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Abstract. Vapnik-Chervonenkis (VC) bounds play an important role
in statistical learning theory as they are the fundamental result which
explains the generalization ability of learning machines. There have been
consequent mathematical works on the improvement of VC rates of con-
vergence of empirical means to their expectations over the years. The
result obtained by Talagrand in 1994 seems to provide more or less the
final word to this issue as far as universal bounds are concerned. Though
for fixed distributions, this bound can be practically outperformed. We
show indeed that it is possible to replace the 2ε2 under the exponential
of the deviation term by the corresponding Cramér transform as shown
by large deviations theorems. Then, we formulate rigorous distribution-
sensitive VC bounds and we also explain why these theoretical results on
such bounds can lead to practical estimates of the effective VC dimension
of learning structures.

1 Introduction and motivations

One of the main parts of statistical learning theory in the framework developed
by V.N. Vapnik [23], [25] is concerned with non-asymptotic rates of convergence
of empirical means to their expectations.
The historical result obtained originally by Vapnik and Chervonenkis (VC) (see
[21], [22]) has provided the qualitative form of these rates of convergences and
it is a remarkable fact that this result holds with no assumption on the prob-
ability distribution underlying the data. Consequently, VC-theory of bounds is
considered as a Worst-Case theory.
This observation is the source of most of the criticisms addressed to VC-theory.
It has been argued (see e.g. [4], [5], [9], [17]) that VC bounds are loose in general.
Indeed, there is an infinite number of situations in which the observed learning
curves representing the generalization error of some learning structure are not
well described by theoretical VC bounds.
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In [17], D. Schuurmans criticizes the worst-case-argument by pointing out that
there is no practical evidence that pathological probability measures must be
taken into account. This is the open problem we want to tackle : the distribu-
tion-sensitivity of VC bounds.
Another question which motivates our work (Vapnik et al. [24]) is the measure
of effective VC dimension. The idea to use a VC bound as an estimate of the
error probability tail, and to simulate this probability to identify the constants
and to estimate the VC dimension “experimentally”.
We will show how to improve these results by computing new accurate VC
bounds for fixed families of distributions.
It is thus possible to provide a deeper understanding for VC theory and its main
concepts. We also want to elaborate a practical method for measuring empirically
the VC dimension of a learning problem. This part is still work in progress (see
forthcoming [26] for examples and effective simulations).

2 Classical VC bounds

We first present universal VC bounds. For simplicity, we consider the particu-
lar case of deterministic pattern recognition with noiseless data. The set-up is
standard :

Consider a device T which transforms any input X ∈ IRd in some binary output
Y ∈ {0, 1}. Let us denote P the distribution of the random variable (X, Y ), µ
the distribution of X and R the Borel set in IRd of all X ’s associated to the label
Y = 1.
The goal of learning is to select an appropriate model of the device T among
a fixed set Γ of models C on the basis of a sample of empirical data (X1, Y1),
..., (Xn, Yn). Here, Γ is a family1 of Borel sets of IRd with finite VC dimension
V . The VC dimension is a complexity index which characterizes the capacity of
any given family of sets to shatter a set of points.
The error probability associated to the selection of C in Γ is :

L(C) = µ(C∆R) (true error)

L̂n(C) =
1
n

n∑
k=1

1lC∆R(Xk) = µn(C∆R) (empirical error)

where µn is the empirical measure µn = 1
n

∑n
k=1 δXk

.
The problem of model selection consists in minimizing the (unknown) risk func-
tional L(C) = µ(C∆R), problem usually replaced by a tractable one which is the
minimization of the empirical risk L̂n(C) = µn(C∆R) (this principle is known as
ERM for Empirical Risk Minimization). But then, one has to guarantee that the
1 Γ satisfies some technical, but unimportant for our purpose, measurability condition.

In order to avoid such technicalities, we will assume that Γ is countable.
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minimum of the empirical risk is “close” to the theoretical minimum. This is pre-
cisely the point where Vapnik-Chervonenkis bound drops in. Their fundamental
contribution is the upper bound of the quantity

Q(n, ε, Γ, µ) = Pr
{

sup
C∈Γ

|µn(C) − µ(C)| > ε

}
.

Remark 1. Note that

Pr
{

sup
C∈Γ

|L̂n(C) − L(C)| > ε

}
= Pr

{
sup
C∈Γ

|µn(C∆R) − µ(C∆R)| > ε

}
,

and by a slight notational abuse without any consequence on the final result2,
we take C := C∆R and Γ := Γ∆R = {C∆R : C ∈ Γ}.

We recall here this result :

Theorem 1 (Vapnik-Chervonenkis [21]). Let Γ be a class of Borel sets of
IRd with finite VC dimension V . Then, for nε2 ≥ 2,

sup
µ∈M1(IRd)

Pr
{

sup
C∈Γ

|µn(C) − µ(C)| > ε

}
≤ 4

(
2en

V

)V

e−nε2/8 .

