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1 Introduction

Textures appear in most natural images, but there is no precise mathematical definition of
a texture. However, there are various descriptions of textures available in the literature.
These approaches can be broadly classified as structural or deterministic, and stochastic
[5, 7, 12, 19, 29]. The structural approach is more suitable for describing textures that can
be formed by repeating a unit pattern also known as a primitive. Examples of such textures
are shown in Figure 1. Textures in which the absence of a faithful repetition of a certain
pattern is the norm are better described by statistical models. Some examples of non-
deterministic textures are shown in Figure 2.

Figure 1: Examples of structural 2-D textures

Figure 2: Examples of stochastic 2-D textures

Textures appear naturally in many classes of imaging, among them medical images
used for diagnostic and research purposes. In imaging modalities such as X-ray CT and
MRI, different tissues give rise to different textures, but these textures are now 3-D. Thus,
efficient texture classification and segmentation routines can be used for the automatic or
semi-automatic detection of anomalies. Textures arising from tissues can not be treated as
those in Figure 1, where the precise perpetual repetition of the primitive determines the
texture. Natural tissue variation should be taken into account. In addition, various types of

1



noise join forces to enhance the variability in textures of this sort. Thus, stochastic models
are better suited for modeling textures that appear in medical imaging. These textures are
the focus of this chapter.

The first step in a texture analysis problem is to identify a good set of features or
texture signatures. A feature is a certain attribute of the model. To be useful, a feature
should be easily computable otherwise it can not be easily utilized. A texture signature
is a collection of features identifying a texture. Feature vector is an alternative term that
can be used instead of texture signature. In fact, the use of the noun ‘vector’ underscores
the importance of vector-valued texture signatures versus scalar-valued signatures. The
complexity of the nature of a texture becomes feasible with a multidimensional approach.
The dimensionality of a texture signature is very critical in enabling texture discrimination.
The feature vectors or texture signatures corresponding to two different textures should
be distant enough from each other with respect to a suitable metric. Various kinds of
features have been considered in the literature such as those arising from spatial frequency
based techniques such as Gabor filters [2, 24, 28] and wavelets [3, 8, 30], or those arising from
spatial interaction and autoregressive models such as Markov random fields [4, 13, 21]. The
autoregressive and spatial interaction models are particularly attractive because they take
into account the local statistical interactions of an image which capture a lot of information
about textures. Of these, Gaussian Markov Random Fields (GMRF) have been studied
most extensively for 2-D texture analysis [4, 7, 14, 24]. More recently, GMRFs have been
used for the study of 3-D textures in [25]. The literature on 3-D texture analysis in general
is extremely limited due to the tremendous computational challenges one encounters in this
kind of image analysis. A few recent generalizations of the 2-D methods to 3-D can be
found in [16, 17, 20, 26, 31].

We are interested in rotationally invariant classification of 3-D textures because, in
applications such as medical imaging, a tissue type must be classified regardless of the
position or orientation of the subject. Various authors have considered different approaches
to obtain a rotationally invariant classification scheme, mostly in 2-D. In [15], Kashyap
and Khotanazad propose a so-called circular symmetric autoregressive model. They fit
two traditional simultaneous autoregressive models, one for the nearest neighbors and one
for the diagonal nearest neighbors. By the diagonal nearest neighbors they mean points
on the diagonal at a unit distance. These points do not lie on the original lattice so
the gray scale values here are obtained via linear interpolation. The parameters for these
models are used as rotation invariant features. This kind of circularly symmetric models
are also considered in [24], where higher order neighborhoods beyond first order ones are
also employed. In [24], the authors also propose circularly symmetric Gabor filter-based
features. The main shortcoming of these models is that they impose an isotropic structure on
possibly non-isotropic textures. A mathematically rigorous treatment of isotropic textures
can be found in [22]. However, when we are dealing with textures that show directional
characteristics, isotropic models limit the flexibility in texture classification. This problem
is also recognized in [7], where the authors model the textures using a continuous stationary
Gaussian random field. Rotations are defined via a continuous counterpart of the discrete
power spectral density associated to a discrete model defined on a finite lattice. This is
similar to the approach that we describe for rotation of textures in Section 4.2. Using
the continuous power spectral density, they derive a likelihood function for the rotation
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parameter. The classification is then carried out in two steps. First, they obtain a maximum
likelihood estimate for the rotation angle and then they compare against each texture in
the training set for classification. This approach is shown to work well in 2-D but a 3-D
version would be computationally extremely expensive since the likelihood function they
obtain constitutes a product over all the lattice nodes. A 3-D rotation invariant approach
for texture classification using local binary patterns is considered in [9]. To the best of
our knowledge there has been no previous attempt of a 3-D rotation invariant texture
classification using GMRF.

