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ABSTRACT. We develop and implement an efficient algorithm to estimate the 5
parameters of Heston’s model from arbitrary given series of joint observations for
the stock price and volatility. We consider the time interval T separating two ob-
servations to be unknown and estimate it from the data, thereby estimating 6 pa-
rameters with a clear gain in fit accuracy. We compare the maximum likelihood
parameter estimates based on a Euler discretization scheme to analogous estimates
derived from the more accurate Milstein discretization scheme; we derive explicit
conditions under which the two set of estimates are asymptotically equivalent,
and we compute the asymptotic distribution of the difference of the two set of es-
timates. We show that parameter estimates derived from the Euler scheme by con-
strained optimization of the approximate maximum likelihood are consistent, and
we compute their asymptotic variances. Numerically, our estimation algorithms
are easy to implement,and require only very moderate amounts of CPU. We have
performed extensive simulations which show that for standard range of the pro-
cess parameters, the empirical variances of our parameter estimates are correctly
approximated by their theoretical asymptotic variances.

1. Introduction. Derivatives such as futures and options were introduced to be
used as hedging tools, and are now heavily traded in the market. Trading prices
for these derivatives are indicators of market expectations for the near future. Due
to high volatilities, efficient hedging tools require accurate pricing of these deriva-
tives. To evaluate option prices through robust model based inference from asset
dynamics data, it is crucial that the underlying joint stochastic dynamics of the
asset price and volatility be calibrated correctly. Our objective here is to propose
a fast and robust parameter estimation algorithm for such pairs of coupled SDEs,
with good quantitative control for the accuracy of these estimates.

Stock price volatilities are notoriously not constant in time[22]. Local volatility
models consider the volatility to be dependent on time and the underlying asset[11]
[12][24]. Stochastic volatility models drive volatility and price dynamics by cor-
related Brownian processes[17][25][26][27][28]. Various methods have been pro-
posed for estimation of stochastic volatility models[1][4][8][14][29]. [1] employs
Maximum Likelihood using a Hermite approximation of the likelihood function.
[4] develops a weighted non parametric approach to determine the risk-neutral
measure of the future states of the market. Bayesian estimation is proposed in
[29]. We focus our analysis on parameter estimation for the often used pair of
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coupled SDEs introduced by Heston to price options [17]. Feller’s “square root”
SDE [15] for volatility was first applied by Cox, Ingersoll and Ross to model short
term interest rates [9]. We do not study here the pragmatic suitability of such SDEs
to model the joint dynamics of stock price and volatility, but focus on generating
easily computable parameter estimates from finite sets of observed data, and on
the simultaneous evaluation of the estimates’ accuracy. In this context, there is
no closed form expression for the log-likelihood or the joint density of price and
volatility.

Heston’s pair of coupled SDEs for price and volatility involve 5 unknown param-
eters. We derive robust parameter estimates from an approximate maximum like-
lihood principle applied to the Euler discretization scheme for SDEs. The time
interval T between consecutive observations, is not fixed a priori but also simulta-
neously estimated from the data.

We evaluate asymptotic variances for these consistent parameters estimates, and
compare their accuracy to a second group of estimates based on the more elabo-
rate Milstein discretization scheme for SDEs. The Milstein scheme approximates
underlying diffusion processes with L2 norm accuracy equivalent to T, while the

Euler scheme accuracy is of the order of
√
T[21]. We derive explicit conditions to

force the Euler scheme parameter estimates to remain very close to the Milstein
scheme estimators, and we compute the asymptotic distribution of the differences
between these two types of estimators. We show that the estimators obtained are
consistent. Numerically, our estimation algorithms are easy to implement,and re-
quire only very moderate amounts of CPU. Our extensive simulations show that
for standard ranges of the process parameters, the empirical variances of our pa-
rameter estimates are correctly approximated by their theoretical asymptotic vari-
ances.