Remark 2. For a very readable proof, see [7].

This bound actually provides an estimate of the worst rate of convergence of the
empirical estimator to the true probability.
To comment on the form of the previous upper bound, we notice that the expo-
nential term quantifies the worst deviation for a single set C and the polynomial
term characterizes the richness of the family Γ .
There have been several improvements for this type of bound since the pioneering
work of Vapnik and Chervonenkis [21](see Vapnik [23], Devroye[6], Pollard[16] ,
Alexander[1], Parrondo-Van den Broek [15], Talagrand[19], Lugosi [13]).
Many of these improvements resulted from theory and techniques in empirical
processes (see Pollard[16], Alexander[1], Talagrand[19]), and these works indi-
cated that the proper variable is ε

√
n (or nε2). Keeping this in mind, we can

summarize the qualitative behavior of VC-bounds by the following expression :

K(ε, V ) · (nε2)τ(V )︸ ︷︷ ︸
capacity

· e−nγε2︸ ︷︷ ︸
deviation

for nε2 ≥ M ,

with M constant, τ an affine function of V, γ ∈ [0, 2], and K(ε, V ) constant
independent of n, possibly depending on ε and V (ideally K(ε, V ) ≤ K(V )).

Once we have stated this general form for VC-bounds, we can address the fol-
lowing issues (both theoretically and practically) :
2 Indeed, for a fixed set R, we have V Cdim(Γ ) = V Cdim(Γ∆R). For a proof, see e.g.

[11].
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(a) What is the best exponent γ in the deviation term ?
(b) What is the correct power τ(V ) of n in the capacity term ?
(c) What is the order of the constant term K(V ) for the bound to be sharp ?

In Table 1, we provide the theoretical answers brought by previous studies, in a
distribution-free framework.

Table 1. Universal bounds

M K(ε, V ) τ (V ) γ

Pollard (1984) 2 8
(

e
V

1
ε2

)V
V 1/32

Vapnik-Chervonenkis (1971) 2 4
(

2e
V

1
ε2

)V
V 1/8

Vapnik (1982) 2 6
(

2e
V

1
ε2

)V
V 1/4

Parrondo-Van den Broeck (1993) 2 6e2ε
(

2e
V

1
ε2

)V
V 1

Devroye (1982) 1 4e4ε+4ε2
(

e
V

1
ε2

)V
2V 2

Lugosi (1995) V
2

4e(V + 1)
(

32e5

V 2
1
ε

)V

2V 2

Alexander (1984) 64 16 2048V 2

Talagrand (1994) 0 K(V ) V − 1
2

2

to conclude this brief review, we point out that in the above distribution-free
results, the optimal value for the exponent γ is 2 (which actually is the value
in Hoeffding’s inequality), and the best power achieved for the capacity term is
the one obtained by Talagrand V − 1

2 (see also the discussion about this point
in [19]). In most of the results, the function K(ε, V ) is not bounded as ε goes
to zero, and only Alexander’s and Talagrand’s bounds satisfy the requirement
K(ε, V ) ≤ K(V ).
Our point in the remainder of this paper is that the 2ε2 term under the expo-
nential can be larger in particular situations.

3 Rigorous distribution-dependent results

In the continuity of the results evoked in the previous section, one issue of
interest is the construction of bounds taking into account the characteristics
of the underlying probability measure µ.
There are some works tackling this problem but with very different perspectives
(see Vapnik [25], Bartlett-Lugosi [3], in a learning theory framework; Schuurmans
[17], in a PAC-learning framework; Pollard [16], Alexander [1], Massart [14], who
provide the most significant results in empirical processes).
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We note that :

– in learning theory, the idea of distribution-dependent VC-bounds led to oth-
er expressions for the capacity term, involving different concepts of entropy
as VC-entropy, annealed entropy or metric entropy, depending on the prob-
ability measure.

– while in the theory of empirical processes, a special attention was given to
refined exponential rates for restricted families of probability distributions
(see [1], [14]).

Our purpose is to formulate a distribution-dependent result preserving the struc-
ture of universal VC bounds with an optimal exponential rate and with some
nearly optimal power τ(V ), though we will keep the concept of VC dimension
unchanged3.
Indeed, we would like to point out that if we consider a particular case where
the probability measure µ underlying the data belongs to a restricted set P ⊂
M1(IRd), then the deviation term can be fairly improved. Our argument is bor-
rowed from large deviations results which provide asymptotically exact estimates
of probability tails on a logarithmic scale. A close look at the proof of the main
theorem in the case of real random variables (Cramér’s theorem, for a review,
see [2] or [18]) will reveal that the result holds as a non-asymptotical upper
bound. Thanks to this result, we obtain the exact term under the exponential
quantifying the worst deviation.

