriptors are 
close. 

When given two object representations, one must determine compatible or- 
derings before comparing, that is, the parts in each representation have to be 
matched one to another. Moreover, since the number of components in the rep- 
resentations of two different objects need not be equal, some parts in one rep- 
resentation may not find any related parts in the other one. Finally, we may 
also be in a situation in which a component Rk is divided into several parts in 
the other representation. This is likely to happen when the representation is ex- 
tracted from observed data (as in our study, in which we use image segmentation 
algorithms), but this can also correspond to a case in which the second object is 
similar, but simpler than the first one. Thus, some transformations of the repre- 
sentations must be allowed before the matching: a) discarding components from 
any of the two representations; b) grouping several parts together. For the last 
one, we assume that  some aggregation operation is available, which associates 
to two components/~1 and R2 their union which will be denoted R1 U R2. We 
furthermore assume that  this operation is commutative and associative. In our 
application, components are regions in the image plane, and aggregation simply 
is set union. These operations have the effect to simplify a representation ; we 
do not allow for the possibility to divide a component into several ones, which 
would induce a complexification of the representation, and would require some 
extraneous information which is not necessarily available. Thus, the matching 
problem is to determine compatible simplified representations of the objects from 
the original representations. To summarize, its solution requires to 

a -  Discard some components from each representation (those which cannot be 
correctly matched) 

b-  Aggregate some components in each representation 

c-  Find compatible orderings of the aggregated components 

It is clear that there is no reason for which any of these three steps could be per- 
formed before the other two : it is impossible to decide whether a component in 
the first representation should rather be discarded or aggregated to others unless 
one has tried to match the aggregated group to some other group in the second 
representation. These operations must in fact be performed simultaneously. For 
this reason, we minimize a single criterion combining several cost functions, each 
of which being concerned with one step (a- to c-) of the procedure. 
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3 N o t a t i o n  f o r  t h e  m a t c h i n g  p r o b l e m  

We fix some notation. Let T~ = (-R1,..., RN) ans T~' = (R~, . . . , / ~ )  be the two 
representations to match. In order to indicate that two groups of components are 
matched, it suffices to mark each element of these groups with a common label. 
Denote by {1, . . . ,  L} a set of labels, to be used to mark matched components, 
and add to it a new label, 0, to mark the components which have not been 
matched. Specifying a common labelling of the representations boils down to 
defining two mappings, r and r which respectively provide the labels of the 
components Ri and R~: 

r  ~ { 0 , . . . , L } ,  r  ~{0 , . . . ,L } .  

We do not know the exact number of labels in the matching, that is L is 
unknown, but it can be bounded (for example, L _< L0 - min(N, M))). Labels 
in {1, . . . ,  L} being reserved for matched components, introduce the notation 
(for k E {0, . . . ,  L}) ~k = Ur Z~ = Ur The discarded parts, 
~0 and ~ may be empty, but, for k = 1 , . . . ,  L, we impose that 5k and 5~ r 0. 

Thus, another way to formulate the problem is that we are looking for two 
simplified representations S = (G0,. . . ,  EL), S' = (2~ , . . . ,  5~), with the con- 
vention that 50 and 2~ are the (possibly empty) aggregation of discarded 
components, and that the components 2k and ~ are matched together, for 
k E { t , . . . ,  L}. The representations $ and S' are called simplifications of the 
original representations T~ and 7U. 

We assume that, for any object representation 7~ = (R1, . . . ,  RN), one can 
compute relational descriptors Ac(7~), where C are subsets of { 1 , . . . ,  N}, which 
describes some relationship between the Ri, i E C. We assume that Xc only 
depends on Ri, i C C and on U(7~) = uN=IRk (this last dependence holding to 
allow global n0rmalisation of the descriptors). Note that if S is a simplification of 
5g, we set/,/(S) =//(7~) (that is we include the discarded regions to compute the 
global properties of S), so that/,/(T~) and L/(TU) are invariant of the matching 
process. Thus, our problem is to determine S and 8' so that Ac($) ~- kc($'). 

Together with the similarity of the simplifications of 5g and 7r we add, 
in order to evaluate the matching, a parcimony constraint to ensure that the 
representations are not over- simplified : there should not be too many discarded 
regions (otherwise, there will be nothing left to compare) and the aggregation 
process should be limited, in order to keep as much as possible of the information 
contained in the original representations. The cost function we built takes into 
account the previous constraints as a sum of penalty terms. 

