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Abstract

In Europe traffic accidents are now widely recorded in national data bases. In view of the massive

amounts of accident data, the use of data mining tools is essential to sift truly relevant information,

and to extract reliable relations between injuries severity and potential causation factors. We present

an innovative data mining approach for in depth investigation of causation in accidents data bases.

Classical statistical tools evaluate the strength of potential causal relationships by essentially linear

techniques, or strongly rely on ad hoc specific models. We outline here how mutual information ratios

(based on conditional entropies) contribute to rigorously quantify the influence of causation factors

on accident outcome descriptors such as injury type and severity. Information theoretic methods
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help to automatically select small groups of factors with high causation impact on accidents severity,

with no hypothesis on underlying relations between observed variables. We successfully apply this

approach to the analyze causation factors in the German In Depth Accident Study data base, which

is one of the largest and most complete in depth accident survey and data collection in Europe.

Key Words: mutual information, conditional entropy, risk analysis.

This work was conducted in the framework of the European project TRACE (Traffic ACcidents in Europe).

1 Introduction

Traffic accidents are a major concern due to their economic and social costs, and above all, because

accident injuries are often incapacitating or fatal. Accident injuries can be caused by a large number

of factors, including human, vehicle, safety or environment factors. Traffic accidents in Europe are in-

creasingly stored in large data bases, systematically recording many descriptive fields. In the German

In Depth Accident Study (GIDAS) database, dedicated to traffic accidents in Germany, more than 800

fields are assigned to describe each accident and more than 2000 new accidents are stored each year.

Intensive data mining on such data bases is clearly a major task to address. Extraction of significant

accident causation factors hidden in massive databases is an important goal to improve our knowledge on

traffic accidents and traffic safety. New preventive actions can also emerge from in depth investigations

of accidents data, with one objective, to reduce the rate and severity of accidents.

The strength of potential causation relations between accidents descriptors and injury severity needs to

be quantified, or statistically estimated. The types and severity of injuries are essentially described by a

small number of indicators, refereing to the main injured body parts. But the list of potential causation

factors for injuries severity is very large. Depending on the nature of the variables involved, the strength

of their causal dependency is measured differently. For continuous variables, the correlation coefficient

ρ2 is a long-standing measure of statistical dependence between variables, and is often used in accidents

analysis (Huang et al., 2007). For categorical data, statistical dependence is often quantified by Cramers
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V , based on the χ2 statistics. The Cramer indicator provides a zero-to-one range value comparable to

ρ2.

In modeling approaches, severities are expressed as deterministic or stochastic functions of explanatory

variables such as vehicle descriptors, drivers characteristics, or road conditions. When severity is cat-

egorized by a few predetermined levels, disaggregate models have been applied to examine odds ratio

(ODonnell et al, 1996). Ordered probit or logit models have been used to analyze injury severity fre-

quencies (Abdel, 2003; Yamamoto et al., 2004; Milton et al, 2008). An important task prior or during

severity modeling is to select the most relevant explanatory variables. Modeling methods are often ex-

pected to perform better when the set of explanatory variables increase. However the key explanatory

variables may often constitute only a restricted subset of the available variables, and many variables may

be irrelevant or even harmful to build a pertinent model. In the modeling approach, the selection of

explanatory variables is mainly performed by stepwise regression associated with Bayesian Information

Criteria (BIC) or Akaike Information Criteria (AIC) criteria, or by standard regression associated with

Student’s test to eliminate variables with no significant impact (Yau, 2004).

Dependence coefficients as well as modeling rely on specific underlying hypotheses. Correlation coeffi-

cients are known to measure only linear dependencies between variables. If variables are linked by non

linear relations, then the use of correlation is definitely not the most efficient choice. During a stepwise

or backward linear regression, variables are selected according to multivariate linear coefficients R2. For

categorical data, the χ2 tests of dependence reaches its limits when the numbers of joint observations is

small. For data bases with large numbers of descriptive fields, prior knowledge of functional relationships

between variables is never directly available and consequently, the use of correlation coefficients, based

on linear assumptions, can be totally inappropriate to measure statistical dependencies (Li, 1990). For

qualitative variables, in case of sparse contingency tables, the Cramers V indicator, based on χ2 test, can

also be inappropriate.