In order to formulate our result, we need to introduce the Cramér transform
(see the appendix) of a Bernoulli law with parameter p given by : Λp(x) =

x log
(

x
p

)
+ (1 − x) log

(
1−x
1−p

)
, for x in [0, 1].

Then, the uniform deviation of the empirical error from its expectation, for
a fixed family of probability distributions, can be estimated according to the
following theorem (a sketch of its proof is given in Sect. 6) :

Theorem 2. Let Γ be a family of measurable sets C of IRd with finite VC
dimension V , and P ⊂ M1(IRd) a fixed family of probability distributions µ.
Let Λp be the Cramér transform of a Bernoulli law with parameter p, let J =
{q : q = µ(C), (µ, C) ∈ P × Γ} and set p = argminq∈J | q − 1

2 |. For every
β > 0 , there exists M(β, p, V ) and ε0(β, p, V ) > 0 such that if ε < ε0(β, p, V )
and nε2 > M(β, p, V ), we have :

sup
µ∈P

Pr
{

sup
C∈Γ

|µn(C) − µ(C)| > ε

}
≤ K(V )(nε2)V e−n·(1−β)·Λp(ε+p) .

Remark 3. The corrective term β can be chosen to be as small as possible at the
cost of increasing M(β, p, V ).

3 However, we could use alternatively effective VC dimension which is a distribution-
dependent index (see [26] for details).



Distribution-Dependent Vapnik-Chervonenkis Bounds 235

Remark 4. Here we achieved τ(V ) = V instead of the optimal V − 1
2 found by

Talagrand in [19]. However, refining the proof by using a smart partitioning of
the family Γ should lead to this value.

Remark 5. Note that the result above can be extended to the other fundamental
problems of statistics as regression or density estimation.

4 Comparison with Universal VC Bounds

To appreciate the gain in considering distribution-dependent rates of convergence
instead of universal rates, we provide a brief discussion in which we compare the
Λp(ε + p) in our result with the universal γε2.

First, we point out that even in the worst-case situation (take P = M1(IRd))
where p = 1

2 , we have a better result since Λ = Λ 1
2
(ε + 1

2 ) ≥ 2ε2 (see Fig. 1).
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Fig. 1. Comparison between Λ = Λ 1
2
(ε + 1

2 ) and 2ε2.

In the general case when p 6= 1
2 , we claim that the distribution-dependent VC

bound obtained in Theorem 2 is of the same type of universal bounds listed
in Sect. 2. In order to make the comparison, we recall a result proved by W.
Hoeffding :

Proposition 1 (Hoeffding [10]). For any p ∈ [0, 1], the following inequality
holds :

Λp(ε + p)
ε2

≥ g(p) ≥ 2 ,
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where the function g is defined by :

g(p) =




1
1 − 2p

log
(

1 − p

p

)
, if p < 1

2

1
2p(1 − p)

, if p ≥ 1
2 .

With the help of Fig. 2, the comparison between g(p) and the values of γ becomes
quite explicit. Indeed, it is clear that, as soon as p 6= 1/2, we have a better bound
than in the universal case.
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γ = 1/8 

Fig. 2. Comparison between distribution-dependent g(p) and universal γ’s.

5 PAC-Learning Application of the Result

A PAC-learning formulation of distribution-dependent VC bounds in terms of
sample complexity can easily be deduced from the main result :

Corollary 1. Under the same assumptions as in Theorem 2. The sample com-
plexity N(ε, δ), that guarantees :

Pr
{

sup
C∈Γ

|µn(C) − µ(C)| > ε

}
≤ δ

for n ≥ N(ε, δ), is bounded by :

N(ε, δ) ≤ max

(
2V

Λ
log

(
2V ε2

Λ

)
,
2
Λ

log
(

K(V )
δ

))
where Λ = (1 − β) · Λp(ε + p).
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Remark 6. In order to appreciate this result, one should consider that Λp(ε+p) '
g(p)ε2.

Proof. Consider n such that : (nε2)V ≤ enΛ/2. Then , taking the log and mul-
tiplying by ε2, we obtain : nε2 ≥ 2V ε2

Λ log(nε2). Thus, taking the log again,
we have log(nε2) ≥ log(2V ε2

Λ ) which we inject in the last inequality. We get :

n ≥ 2V
Λ log

(
2V ε2

Λ

)
. If n satisfies the previous condition, we have : (nε2)V e−nΛ ≤

e−nΛ/2, and we want K(V )e−nΛ/2 to be smaller than δ. Hence, n should also
satisfy : n ≥ 2

Λ log
(

K(V )
δ

)
.