4 Q u a n t i t a t i v e  e v a l u a t i o n  o f  t h e  q u a l i t y  o f  t h e  m a t c h i n g  

4.1 Genera l  pr inciple  

We follow a variational approach and define a cost function which will be small 
when the matching is adequate (according to the previous qualitative criteria). 
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The cost function will be the sum of several terms, each of which being designed 
in order to constrain a particular behaviour. Since we have selected three criteria, 
there will be three terms, each of them respectively aiming at 

1- Similarity of the descriptors Ac computed on the simplifications S and 8 ~ 
2- Restriction of the sizes of the sets L'0 and ~'~ (unmatched regions) 
3- Limitation of the aggregation process : Zk and Z~ should not be composed 

with too many regions of the original segmentations 

In some applications, one can imagine some hard constraints imposed on 
the aggregation process. For example, connectivity of the aggregates may be 
enforced, or aggregation of some uncompatible components may be forbidden. 

4.2 Cos t  f u n c t i o n  

In this section, we only give the general form of the cost function, leaving the 
detailed description to the next sections. This function is of the kind 

E(r r = E1(r r + E2(r r + E3(r r 

each of these terms corresponding to one of the criteria 1 to 3 above. 
In order to estimate the importance of the components (for example to quan- 

tify the second criterion), we assume that we can compute, for each part R of a 
representation, a measure of size, which we shall denote by A(R). In addition, to 
compare the descriptors, we assume that, for all k < q (q being the order of the 
description), we have designed a measure of the difference between two descrip- 
tors )~c and ; ~  for ]CI = k, which will be denoted Ak(AC, t~) .  We shall put, 
writing, for short, )tc = Ac(S) and ~ = ,~c(S') for subsets C of {1 , . . . ,  L}, 

q 

p : l  C, IC[= p 

where #p is a weight which depends on the sizes of the sets Zk and ~ for k 6 C. 
For the second criterion, we simply set E2(r r = A(X'0) + A(Z/)). 
Finally, to define the cost associated to point 3, we assume a dispersion 

measure for the representation TO, denoted F, which can be computed on any 
family Ri,i E V (with V C {1 , . . . ,N}) ,  which is large when the sets R~ are 
(in a sense to be defined) far apart one from each other. Similarly, a dispersion 
measure F '  in 7r is defined. Let us put, for short, Fk = P(Ri,i 6 r and 

= r'(n ,i r 

L L 

k : l  k = l  

There again, u is a weight, depending on the sizes of the components L'k and 
E;. 
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A good choice of the weights #~ and u is decisive for the success of the method. 
They can be calibrated by analyzing the variations of the cost function under 
simple transformations of the matching. This is a general method (ef [1]) which 
ensures that  the weights are calibrated in order to provide a correct matching 
at least for particular cases. In order to carry on the analysis, we make some 
additional assumptions which will be satisfied in the application below. 

The first one is that the comparators Ak and the dispersion measures F and 
F '  are normalized so that their typical values are near the unity. The second one 
is that  the size measure is additive, that is A(R1 U R2) = A(/{1) + A(R2). Under 
these hypothesis, let us consider the following case. Start with simplifications S 
and S ~ with L labels, and consider the variation in which all the components 
which form EL and ~ are discarded and added to Zo and Z~. Because of the 
additivity assumption, the variation of E~ would be AE2 = A(ZL) + .A(Z'L). 

The variation of E3 is AE3 = --lJ(~n)F L - -  ~ ' ( ~ ' L ) F L  , and for El ,  it is 
q 

p=l C, ICI=p,L6C 

Without  any knowledge about the regions which have been discarded, there 
is no reason to priviledge any of the terms of the cost function. Thus, the weights 
should be tuned in order that each of the terms have comparable size for "av- 
erage" values of Ap, Pa (according to ore" hypothesis, these average values are 
1). The analysis will also provide "average values" for the weights (this is why 
we speak of "calibration" of the weights). It appears however that  the weights 
which are provided by such rough computations are sufficiently well fitted to 
yield good results, and that slight variations around these values provide match- 
ings of comparable quality. If needed, further variations of the same analysis can 
provide additional constraints which would induce some more acute information 
on the weights. 