2. Heston’s coupled SDEs for volatility and asset price. Consider Heston’s clas-
sical coupled SDE system (under market measure) [17]

dSt = (µ − 1

2
Xt)dt+

√
XtdW1(t) (1)

dXt = κ(θ − Xt)dt+ γ
√
XtdW2(t). (2)

At time t, Yt = exp(St) is the asset price and
√
Xt is its volatility. The squared

volatility Xt is a mean reverting square root process [9] with mean reversion speed
κ > 0 and volatility γ. Processes W1(t), W2(t) are correlated Brownian motions
with E[dW1(t)dW2(t)] = ρ dt. Parameters µ and θ are respectively the mean rate
of return of the asset under market measure, and its long run average variance.
Existence and uniqueness of the solution for these SDEs is well known[16]. Denote
the vector of model parameters by PAR = (µ, κ, θ, γ, ρ) and assume the following
classical constraints to be satisfied

κ > 0, γ > 0, θ > 0, −1 ≤ ρ ≤ 1, 2κθ > γ2

The last constraint 2κθ > γ2 is Feller’s square root condition [15] ensuring that Xt

stays a.s. away from 0, so that X0 > 0, then forces Xt to remain positive. Let

m = 2κθ
γ2 and ν = γ2

2κ .
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The conditional density of Xt given Xs is a non central χ2 with 2m degrees of free-

dom. Its steady state density p(x) is given by
xm−1exp( −x

ν )
νmΓ(m)

[9].

By integrating (2) and taking expectations, one easily obtains explicit expres-

sions for E[Xt] and E[X2
t ], which show that as t → ∞ the mean and variance of Xt

converge at exponential speed towards θ and γ2θ
2κ respectively.

The joint density of {St,Xt}, has no explicit closed form. We want to estimate the
5 model parameters given a finite series of joint observations for the stock price
{Yt} and square of volatility {Xt}. Note that in practice the volatility Xt is not
directly observed. Good practical estimates of Xt have been proposed and used
[2][3][7][10][13]. To focus on parameter estimation, we will assume here that the
volatility is directly observed.

Let (U0,U1, . . .UN+1) and (V0,V1, . . .VN+1) be N + 2 joint observations for the log
of asset price and the square of volatility at time points t0 < t1 < · · · < tN+1, so
that

Un = Stn Vn = Xtn

We assume that the time interval T = tn+1 − tn is fixed but unknown, to inject an
adjustable time scale in model fitting. We want to select optimal T and PAR to
achieve the best fit of the data by Heston’s SDE system.

3. Approximate log-likelihood based on Euler Discretization. Euler discretiza-
tion scheme for the SDE system provides the following difference equations, link-
ing the one step differences ∆Un, ∆Vn, ∆W1(n) and ∆W2(n),

∆Un = (µ − 1

2
Vn)T +

√
Vn∆W1(n)

∆Vn = κ(θ −Vn)T + γ
√
Vn∆W2(n) (3)

Due to the presence of a square root term, the coefficients of our SDEs do not sat-
isfy a global Lipschitz condition and therefore standard results on L2 convergence
for the Euler discretization do not apply here. However one can show that, un-
der the parametric restrictions stated above, if the process and its Euler discretized
approximation are both killed at the first (random) time the volatility becomes
smaller than a fixed ǫ > 0, then weak convergence of the Euler approximation
scheme will hold in the associated space of continuous paths, endowed with an
adequate natural metric. In particular, in order to ensure thatVn remains in (0, ∞),
sufficiently small discretization step sizes have to be imposed. The recent paper
[19] develops efficient modified Ito-Taylor schemes to overcome both these diffi-
culties, but we have not yet implemented their interesting approximation scheme.
From (3) we get

√

V(n)∆W1(n) = ∆U(n)− (µ − 1

2
V(n))T

γ
√

V(n)∆W2(n) = ∆V(n) − κ(θ −V(n))T,
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The independent random vectors Zn+1 = (∆W1(n), γ∆W2(n)) are Gaussian with

zero mean, variances T and γ2T, and covariance ργT. Denote the coordinates of
Zn+1 by (z1(n + 1), z2(n + 1)).The joint density of {Z1}, ..., {ZN} is:

f (Z1,Z2, ....,ZN) = ΠN
n=1 f (Zn).