Mutual information (MI), introduced by Shannon (1949) is a measure of statistical dependence which

is able to catch complex relation between variables, even in cases of non linear dependence (Billingsley,
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1965; Cover et al., 1991). Mutual information ratios can be computed within discrete, continuous and

discrete-continuous variables (Brillinger, 2004), and provides also a powerful extension of the classical

correlation and Cramers V measures. Mutual information has been successfully applied in numerous

practical situations. It has been introduced to identify temporal lags for non linear models (Granger et

Lin; 1994). In the spectral domain, MI has been used to infer frequency statistical dependence between

seismic time series (Brillinger et Guha, 2006), but never to traffic accident analysis. In preparatory

analysis of accident data prior to model building, we have validated that, because it is model independent,

mutual information is a powerful tool to select the most relevant variables (Mougeot et Azencott 2007).

2 Mutual Information

Mutual information, based on conditional entropy, quantifies the relation between two random variables

X and Y. For example, Y can be an injury severity descriptor and X a potential accident causation factor.

The Entropy measures the average quantity of information provided by the knowledge of the actual

value of a random variable. For a random variable X with modalities αi and occurrence probabilities

pi = Probability(X = αi), 1 ≤ i ≤ m, the entropy, HX , is defined by:

HX = −
m∑

i=1

pilog(pi) (1)

with the convention, 0log(0) = 0.

If X is deterministic, its entropy is minimal, and HX=0: knowing the actual values taken by X in

random trials brings no new information since X is constant. But if X has a uniform distribution, its

entropy is maximal: HX = −log(m): all actual new values of X, which have the same probability to

occur, bring new information.

For two discrete variables X and Y, with modalities αi and βj , and with joint probabilities pij =

Probability(X = αi, Y = βj), 1 ≤ i ≤ m, 1 ≤ j ≤ p, the joint entropy, HX,Y is defined by:

HX,Y = −
p∑

j=1

m∑

i=1

pij log(pij) (2)
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Conditional entropy HY/X quantifies the average information brought by discovering the actual

value of Y when the value of X is already known, and is defined by:

HY/X = −
p∑

j=1

m∑

i=1

pij log(pj/i) (3)

pj/i denotes the conditional probability of Y = βj given that X = αi. If X and Y are independent,

then HY/X = HY : knowing the value of X doesn’t bring any information about the value of Y.

Mutual information, based on conditional entropy, is a measure of statistical dependence between

two variables X and Y. IX,Y quantifies the average amount of information about the actual value of Y

provided by the knowledge of the actual value of X.

IX,Y = HY −HY/X (4)

Normalized by the entropy of variable Y, the mutual information ratio (MIR), RX,Y , is a zero to one

range measure of the dependence of X and Y.

RX,Y =
IX,Y

HY
(5)

For two independent variables X and Y, prior knowledge of X doesn’t provide any information on Y,

and RX,Y = 0. But if a deterministic functional relation exists between X and Y, then prior knowledge

of X completely determines the value of Y, and the mutual information ratio is maximal: RX,Y = 1.

Some illustrative examples are presented in figure 1. In these toy examples of joint distributions, X

and Y each have 4 modalities: a, b, c, d for X and A,B, C, D for Y. The number of observations remains

equal to 100 for all cases, but the proportion of deterministic coupling between modalities of X and Y

ranges from case to case.

INSERT FIGURE 1
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For the 1st joint distribution (left display), there is a one-to-one deterministic relation between X

and Y, and MIR equals 100%. For the 2nd distribution (right display), given any modality of X, all

modalities of Y are equally probable, and MIR equals 0; X modality brings no information to forecast

any Y modality. For the last joint distribution (center display), most modalities of X have a one-to-one

relation with a specific modality of Y, but for one X modality, the Y value remains ambiguous: in this

case MIR equals 68%.

The random variables X and Y considered above take only a finite set of possible values (m modalities

for X and p for Y). It is however possible to define the mutual information IX,Y for continuous random

variables. Conditional entropy, from an actual set of continuous observations of X and Y, impose the

discretization of the possible values of both variables X and Y. Consider a continuous random variable

X, taking values in the space of real numbers R, with a density function f(x) defined on the support

[A,B], it is possible to partition the interval [A,B] into m disjoint intervals J1, J2, . . ., Jm and to select

an arbitrary point of the distribution Dk in each interval Jk (1 ≤ k ≤ m). The ”discretized” random

variable is defined as Um = Dk whenever the random value of X falls in Jk. The random variable Um

takes only a finite number of m values. As ”m” tends to infinity, this classical discretization scheme

provides, from the point of view of measure theory, a good approximating sequence of X by the sequence

of random variables Um.