Instead of using a rotationally invariant probabilistic model for a texture, we aim at
defining a rotationally invariant distance between two texture signatures which might them-
selves be non-isotropic. Two different non-isotropic textures might not be distinguishable
if isotropy of the texture signatures is imposed. Thus, using non-isotropic signatures, and
implementing the rotational invariance via a distance function, makes the models more
flexible.

We model discrete textures, i.e. textures defined on a discrete lattice, using GMRF
following the approach of Rama Chellappa described for 2-D textures in [4], and extended
to 3-D volumes in [25]. GMRFs are particularly useful for the following reasons:

• These stochastic models have a very well understood mathematical structure,

• The computability of Kullback-Leibler distance (see Section 4.1),

• Relatively low computational cost of parameter estimation and texture synthesis.

The texture signature is obtained by fitting a GMRF model to each of a finite set of rota-
tions of the texture. This finite set of rotations is obtained by a uniform sampling of SO(3).
We define a rotationally invariant distance between these texture signatures in Section 4.
Since the rotation of a discrete texture is not well-defined, we propose a continuous coun-
terpart of the discrete texture that we wish to rotate. We consider a continuous texture
to be a realization of a stationary Gaussian process on R3. Then the concept of rotating
a texture takes a natural form and is shown to be (Equation (20)) equivalent to rotating
the corresponding autocovariance function. The conversion between discrete and continu-
ous textures is achieved via Isotropic Multiresolution Analysis developed in [27]. This is
discussed in detail in Section 4.2.

2 Isotropic Multiresolution Analysis and Fast Algorithms

Example 2.1

3 Description of the GMRF Model

To describe the GMRF model, we follow the notation in [25]. The image/volume is defined
on a 2/3-D lattice denoted by Λ. By a lattice, we mean the following:

Λ2D = {k = (i, j) | 1 ≤ i ≤M, 1 ≤ j ≤ N} ,

Λ3D = {k = (i, j, k) | 1 ≤ i ≤M, 1 ≤ j ≤ N, 1 ≤ k ≤ P} .
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where, i, j, k are integers and M,N,P denote the size of the lattice in each dimension. The
total number of sites or nodes on the lattice are denoted by NT . In the 2-D case, NT = MN
and for 3-D, NT = MNP . In the rest of this chapter, we assume that we work with a 3-D
lattice though most of the discussion in this section applies verbatim to 2-D.

A neighborhood ηk of node k is a subset of the lattice, ηk ⊂ Λ such that,

• k /∈ ηk,

• l ∈ ηk ⇒ k ∈ ηl.

A neighborhood system η, is the collection of neighborhoods at all nodes, η =
{ηk,k ∈ Λ}.

A clique C defined with respect to η, is a subset of Λ such that C either contains a
single node, or all nodes in C are neighbors. The set of all cliques in a neighborhood is
denoted by C and Cn, for n ∈ N+, denotes the set of cliques with n nodes.

Let X be a family of random variables defined on the lattice Λ via X := {X1, . . . , XNT }.
We refer to X as a random field and use the notation X = x for the joint event
{Xi = xi, i = 1, . . . , NT }, where x = {x1, . . . , xNT } is called a configuration of X. An
image/volume is a configuration or realization of X. Each xi belongs to a (usually finite)
set A, referred to as the alphabet (or gray-levels in image processing terminology).