Thus, A(ZL) + A(Z'L) should have the same size as ~'(ZL) + z/(2~;) which 
naturally leads to set u(Z)  = A(Z) .  This should also be the size of 

q 

p = l  C,ICI-_.p,LEC 

and we assume that  each term of this sum has the same size, so that  relationships 
of all orders have the same influence. The first term (for p = 1) is #~ (L), and it 
is natural to set p l (L)  = A(ZL) + A(Z'L). 

Now, for p = 2, the term is ~ e L  #2(k, L) which should have the same size 
as #I(L).  One possibility is to put #2(k,L) = #l(k)#l(L)/2~ #1(I), with the 
assumption that  #l(L)  is small compared to ~ k # L  #1 (k). Terms of order larger 
than 2 can be handled similarly. 

5 Minimizat ion Procedure  

The discrete minimization problem, in its full generality is a hard problem. 
It requires to find partitions of the sets { 1 , . . . , N }  and { 1 , . . . , M } ,  and the 
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best matching between them. The size of all acceptable matchings is quite large 
(about 1012 for M = N = 10, 1031 for M = N = 15) so that the optimal 
matching cannot be determined by systematic exploration. In some cases, for 
example, when dealing with curves or acyclic graphs, global optimization algo- 
rithms, such as dynamic programming, may be devised. In all cases, simulated 
annealing is a good general procedure for massive discrete optimization. This 
is the one we have used in our application. In order to determine the labels r 
and r the algorithm works as follows. At each stage, it proposes a small ~ mod- 
ification of the current r and r which induces some variation AE of the cost 
function. The modification may be refused, and this is done with probability 
max(0, 1 - e x p ( - A E / T ) ) ,  T being a factor which slowly decreases to 0 during 
the procedure. If the elementary modifications are suitably designed, and the 
decreasing of T is slow enough, the algorithm provides the global minima of E. 

Besides the theoretical slow decreasing rate of T (which is practically un- 
achievable, and replaced by an exponentially fast decreasing rate - -  cf. [4] for a 
justification of this choice in the case of finite horizon annealing processes), the 
other condition for a good behaviour of this minimization algorithm holds on the 
choice of the elementary transition at each time. Assume that, when the current 
state is (r r the new proposal is taken at random in a set A(r r (which may 
vary with time). Then, sufficient conditions for convergence are : 

i f  (r r E A(r r then (r r C A(r r and both sets have the same 
cardmaIity. 

there exists a fixed integer n such that, a transition between any (r r and 
(r r is possible, with positive probability, in n steps. 

Note that, when modifying r and r we must take care that the constraint 
that  no label can be used for a representation and not for the other, is satisfied. 
To simplify the implementation, we fix the number L0 of labels and allow for 
the possibility of unused labels. If L0 = min(M, N), this does not affect the 
generality of the search. The constraint is then :for all k E {1 , . . . ,  no}, r = 

The sets A(r r that we propose may be of two kinds. The first one contains 
transformations which simultaneously modify the values of r and ~p(i') among 
the family of all admissible new labels. The second one contains transformations 
which exchange the values of r and r (or r and r  if these values 
are different, and different from 0. Both types satisfy the conditions above, and 
they are alternated during the procedure. 

R e m a r k  : The updating phase may become computationaly costly when the 
order of the description increases. For q > 2, it becomes necessary to define 
Av only for a restricted family of sets C with cardinality q, so that, for any i, 
the number of C with cardinality q for which Ac is modified remains bounded 
independently of q. For example, the restriction may be to sets C for which 
all components are large enough, or close enough one to each other. But, this 
notion of size, or nearness, depend on the components whose labels are in C, and 
maybe also on other global properties of the representations : one consequence 
of it is that, under such a framework, when comparing two segmentations, some 
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Ac could be defined in one case, and not in the other. This may be bypassed by 
letting Ac = K, a constant, if C is not admissible, so that, effective computation 
of Ac still is restricted to admissible C. Choosing K large enough is a way to 
forbid matching in which admissible C are matched to non admissible C. 