The absolute entropy HUm can be computed as defined earlier since variable Um takes only a finite

number of modalities. Same methodology, used for Y, leads to define and compute MIR for continuous

variables.

2.1 Estimation of Mutual Information

In operational cases, exact joint distributions of variables are naturally unknown and MIR must be

estimated. Consider N independent observations of (X, Y) extracted from an accident database. Let

vk
ij = 1 when X = αi and Y = βj for observation k and let vk

ij = 0 otherwise. Joint probabilities can be
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estimated as follow:

p̂ij =
1
N

N∑

k=0

vk
ij

The plug-in estimate of the mutual information ratio is then ÎX,Y = ĤY − ĤY/X with

ĤX,Y = −
p∑

j=1

m∑

i=1

p̂ij log(p̂j/i) (6)

and

R̂X,Y =
ÎX,Y

ĤY

(7)

Theoretical results can be achieved to quantify the error between entropy and its empirical estimate

using a set of observations. For a categorical variable X with m modalities and for a large number of N

observations, the error between HX and ĤX can be approximated by a Gaussian random variable with

zero mean and standard deviation equaled to log(m)/
√

(mN) (Azencott 2006).

Here, we use a bootstrap aggregating procedure to compute a consistent estimation of RX,Y . The

Mutual information ratio is estimated using B replications of the same unit procedure. For each repli-

cation, an estimation of RX,Y is computed from a subset of observations (95%) chosen at random from

the original data set and R̂b
X,Y denotes the estimation of R̂X,Y for replication b. R̂X,Y is estimated by

averaging the estimates Rb
X,Y over the B replications.

R̂X,Y =
1
B

∑

b

R̂b
X,Y (8)

From an asymptotic point of view, when the number of observations N tends to infinity, the bootstrap

distribution tends to be equaled to the original distribution (Efron and Tibshirani 1993), and for GIDAS

data, the large number of available observations (N ' 11500) leads to use the bootstrap aggregating

procedure. A similar bootstrap procedure is used to compute confidence intervals. The confidence

intervals are similar to the theoretical approach.
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2.2 Selection of factors using mutual information ratio

Given a specific injury severity indicator Y and p potential causation factors (X1, . . . , Xp), mutual infor-

mation is used to estimate statistically the strength of the causal relationship between Y and this specific

group of factors. First, we compute separately the mutual information ratios between Y and each Xj ,

j ≤ j ≤ p, using equation (7). To compare the individual influence levels of Xj on the severity indicator

Y, the MIR coefficients RXj ,Y are ordered by decreasing magnitude. We denote X(1) the factor with the

largest MIR, which has the highest predictive power for Y.

R̂X(1),Y = max{j}
{
RXj ,Y

}
(9)

Each MIR coefficient lies between 0 and 100%, and evaluates the percentage of information on the value

of Y which is provided by X .

Mutual information can also be computed for multivariate factors (Joe, 1989). Let X = (Xi1 , . . . , Xik
)

be a multivariate variable regrouping k factors (k ≤ p). The MIR of Y with respect to X is computed as

above using natural extensions of equations (6) and (7). To select a group of k factors having the highest

joint predictive power for Y, we proceed as above for single factors, and hence select the group G of k

factors with the highest MIR ratio R(G,Y). Among all groups of k factors , the group G best explains the

Y values. This method provides also an efficient and rigorous way of constructing increasing hierarchies

of causation factors for a given severity indicator Y .

2.3 MIR and analyze of dependence for accident data

Mutual information ratio is a non parametric measure of association between at least two variables,

Y and X. It can be applied to symbolic data (categories) as well as numerical data. In the bivariate

case, mutual information is the Kullbak-Liebler distance between the joint distribution of (X,Y ) and the

product of its marginal X, Y (Brillinger, 2004). As MI measures the general dependence, the correlation

function, (ρX,Y equation 10), is restricted to measure the linear dependence between both variables and

is restricted to numerical observations (Li, 1990) .
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ρX,Y =

∑
i,j pi,j(Xi − X̄)(Yj − Ȳ )

σXσY
(10)

where σX and σY are the standard deviation of X and Y.