3.1 Gibbs and Markov Random Fields

In this subsection, we assume that the alphabet A is discrete to keep the discussion simple.
The technical details required to describe random fields are not needed for our discussion
on GMRF in Section 3.2, even though the alphabet in that case is R. For the general theory
of Gibbs and Markov fields with a continuous alphabet, the reader is referred to Chapter 2
in [11]. A random field X is referred to as a Gibbs Random Field (GRF) if it satisfies
the following probability distribution:

P(X = x) =
1
Z

exp
(
U(x)
T

)
.

where Z is a positive normalizing constant known as the partition function, T is the
temperature and U is referred to as the Gibbs energy.

For a finite lattice Λ with a symmetric neighborhood structure η, an example of Gibbs
energy function is defined as:

U(x) =
∑

k∈Λ,C∈C1

VC(xk) +
∑
k∈Λ

∑
l∈ηk,C∈C2

VC(xk, xl), (1)

where VC are known as the clique potentials.
A random field X is called a Markov Random Field (MRF) on the lattice Λ with

respect to a neighborhood system η if it satisfies the following conditions:

• P(X = x) > 0, for all x ∈ ANT , and

• P(Xk = xk | Xl = xl, ∀l ∈ Λ\k) = P(Xk = xk | Xl = xl, ∀l ∈ ηk).
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The local characteristic at node k is the function πk : ANT → [0, 1] defined by

πk(x) = P(Xk = xk | Xl = xl∀l ∈ ηk).

The family {πk}k∈Λ is called the local specification of the MRF.
An MRF is characterized by its local property, (the conditional probability density at

a node given its neighbors) while a GRF is characterized by its global property (the Gibbs
distribution). The Hammersley-Clifford theorem (see e.g. [10]) states that a random
field is a GRF if and only if it is an MRF. Thus, it gives us the flexibility of designing an MRF
using local or global properties depending on their availability for a specific application.

3.2 Gaussian Markov Random Field

A special class of MRF arises from the following clique potentials:

VC(xk) =
(xk − µk)2

2σ2
,∀C ∈ C1,

and
VC(xk, xl) = −θk,l

(xk − µk)(xl − µl)
σ2

, l ∈ ηk,∀C ∈ C2,

where µk determines the mean at node k, and as we shall see shortly, θk,l are parameters
related to the covariance matrix of the random field. Substituting these clique potentials
in (1) we obtain,

U(x) =
1

2σ2

∑
k∈Λ

(xk − µk)2 − 1
σ2

∑
k∈Λ

∑
l ∈ ηk(xk − µk)θk,l(xl − µl).

We now assume that the alphabet is R. Thus, the joint probability density of all NT

nodes in Λ is given by:

p(x) =

√
det(B)√

(2πσ2)NT
exp

[
−(x− µ)TB(x− µ)

2σ2

]
, (2)

where µ is an NT × 1 vector of means and B = [blk] is the following NT ×NT matrix:

blk =


1, if l = k,
−θl,k, if l ∈ ηk,
0, else.

(3)

The function in Equation (2) is the joint probability density function of a multivariate
Gaussian distribution with covariance matrix Σ = σ2B−1 and mean vector µ. Hence,
this random field is referred to as a Gaussian Markov Random Field. The necessary and
sufficient condition for p defined in Equation (2) to be a density function is that B is a
positive matrix. The Markov property now reads

P(Xk ∈ A | Xl, ∀l ∈ Λ\k) = P(Xk ∈ A | Xl, ∀l ∈ ηk), ∀A ⊂ R.
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This is true because the conditional probability density p(xk | xl, l ∈ Λ\k) is given by [25]:

p(xk | xl, l ∈ Λ\k) = p(xk | xl, l ∈ ηk)

=
1√

2πσ2
exp

− 1
2σ2

xk − µk −
∑
l∈ηk

θk,l(xl − µl)

2 . (4)

The conditional distribution corresponding to this density is referred to as the local charac-
teristic at node k for the continuous alphabet case. This conditional distribution is defined
in the sense of regular conditional probability (see Theorem V.8.1 in [23]). Now, the gray
level at the node k can be expressed as a linear combination of the gray levels at the
neighboring nodes:

xk = µk +
∑
l∈ηk

θk,l(xl − µl) + ek, (5)

where the correlated Gaussian noise, e = (e1, . . . , eNT ), has the following structure:

E[ekel] =


σ2, k = l,
−θk,lσ

2, l ∈ ηk,
0, else.