6 A p p l i c a t i o n  : c o m p a r i s o n  o f  s e g m e n t a t i o n s  

6.1 I n t r o d u c t i o n  

We now particularize the above approach to the problem of comparing segmen- 
tations. Given an image of an object, trying to separate it into functional parts 
is attractive, but a genuine functional decomposition is hardly feasible without 
high-level information on the observed object. A less ambitious program is to use 
the decomposition given by low-level image segmentation algorithms which sep- 
arate the picture into homogeneous parts, based on features related to gray-level 
or color distribution. This representation often provides substantial information 
on the object, each homogeneous region in the image being most of the time as- 
sociated to a single functional part of theobject. However, starting at low-level, 
one has to cope with the usual drawbacks of image acquisition. Light variations, 
shadows, specularities, are elements which may cause errors and biase the re- 
sults, and it is hopeless to expect that any segmentation procedure would provide 

outcomes bypassing these problems. Some enhancement, more robustness may" 
be obtained by carefully selecting the algorithm, and it is an important, still 
largely open, issue in image processing to design efficient, robust, Using minimal 
a priori information, low-level segmentation methods. However, when passing to 
comparison, the possibility of having to deal with over-segmentations, or strong 
variations in the shapes of regions, must be kept in mind, and this is precisely 
what is handled by our matching method. 

Thus from now on, our representation is a family 7~ = ([/1, �9 �9 of regions 
of the image plane. Simplifications are obtained by discarding regions and aggre- 
gation by set union. Before completing the concepts presented in the previous 
paragraphs, we start with a brief discussion of the segmentation algorithm. 

6.2 Segmenta t ion  a lgor i thm 

We just say a few words about the way we segment images. It is not in our 
intent to give a precise description of the method, which would be too long 
and out of the scope of the paper. The aim is, given a 2-D view of an Object, 
to provide a partition of the image into regions t{1, - �9 RN which corresponds 
to homogeneous parts of the picture relatively to a chosen criterium. In the 
present study, segmentation is based on colour. Once this characteristic is fixed, 
the procedure is entirely unsupervised, with respect to the number of regions, 
which is unknown, or to the various parameters (a , )u  and )~2 below) which are 
estimated on line. The final segmentation is obtained by minimizing a discrete 
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cost function, the general form of which being 

i i#j (s,t)~a~j 

where : V(Ri) measures how much colour varies in region Ri; for i ~ j, ~ij is the 
(possibly empty) common boundary of regions Ri and Rj, composed with couples 
of pixels (s,t) such that s E Ri, t C Rj, and s and t are nearest neighbours on 
the image grid; Ast is an indicator function, equal to 1 if the difference of the 
colours at pixels s and t is larger than a threshold ~ and 0 if not. 

We assume that the object is completely included in the picture, and we 
discard from the segmentation all the regions which meet the image frame. As- 
suming that the background is more or less homogeneous, this will discard most 
of the parts of the picture which do not belong to the object. Some piece of back- 
ground may however be still present in the final segmentation, which provide a 
new kind of perturbation which must be handled by the matching procedure. 

6.3 Descr iptors  

General i t ies  There are some desireab!e properties which may be expected from 
the descriptors. A first property is that they are rich enough to characterize the 
view of the object with satisfying accuracy. A second one comes from the fact 
that the object characterization must hold up to some parasit rigid transfor- 
mation, since the relative positions of the compared objects are unknown, but 
should not influence the matching. The minimal rigid invariance which should be 
imposed are scale invariance and rotation invariance in the image plane. These 
are the invariance which will be explicitely addressed in this work. Affine in- 
variance can also be required, to cope with variations in the angle of view of 
the objects. This seems too be less important than rotation and scaling, espe- 
cially for complex objects, since variations of the angle of view are likely to yield 
appearance of occluded parts which cannot be modeled by affine transforma- 
tion and would rather require a multi-view approach. Affine invariance however 
brings more robustness, and we will give some indication on how this can be 
achieved. Note that the use of relational descriptors gives much more latitude 
for the construction of invariant features, since there are much more invariant 
functions of several variables than of only one. 

A last property which has to be aimed at by the descriptors is computational. 
Indeed, during the matching, the compared descriptors depend on the simplifi- 
cations S and 81 which are unknown. Given the Combinatorial structure of the 
matching algorithm, it is essential that the calculation of the descriptors could be 
simple enough to avoid prohibitive computer time. At least, their updating after 
the changes which are proposed in the annealing algorithm of section 5 should 
not consume too much time. This is a strong limitation to the range of acceptable 
descriptors, and Comes somewhat in contradiction with the first requirement on 
the accuracy of the description, but this is essential for practical use. It seems, 
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however, that the constraints imposed by relational descriptors of several vari- 
ables (even simple ones) are restrictive enough to yield good performance of the 
matching without harming too much the computation time. 