MI is, in particular, invariant under strictly monotone transformation of the initial random variables.

If two different strictly monotone functions are applied independently on both variables, the new MIR

computed on the transformed variables doesn’t change. On the opposite for the correlation function, as

the probabilities of occurrence of observations pi,j are weighted by the values of the variables Xi, Yj , if we

consider two variables with a correlation coefficient equaled to 1 and if a strictly monotone transformation

(not linear) is applied on one or both variable then the new correlation coefficient changes. However,

both functions, Mutual Information or Correlation, can be used for ranking variables considering one

target variable as an injury severity descriptor Y and p potential explanatory variables X1 . . . Xp .

On a complementary point of view, Association rules mining focuses on ranking attributes for

specific modalities of X and Y and have been applied to the study of traffic accident data (Wang, et al.

2005; Marukatat 2006). Given a specific modality βj of the target variable Y, it is possible to evaluate the

occurrence of Y = βj , given modality αi of X by the conditional probability: Probability(Y = βj/X =

αi) = pi,j

pi+
. Association rule mining compares the conditional probability to the probability of occurrence

of Y = βj without any condition of X: Probability(Y = βj) = p+j and computes γij , ratio defines as :

γi,j =
Probability(Y = βj/X = αi)

Probability(Y = βj)
=

pi,j

pi+p+j
(11)

where pi+, p+j are the marginal probabilities of X and Y for modalities αi and βj .

This association rule coefficient ranges between 0 and infinity. γi,j > 1 means that the probability of

occurrence of modality βj of Y given modality αi of X is greater compared to the marginal distribution

(than without any condition on X): there is then an attraction between the 2 modalities Y = βj and

X = αi. On the opposite, for γij < 1, a repulsion between both modalities can be showed: an occurrence

of Y = βj tends to annihilate an occurrence of X = αi . This coefficient is, in particular, involved in
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the computation of the statistical χ2 distribution. When a dependence relation is observed and tested

between two variables, the attraction-repulsion ratio helps to localize the dependency through the joint

modalities of the two variables.

Classification And Regression Trees (CART) are a non parametric methodology to point out

the dependencies between variables (Breiman et al., 1998). With the capacity to automatically search

for the best explanatory variable and split-point to achieve the best fit, CART have been successfully

applied to the analysis of traffic injury severity. Karlafatis et al., (2002) applied hierarchical tree-based

regression to analyze the effects of road geometry and traffic characteristics on accident rates for rural

roads. Chang et al., (2006) has applied a CART model to established the relationship between injury

severity and accident variables. CART identify group of hierarchical factors by partitioning the feature

space into a set of rectangles. The construction of a tree is data-driven and based on local optimization.

CART becomes nowadays a very popular method which can produce nice recursive binary trees. When

analyzing the tree, a same variable can appear many times from top to bottom of the tree, the result is

then not so easily readable and it it quiet difficult to evaluate globally the impact of a variable.

Compared to CART, Mutual information ratio provides a list of hierarchical factors which best ex-

plains a target. The construction of the list is global and do not depend on local optimization. Moreover,

risk factors and confidence intervals are available for each factor or each group of factors.

2.4 Modeling of injuries severity

Since mutual information ratios are model independent, they can be used, prior to modeling, to select

the most relevant group G of explanatory variables to predict a given accident outcome Y. One can then

construct a model to predict Y outcome given the group G of selected variables.

Y = FS(X(1), ..., X(k)) (12)

The empirical relation FS naturally depends on the data set S of observations used during learning. As

mutual information is a variables selection tool, given the group of key causation factors selected by

mutual information, we have used Support Vector Machines to compute empirical predictive relations
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between using a data set of training examples form GIDAS (Mougeot et Azencott 2006).