(6)

In [4, 14], Equations (5) and (6) are used to define GMRF. This model is referred to as
Conditional Markov (CM) model in [14] where the various parameter estimation schemes for
this model are discussed. Also contained in [14] is a discussion on the choice of neighbors.

For models that we use, we assume the following spatial symmetry for the parameters
θ:

θk,l = θk,−l. (7)

Hence, the neighborhoods must be defined so that l ∈ ηk ⇒ −l ∈ ηk. We also assume the
stationarity of the model. Hence, θk,l only depends on k − l and the neighborhood ηk has
the same structure at each k. By the same structure we mean that the set {k − l}l∈ηk

is
the same for all k. This set is denoted by η. Similarly, the mean, µk is also constant across
all the nodes and hence we drop the subscript k and denote the mean by µ. Due to the
symmetry assumed in Equation (7), if r ∈ η then −r is also in η. We use η+ to denote half
of the elements of η such that only one of r or −r is in η+. For instance, in the 2-D case, if
η = {(1, 0), (0, 1), (−1, 0), (0,−1)} then η+ = {(1, 0), (0, 1)}. Thus, for the stationary case,
Equation (5) takes the following form

xk = µ+
∑

r∈η+

θr(xk−r + xk+r − 2µ) + ek. (8)

The vector of parameters [θr, r ∈ η+] is denoted by θ.
In the rest of the discussion we assume that µ = 0, unless otherwise mentioned.

3.3 Parameter Estimation

Chellappa and Kashyap discuss various parameter estimation schemes in [4, 14]. These,
amongst others, include a Maximum likelihood scheme, a coding scheme due to Besag and
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Least squares (LS). The ML-estimates have good statistical properties but are expensive
to compute because they require numerical optimization techniques. We follow the LS
estimation scheme given in Section 4.3 of [4]. The statistical properties of this scheme are
analyzed in [14]. For a given realization x, the estimates are given by the following statistics:

θ̂(x) = (YTY)−1YTx, (9)

σ̂2(x) =
1
NT

(
x−Yθ̂

)T (
x−Yθ̂

)
, (10)

where Y = [yr], r ∈ Λ and yr = [xl + x−l, l ∈ η+
r ]. Thus, if m is the size of the half-

neighborhood η+
r then Y is a NT × m matrix. For a derivation of these equations see

Appendix B of [25]. Using the estimate, θ̂, from (9), the expression for estimate of σ2

reduces to
σ̂2(x) =

1
NT

(
xTx− θ̂

T
YTx

)
. (11)

A sufficient condition on θ for the corresponding B(θ) (see Equation (3)) to be a positive
matrix is |θ| < 0.5 [18]. Here, |θ| denotes the `1-norm of the vector θ. As shown in [18], in
general, this sufficient condition only represents a subset of the valid parameter space for
θ. But, in the case of order one neighborhood, this is also a necessary condition.

In the light of Equation (9) and the constraint on θ for order one neighborhood, we
have to solve the following constrained optimization problem to estimate θ:

Find
min
θ
||YTYθ −YTx||2,

subject to,
3∑
i=1

|θi| < 0.5.

The entries of the matrix YTY and the vector YTx can be calculated from the auto-
covariance function of x. This will facilitate fast calculation of the rotationally invariant
distance defined in Section 4. For a stationary random process X on Z3, the auto-covariance
function is given by

ρ(l) = E[X(l)X(0)].

In particular, for a infinite extent GMRF whose local specifications are given by (4), the
auto-covariance function ρ decays to zero as |l| goes to ∞. This is due to the fact that the
power spectral density ρ̂ is the inverse of a positive trigonometric polynomial.