The maximum likelihood principle leads us to select the 6 unknown parameters T
and PAR to maximize the log-likelihood LL given by

LL =: ln f (Z1,Z2, ....,ZN) =
N

∑
n=1

ln f (Zn).

The bivariate normal density of Zn is completely determined by the covariance
matrix of Zn, and an easy computation then yields

1

N
LL = −1

2
ln(2πγ2T(1− ρ2)) −

1

2Nγ2T(1− ρ2)

N

∑
n=1

(γ2z21(n) − 2ργz1(n)z2(n) + z22(n)) (4)

where z1(n) =
∆Un−(µ− 1

2Vn)T√
Vn

and z2(n) = ∆Vn−κ(θ−Vn)T√
Vn

.

A necessary condition to maximize LL is to let all its first derivatives be equal
to zero :

∂L

∂θ
=

N

∑
n=1

((z2(n) − ργz1(n))
∂z2(n)

∂θ
) = 0 (5)

∂L

∂κ
=

n

∑
n=1

((z2(n) − ργz1(n))
∂z2(n)

∂κ
) = 0 (6)

∂L

∂γ
= NTγ2(1− ρ2) + ργ

N

∑
n=1

z1(n)z2(n)−
N

∑
n=1

z22(n) = 0 (7)

∂L

∂ρ
= Nρ(1− ρ2)γ2T + (γ + ρ2γ)

N

∑
n=1

z1(n)z2(n)− ρ
N

∑
n=1

(γ2z21 + z22) = 0

(8)

where z1(n), z2(n) are as in equation (4).

For the derivative ∂L
∂µ , we use the simpler log-likelihood based only on the SDE

verified by St, which does not make a significant difference in the estimates:

∂L

∂µ
=

N

∑
n=1

(
∆Ui − (µ − 1/2Vn)T

Vn
) = 0 (9)

Solving the 5 equations (5) − (9) is achieved numerically by gradient descent, in
order to compute the maximum likelihood parameter estimates based on Euler
discretization. We come back to the detailed study of these estimates below. In
principle a more accurate discretization scheme with faster speed of convergence
to the true SDE solutions could also be used to generate an approximation of the
log-likelihood, and then could provide parameter estimates by maximizing the
log-likelihood. We first show why, for parameter estimation, there is no real ad-
vantage in using more precise but more complex discretizations. We focus below
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on the Milstein discretization scheme, which approximates in L2 the true SDE so-

lution with accuracy of order T, instead of the
√
T accuracy provided by the Euler

scheme[21][19].

4. Milstein discretization scheme. Equations (1) and (2) in integral form are:

St = Sto +
∫ t

to
(µ − 1

2
X(s))ds+

∫ t

to

√

X(s)dW1(s)

Xt = Xto +
∫ t

to
κ(θ − X(s))ds+

∫ t

to
γ
√

X(t)dW2(s)

Expand the integrals by Stochastic Taylor expansion[6] to obtain the following dis-
cretization:

∆Un = (µ − 1

2
Vn)T +

√
Vn∆W1(n) +

γ

2
An

∆Vn = κ(θ −Vn)T + γ
√
Vn∆W2(n) +

γ2

2
Bn (10)

where

An =
∫ tn+1

tn

∫ s

tn
dW2(u)dW1(s) Bn =

∫ tn+1

tn

∫ s

tn
dW2(u)dW2(s)

are martingales with mean zero [23], variance T2

2 and Cov(An Bn) = ρT2

2 .

As seen above for the Euler scheme, an approximate log-likelihood can be for-
mally computed from the Milstein difference equation, and then one can compute
the first derivatives of this approximate log-likelihood to set them equal to zero.
The derivatives of the additional terms in the Milstein scheme are zero with re-
spect to all parameters except γ. The functional form of the first order equations
for κ, θ, γ, ρ is hence essentially the same for both discretizations.