3 Accidents data base

In Germany, since 1999, a consortium of two institutes (BAST, -Federal Highway Research Institute-

and FAT, -German Association for Research on Automobile-Technique-) drives an important German In-

Depth Accident Study (GIDAS). The accidents units, composed of a team of experts on duty, respond to

any traffic accident with injuries in the region of Hanover. In a detailed investigation, the team acquires

both technical data from the accident site and medical/injury data from the people involved. In the

areas of Hanover and Dresden, personal injury traffic accidents are systematically reported by the police

and the fire department stations. Annually, approximately 2,000 traffic accidents are recorded in this

way and the information is stored in an historical database. In order to avoid distortions in the data

structure of accidents recordings by different teams, the data are weighed annually through comparison

with the officially recorded accident structure. This ensures that the present accident data are regarded

as representative for the investigation area (cities and administrative districts of Hanover and Dresden).

The accidents are recorded by each team daily with alternating shift times so that a uniform distribution

between day and night and between the different days of the week is ensured.

Standardized classification systems are used to describe the severity of injuries, such as AIS (Abbre-

viated Injury Scale). Each accident is analyzed in detail and the motions of the vehicles and occupants

reconstructed. The geographical distribution of the investigation areas correlates well to the one of Fed-

eral Republic of Germany as a whole. In both, approximately 90% of the area can be regarded as rural

and 10% urban, so that the distribution between rural and urban built-up areas is similar. Since col-

lisions processes are generally dependent on technical background conditions and the resulting injuries

often affected by these conditions, GIDAS investigations can be used for most aspects of passive and

active safety.

The GIDAS database is now the largest and most complete In-Depth accident survey and data col-

lection in Europe. The number of available observations in the GIDAS database was, at the end of 2006,
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around 14 000 with the following per year repartition: 1999 (1018); 2000 (1987); 2001 (1906); 2002 (1643);

2003 (1806); 2004 (1849); 2005 (2007); 2006 (1737).

4 Applications to risk factors quantification

In the GIDAS database, most variables are qualitative, we hence have a natural situation where classical

correlation analysis may be of limited use, and information theoretic methods based on conditional entropy

computation offer a more rigorous tool to explore association or causation relations between variables.

We have applied to GIDAS data the MIR methodology outlined above, with, at the end of 2006, 14000

observations, described by more than 800 fields. All vehicles, and people involved in a crash data (when

at least an injured people can be found) are stored in the data base. A preliminary filtering treatment

has first been applied to the whole database, to eliminate inappropriate values (Mougeot and Azencott

2007). For our whole study, tests and analyzes have been implemented by programs we developed using

the R statistical programming software [R development Core Team]. No specific R toolboxes has been

used for this application. All the code and functions to compute the theoretical coefficients have been

programmed using R standard language.

4.1 Injuries severity indicators

We have, for the moment, focused our exploratory causation analysis on three indicators of injury severity

for different body parts (Y variable) : Maximum Injuries Severity (MAIS), Head Injury Severity(HWS)

and leg injuries Severity (AISBEIN).

4.1.1 Maximum Injuries Severity (MAIS)

In the GIDAS database, MAIS values fall into 7 categories 0 . . . 6, corresponding to 7 possible values

for the maximum severity of injuries. MAIS0 corresponds to ”non injured” accidents. MAIS1-MAIS2

corresponds to ”slightly injured” accidents and MAIS3+ to ”fatally injured”.
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INSERT FIGURE 2

We regroup the original 7 modalities of MAIS into 2 categories in order to analyze wether accidents

led to injuries or not. The 2 labels Safe and Injured respectively denote accidents with no injury (MAIS

tag = MAIS0) and accidents with some injuries (MAIStag ≥ 1). In the database, ”no injury” accidents

have frequency 60%, and ”minor injuries” accidents (MAIStag ≤ 1) have frequency 74%. Histograms

are built with 11586 observations.

4.1.2 Head Injuries Severity(HWS)

In the GIDAS database, Head Injuries Severity is recorded by the variable HWS, which has 7 modalities,

as defined for MAIS.

INSERT FIGURE 3

Figure 3 shows that a large majority of accidents (80%) lead to no head injury. Histograms are built

with 11586 observations. As above, we split the 7 modalities of HWS into 2 broad categories labeled Safe

and Injured.

4.1.3 Leg Injuries Severity(AISBEIN)

In the GIDAS database, Leg Injuries Severity is recorded by the variable AISBEIN, which has 7 modalities,

as defined for MAIS and HWS.