Due to the ergodicity (implicit in the model, see Theorem III.4.4 in [1]), the auto-
covariance function, ρ, can be approximated by

ρ0(l) =
1
NT

∑
r∈Λ

xrxr+l, for all l ∈ Λ, (12)

for a sufficiently large NT . Using the Discrete Fourier Transform, we obtain

ρ̂0(k) = x̂(k)x̂(k) = |x̂(k)|2 for all k ∈ Λ′, (13)
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where Λ′ is a grid of T3, similar to Λ. Note that those values of ρ̂0 give an approximation of
the power spectral density ρ̂ defined on T3, at the grid points Λ′. Equation (13) facilitates
efficient calculation of ρ0 via FFT. Now, the entries of the vector YTx are expressed in
terms of ρ0 as follows:

(YTx)r =
∑
l∈Λ

xl(xl+r + xl−r)

= NT (ρ0(r) + ρ0(−r)),

for each r ∈ η+. Similarly, the entries of the matrix YTY are given by

(YTY)(k,r) =
∑
l∈Λ

(xl+k + xl−k)(xl+r + xl−r)

= NT (ρ0(r − k) + ρ0(r + k) + ρ0(−r − k) + ρ0(−r + k)),

for each (k, r) ∈ η+ × η+. Thus, for any given zero mean discrete texture x, that is not
necessarily a GMRF, we can calculate the ρ0 using (12). Then we can estimate the param-
eters for a GMRF with neighborhood of order one using the above equations. We refer to
the model with these parameters as the GMRF fitted to the texture x.

3.4 Synthesizing a GMRF

Next, we briefly discuss the algorithm for sampling a stationary GMRF with toroidal bound-
aries. For a fixed neighborhood structure η and known parameters, θk,l,µ, σ, we can write
Equation (5) as:

B(x− µ) = e.

where e is a zero mean Gaussian noise sequence with the covariance structure defined in
(6). This noise sequence can be written as

e =
√

Be0,

where e0 is a zero mean Gaussian noise sequence with covariance matrix given by σ2 times
the identity. This is easily generated with a standard random number generator in MAT-
LAB. Hence, a realization of X is obtained via

x = B−1
√

Be0 + µ = B
−1
2 e0 + µ.

The stationarity assumption implies that µk = µ, ∀k ∈ Λ and that θk,l only depends on the
difference k− l. This along with the toroidal boundary condition makes B a block circulant
matrix which can be inverted efficiently using FFT. For details of this algorithm and block
circulant matrices, see [25], Chapter 4.

4 Rotationally Invariant Distance

Now, to obtain a rotationally invariant texture distance, we begin by defining a texture
signature. We use a neighborhood of order one, η+ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Thus, θ
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is a three-dimensional vector. Recall that for a given texture x, θ̂(x) and σ̂2(x), denote the
parameters of the GMRF fitted to x. We define the texture signature Γx, via

Γx(α) =
[
θ̂(Rαx), σ̂2(Rαx)

]
, (14)

for all Rα ∈ SO(3), where α = (α, β, γ) is the Euler angle parametrization for the rotation
Rα (see Equation (22) below), and Rα is the rotation operator induced by Rα on L2(R3).
Notice the abuse of notation when we write Rαx, since x is not defined on R3 but on Λ,
which is a finite sub-lattice of Z3. For now, just think of x as samples of some continuous
infinite extent texture, xcont, and then Rαx denotes the samples of Rαxcont on Λ. This
idea of rotating and resampling the texture will be made more precise in Section 4.2.

Now, we define a distance between two textures by the following expression:

min
α0∈SO(3)

∫
SO(3)

KLdist (Γx1(α),Γx2(αα0)) dα, (15)

where KLdist(., .) is the KL-distance between two Gaussian densities defined in Equa-
tion (19), and the product αα0 denotes the Euler angles corresponding to the rotation
operator RαRα0 . The integration is carried out with respect to the Haar measure on
SO(3). For the Euler angle parametrization of SO(3) with the ZY Z-convention (see Equa-
tion (22) below), the Haar measure is given by (See Chapter 5 of [6]),

dα = sin(β)dαdβdγ, (16)

where dα, dβ and dγ stand for the Lebesgue measure. The Haar measure is usually nor-
malized by 1

8π2 .