We now pass to the explicit presentation of the descriptors which are used. 
They are of two kinds : a) positional, which depend on the centers of gravity of 
the regions, and b) relative to shape, which will be based on (rough) descriptions 
of the outline of the regions. The order of the representation is q = 2, so that  
we only have unary and binary descriptors. We thus assume that  we have two 
segmentations n = (/~1,.--, RN) and n '  = ( R ~ , . . . , / ~ )  and try to find two 
matched simplifications S = (Z0, Z1 . . . .  , ZL) and $ '  = (Z~, Z~, . .  Z~). 

I m p o r t a n c e  e v a l u a t i o n  To measure the size of a region Z in a simplification 
$, we simply use its relative area: 

area( ) 
A(Z)- area[U(S)] 

where U($) is the aggregate of all the components in S. 
This measure is used for the weights pk and u, and also for the shape de- 

scriptors below. It is translation, rotation and scale invariant (in fact, it is affine 
invariant). 

P o s i t i o n a l  d e s c r i p t o r s  The position of a region in the image plane is repre- 
sented by its center of gravity, ie the mean position of the pixels which are con- 
tained in the region. In order to obtain translation invariance for unary descrip- 
tors, we use their relative position to the center of gravity of the complete object. 
Thus, we denote by G (resp. G') the center of gravity o f / / =  L/($) = ZoU---UZL 
(resp. L/' = Z~ U . . .  U ~ ) ,  which are constant during the matching. We let G~ 
(resp. G[.) be the center of gravity of Z~ (resp. Z~). To induce rotation invari- 
ance, we only use the Euclidean distances between these points, letting our unary 
descriptors be the distance between G and Gk, denoted GGk, and the binary 
descriptors be the collection of all GkGl, for k ~ l larger than 1. Finally, in order 
to also obtain scale invariance, we use a unit length which depends on the total 
area of the segmentation : letting Atot = ~ k  area(Rk), we measure the lengths 
in terms of multiples of 1/Av/-A~tot. 

Thus we have obtained unary and binary positional descriptors which are 
translation, rotation and scale invariant. If affine invariance were required, unary 
positional descriptors of the previous kind }lave to be dropped. Concerning bi- 
nary descriptors, the area of the triangle (G, Gk, G~) is an example of an affine 
invariant descriptor. 

S h a p e  d e s c r i p t o r s  To shorten notation, we let Ak = A(Zk) be the relative 
area of Zk in S (and A~ = A(Z~)): this forms our first shape descriptor. The 
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second one is the ellipse of inertia of the region G'k, which we denote by gk- If 
Ik is the matrix of inertia of Zk, ie 

= a da 2 dx ,  
k 

t 

the ellipse of inertia (up to scaling) is defined by ~ I-1Gk--~ = cte. On the 
computational level, Ak, Gk and Ik can be very efficiently obtained by incre- 
mental formulae when S varies. 

Similarly, we denote by A~ and g~ the area and ellipse of inertia of Z~. 
Since they are centered at Gk, the ellipses of inertia are translation invariant, 

but they are not rotation nor scale invariant. Therefore, the unary descriptors 
can only depend on the excentricities of the ellipses. The binary descriptors will 
be based on the comparison of the relative positions of two ellipses. 

We shall in fact use two distances in order to compare two ellipses s g ' ;  
we denote them by d0(s g') and dl(g, $'). The first one is invariant by scaling 
and rotation of any of the ellipses g and s so that it only depends on the 
excentricities of the ellipses and will be used for unary descriptors. The second 
one is scale invariant, and invariant by simultaneous rotation of the ellipses (with 
a common angle), it thus depends on the relative positions of the ellipses. If we 
are only interested in comparing ellipses, there are many ways to define such 
distances. However once the matching will be computed, we want to use, for 
comparison, richer information than the ellipses of inertia, and use distances 
which have been designed to compare arbitrary plane curves (cf. [13]). They are 
computed (once the curves have been rescaled to have length 1), on the basis 
of the functions which give the orientations of the tangent vectors to the curves 
in function of the arc-length. An optimal matching is computed between these 
functions (denoted by 0 and 0), letting 

dl = inf arccos ~ cos ds 
g 2 

g being a diffeomorphism of [0, 1], and 

g being a diffeomorphism of [0, 1], and c being a number in [0, 2re]. 
We have also used these distances to compare the ellipses. In order to reduce 

computation time, their values have been discretized off-line and stored in a 
look-up table. 