INSERT FIGURE 4

Figure 4 shows that a large majority of accidents (80%) lead to no leg injury. Histograms are also

built with 11586 observations. As above, we split the 7 modalities of AISBEIN into 2 broad categories

labeled Safe and Injured.
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4.2 Potential causation factors for injuries severity

In this study, our target list of potential causations factors was prepared according to existing expert

judgments communicated by the German BAST institute. A key objective of this study was to focus on

a target list of potential causation factors for injuries severity, to estimate and compare the causation

strengths between potential causation factors and the severity descriptors, and to determine which com-

bination of causation factors has the highest power to predict injuries severity. This exploratory study

was restricted to the severity indicators MAIS, HWS and AISBEIN, to better evaluate the practical

impact of our mutual information approach. We present in Table 1, our initial target list of potential

causation factors for the 2 injuries severity indicators MAIS and HWS. 15 factors have been selected for

this study: 13 factors are categorial variables and the 2 remaining factors (COLLSPEED and CARGE)

are continuous and have been divided in 10 classes for the computation of MIR (figure 12).

INSERT TABLE 1

5 Results

In this section, mutual information ratios (MIR) are computed to estimate the causation strengths be-

tween potential factors and accident outcome descriptors (MAIS, HWS, AISBEIN). Each MIR is com-

puted using more than 8000 observations, depending on the proportion of missing values for the studied

variables. Each specific MIR involves only a precise small set S of variables, and to compute this MIR

coefficient, we temporarily eliminate all records having missing values for some of the variables in S. First,

the MIR coefficients are separately estimated for each potential causation factor, and then ordered. For

each one of the 2 variables (MAIS, HWS, AISBEIN), we then successively determine by which group of

multivariate factors we can best explain it.
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5.1 MAIS

The MIR coefficients are first estimated using the 7 original modalities of MAIS, and then estimated

again using only the coarser binary categories (Safe or Injured for MAIS. These MIR coefficients evaluate

how well MAIS is explained by each potential causation factor in the BAST target list. We then sort

these coefficients by decreasing order of magnitude (Figure 5).

INSERT TABLE 5

We present the results as follows (Figure 5). Fix an outcome descriptor (such as MAIS), the MIR

coefficient computed for each single factor is represented by the length of a horizontal bar. The tag name

of the corresponding factor is displayed on the left and Table 1 gives the list of all these tag names. The

number of joint observations used for computing the MIR is displayed on the right. At the right end of

each bar, we display a confidence interval for the MIR value, computed by bootstrap at a 95% confidence

level. All MIR coefficients lie between 0 and 100%.

For the MAIS indicator, this analysis shows that the most influent factor explaining maximum injury

severity is the OPPONENT type, with a MIR around 23%. When the 7 initial modalities are regrouped

into binary classes (Safe versus Injuries), this feature is even sharper and its MIR value increases to 31%.

The accident KIND appears in 2nd position (MIR = 13% , and MIR = 16% for binary modes), and the

accident TYPE comes in 3rd position (MIR = 10% , and MIR = 12.5% for binary modes). All MIR

coefficients increase when computed for the coarser binary distribution. SPEED of collision, PLACE,

and SPEED LIMIT obtain similar MIR coefficients.

The SEATBELT factor appears in the middle of the list with a small MIR (1.95%). At first sight,

this is surprising since SEATBELT usage is considered to be an important factor affecting injury severity

of vehicle traffic accidents. Recall that today, drivers and passengers are required by law to use their seat

belt, so that 97% of the observations in GIDAS correspond to the use of seat-belts (Figure 6). So the

MIR coefficient is here overwhelmingly determined by the cases where seatbelt is used, and hence reflects
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only partially the intrinsic risk associated to the absence of seatbelt.

To focus on the severity of accidents due non seatbelt usage, we have artificially selected a random

set of GIDAS data with equal proportions of ”seatbelt use” and ”no seatbelt use” (Figure 6). The small

proportion (3%) of accidents records with non usage of seatbelt have all been retained, and have been

completed with an equal proportion of observations, taken at random among the numerous accident

records with corresponding to seatbelt usage. To obtain a robust estimation of the MIR, this procedure

has been replicated 20 times, and the MIR has been averaged over all replications. For this specific mixture

of observations, better suited to evaluate the impact of the SEATBELT factor, the MIR increases from

1.95% to 14%, which is a quite high value, corresponding to a 2nd position in the ranked list of causation

factors. SEATBELT usage remains an important causation factor directly linked to injury severity. Since

only a very small minority of drivers do not wear seatbelts, the proportion of accidents where this factor

becomes really active remains extremely small.