4.1 KL-distance Between two Gaussian Markov Random Fields

The Kullback-Leibler distance between two N -dimensional probability distributions with
joint probability density functions p1 and p2 is given by

D(p2||p1) =
∫

RN
p2(x) loge

(
p2(x)
p1(x)

)
dx. (17)

The joint probability density function (p.d.f) of a multivariate Gaussian distribution with
covariance matrix Σ and mean vector µ is given by

p(x) =
1√

(2π)N det(Σ)
exp

[
−(x− µ)TΣ−1(x− µ)

2

]
. (18)

Now suppose, we have two N -dimensional Gaussian probability density functions, p1 and p2,
with means µ1 and µ2, and covariance matrices Σ1 and Σ2 respectively. Then substituting
the formulae for p1 and p2 in (17) yields the following expression for the KL-distance between
two Gaussian distributions:

1
2

loge

(
det Σ1

det Σ2

)
+

1
2

(µ2 − µ1)T Σ−1
1 (µ2 − µ1) +

1
2

Trace(Σ−1
1 Σ2)− N

2
.
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Note that the distance defined above is not symmetric. Hence, if we exchange Σ1 and Σ2,
we get another expression:

1
2

loge

(
det Σ2

det Σ1

)
+

1
2

(µ1 − µ2)T Σ−1
2 (µ1 − µ2) +

1
2

Trace(Σ−1
2 Σ1)− N

2
.

Adding these two expressions yields the following expression, which is symmetric:

1
2

(µ1 − µ2)T (Σ−1
2 + Σ−1

1 ) (µ1 − µ2) +
1
2

Trace(Σ−1
2 Σ1 + Σ−1

1 Σ2)−N.

Assuming zero means for both the p.d.fs, we conclude that the KL-distance between two
Gaussian distributions is:

1
2

Trace(Σ−1
2 Σ1 + Σ−1

1 Σ2 − 2IN×N ). (19)

Since in our case, Σ1 and Σ2 are block circulant, (19) can be calculated efficiently using
FFT.

4.2 Rotation of Textures

As pointed out in the introduction of this chapter, rotating a discrete texture is not well-
defined. Hence, we define a continuous counterpart of the discrete texture we wish to
rotate. We model a continuous texture as a realization of a stationary Gaussian random
field, Xcont, on R3 with a square integrable autocovariance function. We assume that the
texture remains invariant under rotation by π about any line passing through the origin.
This is consistent with the symmetry assumptions for the discrete texture. We further
assume that the autocovariance function of a texture, ρcont, belongs to the zero resolution
space, V0, of the IMRA described in Example 2.1. Recall that V0 is the closed linear span
of the set {Tkφ}k∈Z3 . This assumption implies that the power spectral density is compactly
supported, inside a radial set. Thus, its support remains invariant under all rotations.
Hence, the autocovariance function remains in the same resolution space after rotation and
can therefore be sampled at the same sampling rate. This is the advantage of assuming
that ρcont belongs to V0.

The sequence of coefficients {〈ρcont, Tkφ〉}k∈Z3 is denoted by ρ. This sequence can be
considered as the samples of ρcont on Z3. In fact, if we assume that the power spectral density
ρ̂cont is supported on the ball B(0, 2b1) where φ̂ is equal to one, then 〈ρcont, Tkφ〉 = ρcont(k)
and ρcont =

∑
k∈Z3 ρcont(k)Tkφ.

Next, observe that the autocovariance function of RαXcont is given by Rαρcont:

E[RαXcont(s)RαXcont(0)] = E[Xcont(RTαs)Xcont((RTα0)]
= ρcont(RTαs) = Rαρcont(s). (20)

Now, since we assumed that ρ̂cont is supported on the ball B(0, 2b1), Rαρcont is also
supported on the same ball. With a slight abuse of notation, the sequence of samples,
{〈Rαρcont, Tkφ〉}k∈Z3 is denoted by Rαρ. Also note that

ρcont(k) = E[Xcont(k)Xcont(0)] = E[X(k)X(0)],
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i.e., the autocovariance function of X, the samples of Xcont on Z3, is ρ.
Given a realization x of a discrete texture X on the finite lattice Λ, we can calculate

ρ0 corresponding to x using (12). As pointed out in Section 3.3 this is an approximation
for ρ on Λ if Λ is sufficiently big. Assuming that the values of ρ are negligible on Z3 \Λ,
the parameters of the GMRF model fitted to the ‘rotated texture’ denoted by Rαx can
be calculated using Rαρ. This formalizes the idea of a ‘discrete’ rotation that we had
alluded to in Section 4. This is an excellent example of how MRAs in general and IMRA
in particular act as a bridge between the digital or discrete, and the analog or continuous
domains. We make sense of a discrete rotation by first converting to the analog domain
via the IMRA, rotating in the analog domain, where rotations are well defined, and finally,
converting back to the discrete domain via sampling.