Denote this system of first order equations by F(PAR,Z) where PAR = (κ, θ, γ, ρ),
Z = (z1(1), z1(2), . . . , z1(N), z2(1), z2(2), . . . , z2(N)). We do not need to consider
the equation corresponding to µ here since conditions corresponding to µ can be
easily analyzed separately. Denote by (PARE, ZE) and (PARM, ZM) the param-
eter estimates and data vectors respectively corresponding to the Euler and the
Milstein schemes. Define

∆PAR = PARM − PARE ∆Z = ZM − ZE,

A first order Taylor expansion of F at point (PARE,ZE) gives:

F(PARM, ZM) = F(PARE, ZE) +
∂F

∂PAR
.∆PAR+

N

∑
i=1

(
∂F

∂z1(i)
.
∂z1(i)

∂PAR
+

∂F

∂z2(i)
.
∂z2(i)

∂PAR
).∆PAR+

∂F

∂Z
.∆Z (11)

where ∆PAR is a 4× 1 vector, and all partial derivatives are matrices of adequate
dimensions, evaluated at (PARE,ZE). By definition of PARM, the left hand side of
the above equation is zero :

− (
∂F

∂PAR
+

N

∑
i=1

(
∂F

∂z1(i)
.
∂z1(i)

∂PAR
+

∂F

∂z2(i)
.
∂z2(i)

∂PAR
)).∆PAR =

∂F

∂Z
.∆Z (12)
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The difference ∆PAR between our two vector estimates can be computed by in-
verting the preceding linear system, and of course depends on T. Using this ex-
pression for ∆PAR, and for any fixed small tolerance level η, we can compute a
corresponding explicit upper bound for T, compelling each coordinate of ∆PAR to
have variance less than η.

We also derive the asymptotic distribution of ∆PAR for large N. As N → ∞ the
coefficient matrix of ∆PAR divided by N in the preceding linear system converges
to the constant 4× 4 symmetric matrix f , where all coefficients are zero except the
following ones

f11 =
T

2κ(1− ρ2)
f22 =

κ2T

γ2(1− ρ2)θ
f33 =

2− ρ2

γ2(1− ρ2)

f43 = f34 =
−ρ

γ(1− ρ2)
f44 =

1+ ρ2

(1− ρ2)2

Denote the right hand side of the linear system (12) above by R = ∂F

∂Z
.∆Z. We

show that as N → ∞ the random vector R√
N
is asymptotically Gaussian with mean

zero and a limit covariance matrix Σ which we compute explicitly.

The two last results just mentioned show that as N → ∞,
√
N times the difference√

N (PARM − PARE) between the two groups of parameters estimates deduced
from the Milstein and Euler schemes becomes asymptotically Gaussian with mean
zero and an explicitly computed covariance matrix. Using these results, we have
derived, for fixed largeN, an explicit bound τ on Twhich will force the easily com-
puted Euler scheme parameter estimates to remain reasonably close to the more
accurate (but far harder to compute) estimators based on Milstein’s discretization.

5. Constrainedparameter estimationbased on Euler discretization. As just shown,
the Euler discretization, combinedwith an adaptive computable upper bound τ on
T, generates controllably accurate parameter estimators for the Heston SDEs. The
constrained estimation problem is now reduced to themaximization of LL(T, PAR)
as a function of T and PAR under the following constraints:

κ > 0, γ > 0, θ > 0, 2κθ > γ2, −1 ≤ ρ ≤ 1, T < min {τ,
2

κ
},

where T <
2
κ ensures convergence of the Euler scheme[18].The constraint on T de-

pends on the parameter vector PAR. But PAR itself is unknown and its estimator
depends on T. So we implement a sequence of alternating estimations by gradi-
ent descent for PAR and T, iterating until the estimates stabilize, according to the
following steps :

• Start with initial value PAR0 = (µ θ κ γ ρ)
• kth iteration generates estimate PARk from PARk−1 by 1-step gradient de-

scent
• Compute Control Bound τk for T to get τk = f(data, PARk)
• Compute Unconstrained Estimate of T denoted Topt = g(data, PARk)
• Compute Tk+1 = min {Topt, τk}
• Compute PARk+1 = argmaxPAR LL(Tk+1, PAR)
• Continue till the sequence of estimates PARk and Tk stabilize
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At each iteration the expression for Topt is an explicit closed form function of the
data and PAR.