As a matter of fact, Theorem 2 provides an appropriate theoretical foundation
for computer simulations. Indeed, in practical situations, a priori informations
about the underlying distribution and about realistic elements C of the family
Γ turn distribution-dependent VC bounds in an operational tool for obtaining
estimates of the effective VC dimension V and of the constant K(V ) as well (see
[26] for examples).

6 Elements of proof for Theorem 2

In this section, we provide a sketch of the proof of Theorem 2 (for a complete and
general proof, see [26]). It relies on some results from empirical processes theory.
The line of proof is inspired from the direct approximation method exposed by
D. Pollard [16] while most of the techniques and intermediate results used in
this proof are due to M. Talagrand and come from [19], [20].

First, note that if the family Γ is finite, the proof is a straightforward conse-
quence of Chernoff’s bound (see the appendix) together with the union-of-events
bound. In the case of a countable family, we introduce a finite approximation
Γλ which is a λ-net4 for the symmetric difference associated to the measure µ,
with cardinality N(Γ, µ, λ) = N(λ). We shall take λ = 1

nε2 .
The first step of the proof is to turn the global supremum of the empirical
process Gn(C) = µn(C)−µ(C) into a more tractable expression like the sum of
a maximum over a finite set and some local supremum. Then, the tail Q(n, ε, Γ, µ)
is bounded by A + B, where A is the tail of the maximum of a set of random
variables which can be bounded by :

A ≤ N(λ) max
C∗∈Γλ

Pr
{
|Gn(C∗)| > (1 − β

2
)ε

}
, (1)

4 If Γ is totally bounded, by definition, it is possible, for every λ > 0, to cover Γ by
a finite number of balls of radius λ centered in Γ . Consider a minimal cover of Γ ,
then a λ-net will be the set of all the centers of the balls composing this cover.
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and B is the tail of the local supremum of a family of random variables bounded
as follows :

B ≤ N(λ) max
C∗∈Γλ

Pr

{
sup

C∈B(C∗,λ)

|Gn(C) − Gn(C∗)| >
βε

2

}
, (2)

where B(C∗, λ) = {C ∈ Γ : µ(C∆C∗) ≤ λ}.
The probability tail in (1) can be bounded by large deviations estimates accord-
ing to Chernoff’s bound :

Pr
{
|Gn(C∗)| > (1 − β

2
)ε

}
≤ 2e−n·Λp((1− β

2 )ε+p) ,

where p = argminq : q=µ(C), (µ,C)∈P×Γ | q − 1
2 |.

The estimation of (2) requires the use of technical results on empirical process-
es mainly from [19] and [20] : symmetrization of the empirical processes with
Rademacher random variables, decomposition of the conditional probability tail
using the median, application of the chaining technique. In the end, we introduce
the parameter u to obtain the bound :

B ≤ 4N(λ)
(

2e−
β2ε2

1024u + e
− 1

2n2u log
(

nu
64m1

)
+ e

−nβε
64 log

(
βε

128m2

))
= 4N(λ) (D + F + G ) ,

(3)

where m1 = k1(V ) · (1/nε2) · log(k2 nε2)), and m2 = k3(V ) · (1/nε) · log(k2 nε2)).
The meaning of each of the terms in (3) is the following : D measures the
deviation of the symmetric process from the median, F controls its variance and
G bounds the tail of the median which can be controlled thanks to the chaining
technique.
To get the proper bound from (3), one has to consider the constraint on u :

u ∈ I =
[

k5(β, p, V )
n log(nε2)

, k4(β, p) · 1
n

]
,

which leads to the condition : nε2 > M(β, p, V ).
To get the desired form of the bound, we eventually apply a result due to D.
Haussler [8]:

N(λ) ≤ e(V + 1)
(

2e

λ

)V

,

and set λ = 1
nε2 , u ∈ I, which ends the proof.
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7 Appendix - Chernoff’s bound on large deviations

We remind the setting for Chernoff’s bound (see [2] for further results).

Consider ν a probability measure over IR. ν̂ : IR −→]0, +∞] is the Laplace
transform of ν, defined by ν̂(t) =

∫
IR etx ν(dx).

The Cramér transform Λ : IR −→ [0, +∞] of the measure ν is defined, for x ∈ IR
, by

Λ(x) = sup
t∈IR

(tx − log ν̂(t)) .

If we go through the optimization of the function of t inside the sup (it is a simple
fact that this function is infinitely differentiable, cf. e.g. [18]), we can compute
exactly the optimal value of t. Let t(x) be that value. Then, we write

Λ(x) = t(x)x − log ν̂(t(x)) .

Proposition 2 (Chernoff’s bound). Let U1, ..., Un be real i.i.d. random vari-
ables. Denote their sum by Sn =

∑n
i=1 Ui. Then, for every ε > 0, we have :

Pr {|Sn − ESn| > ε} ≤ 2e−nΛ(ε+EU1)

where Λ is the Cramér Transform of the random variable U1.
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