Ak We use two binary descriptors : first, the relative areas of Zk and ~l,  A--7' 
and second, the distance dl (s gl). We compute in fact a single number, which 
is 

Bkl = ~ log +dl(gk,gt) 
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1 W 
and, similarly for S', B~, = ~ log ~ ,  + d~(E~, ~;). 

Once again, these descriptors are not affine invariant. An afflne invariant 
matching could de based on higher order moment-based invariant of the shape 
(the area of the ellipse of inertia being the only moment invariant of order 2). 

6.4 C o m p a r i s o n  of  t h e  desc r ip to r s  

We now define the functions A1 and A2 which are used to compare unary and 
binary descriptors. Note that, in order that our discussion on the calibration of 
the weights be valid, their values much be properly normalized to have a typical 
range arount the unity, We set 

= log  + a ,  a ,  . 

and 
A2(k,l) = max ~2]Bkt- B~tl IGkG1-G'~GI[ } [ ~,~ + B'~ ' 2 CkG~ + a'~a~ (2) 

6.5 M e a s u r e  of  d i spe r s ion  

The last point to describe is the measure of dispersion used in the cost term E3, 
which has been denoted Fk = F(Ri,i E 0-1(k)) and F~ = F'(R~,i E r  
Note that  this is the only term which refers to the original segmentation, the 
other ones depending only on the matched simplifications S and 8' .  Assume that  
a distance Dij is defined between regions Ri and Rj. We let 

1 
ck = Z D harea(R )area(Rh), 

i,j6r 

The term Fg being similarly defined for the segmentation 7~'. 
To define the internal distance Dij we ~ake into account the topological 

structure of the segmentation 7~. For each pair of regions /:ti and Rj, we let 
0~j be the possibly empty common boundary of Ri and Rj. Let a path from i to 
j in the set { 1 , . . . , N }  be a sequence io = i, il,...,ip,ip+l = J. We define the 
length of such a path by a formula of the kind 

p p 

q-----O q=l 

where F(Ri, Rj) is a cost associated to the transition between regions Ri and 
ftj. It is equal to a constant plus the minimum distance between all non empty 
boundaries 0ik and ajl, for all k, l G {1 , . . . ,  N}, which is 0 ifOij 7s O; G(RI, Rj, Rk) 
is the distance between the closest boundary of Ri to Rj and the closest bound- 
ary of Rj to Rk. Thus the length of path is large when two successive regions 
are not adjacent, and it crosses some large region. The distance between two 
boundaries cO and a' is the mean value of d(i, 0') for i 6 CO plus the mean value 
of d(i', ~) for i' C 0'. 
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7 C o m p a r i s o n  a f t e r  m a t c h i n g  

Once the combinatorial part of the comparison (ie. the maching procedure) has 
been achieved, it is possible to use richer descriptors to quantify the differences 
between the objects. We adopt a hierarchical approach, and use successive cri- 
teria of increasing complexity to decide whether the viewed objects are similar 
or not. 

The first criterion is based on the sizes of the  discarded components Z0 and 
Z~ after the matching. Indeed, if the matching algorithm couldn't do better, 
while minimizing the cost function, than discarding a large proportion of the 
original components, this means that the representations were very different 
and there is no need to push the comparison further. So, we have a stopping 
crtiterion after matching which is based on 

p = m a x ( • ( e 0 ) ,  A( D) �9 

If p ou p/ is larger than a threshold (we used 0.4) comparison is stopped. 
The second criterion compares the centers of gravity Gk and G~ of Zk and 

Z~. Denote by zk and z~ the complex numbers representing the 2D vectors GG~ 
and GIG/k, where G and G ~ are the centers of gravity of the aggregation of the 
components of 7r and 7U. We let ~" be a number in [0, 2~r[ and set 

L Z Z-~-,t e - i T  ~ real pa r t (~k=  1 k k / dpo~ (r) = 2 arccos 

which, for each r, is a distance comparing the Zk and ~r e .z k up to scaling. This 
distance is small if, after a rotation of angle 7, the configurations of complex 
numbers, (zk) and (z~) are close enough. We compute this value for a discrete 
family of angles r,  and select those which are below a fixed threshold (we used 
0.5). These r are retained for the last stage, and if one could not find any, 
the procedure stops, and we conclude to high dissimilarity of the objects. In 
our experiments, we always found at least one correct r,  sometimes (but quite 
rarely) two. 