5.1. Estimation of the vector of parameters PAR. At each iteration for a fixed
value of T we get the following Maximum Likelihood Estimates:

µ̂ =
∑

N
n=1

∆Un
Vn

+ NT
2

T ∑
1
Vn

θ̂ =
∑

N
n=1

∆Vn
Vn

+ κNT− ργ ∑
N
n=1

z1(n)√
Vn

κT ∑
N
n=1

1
Vn

κ̂ =
ργ ∑

N
n=1 z1(n)

√
Vn − ∑

N
n=1 ∆Vn + Ng

T(∑
N
n=1Vn − N2

∑
N
n=1

1
Vn

)

where g =
∑

N
n=1

∆Vn
Vn

−ργ ∑
N
n=1

z1(n)√
Vn

∑
N
n=1

1
Vn

. The parameters ρ and γ are estimated numeri-

cally since there is no explicit form for them in terms of the sample only. All the
estimates are evaluated at each iteration which is performed till the estimates sta-
bilize. In the next subsection we show the consistency and asymptotic variance of
the estimates.

5.2. Consistency of estimates. We show the consistency in L2 norm of all 5 param-
eter estimators using the explicit expressions obtained for them[5][20]. Rewrite the
parameter estimates as:

µ̂ = µ +
∑

N
n=1

∆W1(n)√
Vn

T ∑
N
n=1

1
Vn

θ̂ = θ +
γ ∑

N
n=1

∆W2(n)√
Vn

− ργ ∑
N
n=1

z1(n)√
Vn

κT ∑
N
n=1

1
Vn

γ̂ =
−ρ ∑

N
n=1 z1(n)z2(n) +

√

(ρ ∑
N
n=1 z1(n)z2(n))2 + 4NT(1− ρ2) ∑

N
i=1 z

2
2(n)

2NT(1− ρ2)

Dividing the numerator and denominator by N in the above equations and ob-

serving the independence of {∆W1(n)√
Vn

}1≤n≤N and the fact that

∑
N
n=1 z1(n)z2(n)

N → ργT
∑

N
n=1 z

2
2(n)

N → γ2T

we have

µ̂ → µ θ̂ → θ γ̂ → γ

The consistency of κ̂ can be shown by observing that as N → ∞

κ̂ →
κT(θ − N

∑
1
Vn

)

T
N (∑

N
n=1Vn − N2

∑
N
n=1

1
Vn

)

From the ergodicity of the Markov chain Vn we obtain
∑

N
n=1Vn

N → θ which
implies the consistency of κ̂. The consistency of ρ̂ is proved similarly. Therefore all
the parameter estimates derived from the Euler scheme are consistent.
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5.3. Asymptotic variance of the Euler scheme parameter estimators. For large

values of N, 1
N ∑

N
i=1

1
Vi

is close to 1
θ and we obtain

Var(µ̂) ≃ θ

NT
, Var(θ̂) ≃ θγ2(1− ρ2)

κ2NT
, Var(κ̂) ≃ γ2κθ3

2(θ2 − 1)2N
, Var(ρ̂) ≃ 1+ ρ2

N

Var(γ̂) ≃ (4(2− s) + 2ρ2(s− 1))γ2

2N(1− ρ2)2
, s =

√

(2ρ4 − 3ρ2 + 4)

6. Results of empirical tests. We have performed many numeric simulations of
the preceding iterative computation of estimates, and we have always observed
that the estimation scheme is actually convergent. We observe that even for moder-
ate values of N the estimates are good. We present below the estimates and empir-
ical variances of these estimators for different values of N. The tests were made on
simulated diffusion processeswith simulation step δ = 10−3, (U0,U1 . . .UN+1),
(V0,V1, . . .VN+1) observed at t0, t1, . . . , tN+1 with the true value of T = tn+1 −
tn = .005 = 5δ. The empirical variances of our parameter estimates were com-
puted over 50 simulated trajectories, and then compared to the theoretical vari-
ances obtained above. We observe a good fit between empirical and theoretical
variances.
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