INSERT FIGURE 6

ROLLOVER accidents are quite rare, and their impact on MAIS is high (MIR 5.8%), but the intrinsic

risk associated to ROLLOVER is much higher. To compute the severity impact of ROLLOVER, we use

the same procedure as for SEATBELT, and select an artificial random sample of accidents, with 50% of

ROLLOVER cases. We observe that the MIR coefficients increases to 27%, which confirms the exceptional

gravity of rollover accidents.

The GENDER variable has fairly small MIR, and hence does not seem to have a strong impact on

MAIS.

Multivariate analysis is then conducted to analyze for a given number of explanatory variables, which

group of factors has the highest mutual information ratio with MAIS, and hence best explains Maximum

Injury Severity. The following graph presents, for MAIS, the highest MIR feasible as function of the

number of potential causation factors (Figure 7).
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INSERT FIGURE 7

For instance, the 3rd column indicates that the group of 3 factors (OPPONENT, Collision SPEED and

Accident KIND) has a joint MIR of 38%; this group has the highest predictive power for all groups of 3

factors. It is interesting to observe that, for the single factor analysis, OPPONENT, Accident KIND and

Accident TYPE were respectively in 1st, 2nd and 3rd position, regarding the association strength level

(figure 5). In the multivariate analysis, Collision SPEED, which was in 4th position for the single factor

analysis, replaces Accident TYPE in the most predictive combination of 3 factors. This is essentially due

to the sizable redundancy between accident KIND and TYPE, as can be seen from their pairwise MIR

which is equal to 52The MIR coefficients estimated for MAIS confirmed here by objective computation

the knowledge of BAST Experts about the main injury severity causation factors in accidents.

5.2 HWS

We now present our analysis of head injuries causation factors. Just as for MAIS, the Mutual Information

Ratios are computed between HWS and the potential causation factors listed in Table 1.

INSERT FIGURE 8

As above, the MIR coefficients estimated for HWS are sharper when computed for a binary distribution

as for the original distribution (Figure 8). The OPPONENT type is, as for MAIS, the most influential

factor explaining head injuries severity however the causation strength is smaller (12,5% as compared

to 23%). The same holds true for the factors Accident KIND and TYPE which are again placed 2nd

and 3rd. GUILTY, which records the driver’s responsibility, is now at 4th place. The driver’s GENDER

becomes a quite important factor for head injuries, indicating that women are more vulnerable than men

from this point of view. The mainly damaged part of the car (DAMAGE) comes also into play, probably

reflecting that rear end collisions play a high role in the occurrence of severe head injuries.
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Multivariate analysis is then conducted, as above, to select which group of factors has the highest

mutual information ratio, and hence best explains head injury severity. Results are presented Figure 9.

INSERT FIGURE 9

The two factors, which jointly best explain head injuries, are: OPPONENT type and GENDER.

Observe that GENDER, which as a single factor influencing HWS was in 5th position, is now the factor,

which in combination with OPPONENT type, best explains head injuries (considering more than 9.000

observations of GIDAS database). This result confirm a fact known to experts, namely that, in traffic

accidents, women are more vulnerable than men for head and neck injuries.

5.3 AISBEIN

We now present our analysis of leg injuries causation factors. Just as for MAIS and HWS, the MIR are

computed between AISBEIN and the potential causation factors listed in Table 1.

INSERT FIGURE 10

As for MAIS and HWS, the MIR coefficients are sharper when computed for a binary distribution as for

the original distribution (figure 10). Comparing MAIS, HWS and AISBEIN analyses, we observe that

the same subsets of factors are associated with the highest MIR ratio. The type of OPPONENT, the

TYPE and KIND of accident, as defined in GIDAS, are the strongest factors.