The last criterion compares the outlines of the regions Zk and Z~] Note that  
these regions can be very complex, since we have imposed no constraint on the 
aggregation process : Z~ need not be convex, can contain holes. In order to obtain 
a reasonable candidate for the outline, we adopt the following procedure. For all 
0 C [0, 2~r[, we compute the length rk(0) between Gk (the center of gravity of Zk) 
and the furthest point of Zk which belongs to the half-line of angle 0 starting 
from Gk. The curve, parametrized in polar coordinates by 0 --+ rk(0) will be 
denoted Ck and is our definition of the outline of Zk. 

Given this, we let, for one of the 7- selected at the previous stage, rr be a 
rotation of angle r. We then compute the distance 

d~ho,,e (~-) = 2 arecos E~  ~ cos d~ (C~, ,'~C;) 
E4ZYL-  
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That  this is a distance between the families of matched curves (C1, . . . ,  CL) and 
/ C ~ (C1, . . . ,  L) can be deduced from the results of [13]. We finally select the r for 

which dsh~p~(7-) is minimal, and this forms our final evaluation of the similarity 
of the views. 

8 Experiments 

Our experiments use a small database of video color images of toy vehicles. 
The matching algorithm performs well in finding a good matching when such 
a matching exists. If the objects differ too much, this is detected by one of our 
three criteria above. 

Each figure describes a matching and is organized as follows. The upper left 
and upper right pictures provide the contours of the original segmentations 7~ 
and ?U which are compared : they provide all the information which is used for 
comparison and matching. The lower left and lower right pictures provide the 
obtained matching : the associated regions have the same gey colour and are 
patched with the same number. 

In figures 1 to 3, we compare different views of a truck. In figure 1, dshape is 
quite large (about 0.4). This is due to the fact that  regions labeled 3 includes 
the lower part of the truck in one segmentation, and not in the other. 

Figures 4 and 5 compare different objects, and the difference is well detected. 
Finally, figures 6 to 8 provide comparisons of views of a truck, with various 

degrees of segmentation. 

Fig.  1. Comparison of segmentations: truck 1 under different angles ; percent- 
age of matched regions : 89.7% and 80.2%; dpos = 0.15 radian (4 regions); 
dshap~ = 0.42 radian 

Fig.  2. Comparison of segmentations: truck 1 under different angles ; percentage 
of matched regions : 65.8% and 64%; dpo~ = 0.1 radian (2 regions); dsnap, = 0.35 
radian 
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Fig. 3. Comparison of segmentations: truck i under different angles ; percentage 
of matched regions : 78% and 77.3%; dpos -- 0.27 radian (5 regions); d~h,~p~ = 0.32 
radian 

Fig. 4. Comparison of segmentations: plane and truck 2 ; percentage of matched 
regions : 75.3% and 57.9%; no computed distances 

Fig. 5. Comparison of segmentations: truck 1 and truck 2 ; percentage of 
matched regions : 75.2% and 79.5%; dpos = 0.1 radian (4 regions); dshape = 0.53 
radian 

Fig. 6. Comparison of segmentations: truck 2 under different angles ; percentage 
of matched regions : 92% and 80.9%; dpos = 0.12 radian (5 regions); dshap~ = 0.31 
radian 

Fig. 7. Comparison of segmentations: truck 2 under different angles ; percent- 
age of matched regions : 96.2% and 81.7%; dpos = 0.24 radian (5 regions); 
dshape = 0.37 radian 
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Fig. 8. Comparison of segmentations: truck 2 under the same angle (different 
segmentation) ; percentage of matched regions : 80% and 78.2%; dpos = 0.06 
radian (5 regions); dshape = 0.27 radian 
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