In principle, we can calculate the sequence {〈Rαρcont, Tkφ〉}k∈Z3 exactly, but that is
computationally very expensive. Instead, we resample ρ on a finer grid using the IMRA.
This works by performing one or more steps of the reconstruction algorithm described in
Section 2, assuming that the detail or high-pass component is zero at each reconstruction
step. If we use dyadic dilation, for example, then one step of the reconstruction gives the
coefficients

{〈
ρcont, Tk

2
Dφ
〉}

k∈Z3
. These can be considered as the samples of the covariance

function on the denser grid Z3

2 . We then rotate this covariance function defined on a denser
grid by using linear interpolation to get the values at grid points that do not lie on the integer
lattice after rotation. This is not exact but the error can be made smaller by resampling on
a finer grid. In practice we see that just one or two steps of the reconstruction algorithm
are enough to give good results. This is demonstrated in Section 5, where we discuss the
results from our experimental study.

4.3 Practical Implementation of the Distance

For the practical implementation of the distance defined in Equation (15), we must discretize
the integral over α. To this end, we discretize the ZY Z-Euler angles. First, note that, due
the symmetries in the model, it is enough to restrict the Euler angles to the following
domains:

0 ≤ α ≤ π, 0 ≤ β ≤ π

2
, 0 ≤ γ ≤ π. (21)

To prove this, recall that our model is invariant under a rotation by π about any line passing
through the origin. Using the ZY Z-convention, the rotation Rα is defined by:

Rα = RZ(γ)RY (β)RZ(α), (22)

where RZ(α) and RY (α) denote rotation by α about the Z-axis and Y -axis respectively,

RZ(α) =

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 , RY (α) =

 cos(α) 0 − sin(α)
0 1 0

sin(α) 0 cos(α)

 .
Now, suppose α = a + π, where 0 < a < π and 0 ≤ β ≤ π

2 , 0 ≤ γ ≤ π, then the
corresponding rotation, Rα, is given by

Rα = Rα1RZ(π),
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where α1 = (a, β, γ). Since, our model is invariant under rotation by RZ(π), we infer that
it is enough to restrict α to [0, π]. Similar calculations show that γ can be restricted to [0, π]
as well. To see that it is enough to restrict β between

[
0, π2

]
, consider α = (α, a+ π/2, γ),

where 0 < a < π
2 . Then, we have,

Rα = RZ(γ)RY
(
a+

π

2

)
RZ(α).

Again, because of the symmetry properties of our texture, RY
(
a+ π

2

)
can be replaced by

RY
(
a+ 3π

2

)
, because this corresponds to a rotation by π about the new Y -axis after the

texture has been rotated by RZ(α). It is easy to check that

RY

(
a+

3π
2

)
= RZ(π)RY

(π
2
− a
)
RZ(π).

Since, π
2 − a lies in

[
0, π2

]
, we conclude that it is enough to restrict β in

[
0, π2

]
.

Now, we are ready to discretize the integral in (15). We take points spaced uniformly
with respect to the Haar measure defined in Equation (16). This is done by taking equally
spaced points on the interval [0, π] for both α and γ. Hence, the discrete sets of parameters
are given by αi = { iπNα } for i = 0, 1, . . . , Nα− 1, and γi = { iπNγ } for i = 0, 1, . . . , Nγ − 1. For
β, we take the discrete set βi = {arccos(1− i+0.5

Nβ
)}, for i = 0, 1, . . . ,Nβ − 1. Notice that we

take the discrete values of β starting with 0.5, this is done to avoid β0 from being equal to
zero. If β0 = 0, we get into a situation referred to as gimbal lock. In that case, only α+ γ is
uniquely determined. Hence, we offset by 0.5 to avoid duplicating rotations in our discrete
set. For more information, and a nice illustration of why this situation is called gimbal lock,
visit the following web-page.
http://en.wikipedia.org/wiki/Euler_angles