INSERT FIGURE 11

For the multivariate analysis, we observe the same analogy. The group of tree factors is the same for

MAIS and AISBEIN. GENDER seems to have a strongest influence on head injuries, but less for legs

injuries.
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6 Conclusion

In this study, major causation factors impacting injuries severity have been identified and ranked, corre-

sponding causation strengths have been estimated, by analysis of the GIDAS accidents database, which

offers one of the largest accident survey and data collection in Europe. Our Mutual Information approach

has proved to be quite efficient for selecting and ranking potential causation factors. The MIR coeffi-

cients naturally depend on the histogram of factor modalities, and we show how factors for which a single

modality is overwhelmingly represented, may get underestimated causation strengths and association

strength values. We have also shown how prior adequate random re sampling of the data enables the

MIR coefficient to correctly estimate causation strength even when one single modality is omnipresent.

This feature was illustrated for both seat belt and rollover factors, and confirms that rollover accidents

as well as the non usage of seat belts lead to serious injuries (even if the actual proportion of accidents

in which these factors were active is very small).

Mutual information ratios offer then a wide range of possibilities to study causation links between

variables having continuous distribution or finite sets of modalities.

Due to the major probabilistic properties of MIR, these mutual information ratios are very efficient to

detect non linear causation links. Since they are radically ”model” independent, the MIR coefficients and

ranking can be used for variables selection prior to statistical modeling. Using as inputs the causation

factors selected by mutual information ratios, prediction models have then been constructed using support

vectors machines , with good performance. [Mougeot and Azencott 2007].
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Figure 1: Mutual Information Ratio for some joint distributions. From left to right: RX,Y = 100%;

RX,Y = 68%; RX,Y = 0%.
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Figure 2: MAIS distribution for GIDAS data. Original and binary distribution of data.
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Variable Description Number of modalities and brief description

GENDER Gender (2) male/ female.

PLACE Place of the accident (urban/rural) (2) urban/ rural.

TIME Time of the day (3) day/night/dawn

COLLSPEED Initial speed of collision Continuous

SEATBELT Seat belt usage (2)belted/ unbelted

ACCTYPE Type of accident (7) F/AB/EK/UES/RV/LV/SO

ACCKIND Kind of accident (10) unfall/ anfhrt/

LIMITSPEED Speed limit at the accident scene (17) 5 km/h// 140 km/h

GUILTY Responsible or not for the accident (2) yes/no

OPPONENT Opponent (7) others Car HGV Bike Cyclist Pedest..

AGE Age of the driver (8) (0,18] , (25,30] (30,35] (65,75] , (75,100]

AIRBAG Use of the airbag (2) AIRBAG /no AIRBAG

CARAGE Age of the car continuous

DAMAGE Main damage to the car (7) Front Right Side Bottom

ROLLOVER Rollover (yes/no) (2) yes/no

Table 1: Association factors used for MAIS or HWS outcome descriptor.
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Figure 3: Head injuries distribution for GIDAS data. Original and binary distribution of data.
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Figure 4: Leg injuries distribution for GIDAS data. Original and binary distribution of data.
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Figure 7: Multivariate MIR for MAIS descriptor.
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Figure 8: MIR for head injuries. Original and binary distribution.
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Figure 9: Multivariate Mutual Information Ratio for Head descriptor.
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Figure 10: MIR for leg injuries. Original and binary distribution.
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Figure 11: Multivariate Mutual Information Ratio for Leg descriptor.

27



male female

0.
0

0.
6

GENDER

urban rural

0.
0

0.
6

PLACE

DAY DAWN

0.
0

0.
6

TIME

belted unbelted

0.
0

0.
6

SEATBELT

vorausfährt,wartet

0.
0

0.
6

ACCKIND

AIRBAG

0.
0

0.
6

AIRBAG

Front Left Side

0.
0

0.
6

CARDAMAGE

FALSE TRUE

0.
0

0.
6

ROLLOVER

Car Bike Object

0.
0

0.
6

OPPONENT

tx

0 50 150

0.
00

0
0.

01
5

COLLSPEED

F EK RV SO

0.
0

0.
6

ACCTYPE

(0,18] (35,45]

0.
0

0.
6

AGE

30 km/h 100 km/h

0.
0

0.
6

LIMSPEED

tx

0 10 20 30 40

0.
00

0.
06

CARAGE

FALSE TRUE

0.
0

0.
6

GUILTY

Figure 12: Histogram of potential association factors for MAIS, HWS and AISBEIN descriptor.
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