Using the above discrete set of rotations, a practically implementable version of the
distance defined in Equation (15) is given by

min
α0∈SO(3)

1
NαNβNγ

Nα−1∑
i=0

Nβ−1∑
j=0

Nγ−1∑
k=0

KLdist(Γ(α(i,j,k)),Γ(α(i,j,k)α0)), (23)

where αi,j,k = (αi, βj , γk) and as before, the product αi,j,kα0 represents the Euler angles
corresponding the rotation operator Rαi,j,k

Rα0 . For actual experiments, the minimization
can be carried out on a subset of SO(3) corresponding to the Euler angles described by (21)
because of the symmetries present in the model.

5 Experimental Results

To test the ideas developed so far, we generate synthetic volumes arising from 3-D GMRF
models which we synthesize using the algorithm described in Section 3.4. We use the
MATLAB function patternsearch to solve the minimization problem which is required to
calculate the distance defined in Equation (23). The number of discrete angles are taken to
be Nα = Nβ = Nγ = 5. This gives a total of 125 rotations sampled uniformly with respect
to the Haar measure on SO(3). Thus, each evaluation of the function to be minimized in

12



Equation (23) requires the calculation of 125 sets of parameters and the calculation of 125
K-L distances. On a 2.8 GHz machine each evaluation of the function takes about three-
quarters of a second. The MATLAB routine mentioned above is particularly useful because
it does not calculate derivatives and thus, each iteration of the algorithm requires very few
evaluations of the function to be minimized. The details of this routine can be found in
the MATLAB documentation on the web-page of Mathworks. We do not intend to study
this optimization algorithm here. We just use it as a black-box and it works well for the
calculation of the rotationally invariant distance. It takes about one minute to calculate
the distance between two texture signatures.

For our first set of experiments, we generate two distinct synthetic textures, denoted by
T1 and T2, that have the same conditional variance, σ2 = 1, and mean, µ = 0. We use the
first order neighborhood to generate these textures using the parameters θ = (θx, θy, θz)
shown in Table 1. We make this choice to test the real potential of this method. If we
generate synthetic textures with neighborhoods larger than those of order one, then we do
not have control over the conditional variance of the GMRF of order one fitted to those
textures. In fact, as we show in another set of experiments described below, a few textures
that we generated with higher order neighborhoods could be discriminated based on the
value of σ2 corresponding to the order one GMRF fitted to these textures. If the estimate
for σ2 itself is enough to discriminate between textures then we do not have to look at θ.
Hence, for our first set of experiments we stick with the synthetic textures obtained from
order one GMRFs with equal conditional variance. We denote T1 by T1,0 while T1,π

2
denotes

T1,0 T1,π
2
T2,0 T2,π

2

θx 0.1 0.1 0.05 0.20

θy 0.1 0.25 0.15 0.15

θz 0.25 0.1 0.20 0.05

σ2 1.0 1.0 1.0 1.0

Table 1: Parameters for synthetic textures used for experimental study.

the texture T1,0 rotated about the X-axis by π
2 . Similarly, T2,0 denotes the texture T2 while

T2,π
2

denotes the texture T2,0 rotated about the Y -axis by π
2 . Thus, we expect the distances

between T1,0 and T1,π
2
, and between T2,0 and T2,π

2
to be small, while we want both T1,0 and

T1,π
2

to have a large distance from both T2,0 and T2,π
2
.

In Tables 2, 3 and 4, we tabulate the distance of a realization of each of the four
textures (two rotations of two distinct textures) given in Table 1 from another realization
of each of these textures, for different upsampling factors. The diagonal entries in the
tables correspond to the distance between two realizations of the same texture while the
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off-diagonal entries correspond to the distance between realizations of two different textures.
We notice that in Tables 2 and 3, the distance between T1,0 and T1,π

2
is of the order of the

distance between two realizations of T1,0 or T1,π
2
. Same is true for T2,0 and T2,π

2
. We further

observe that the distance between any realization of T1 and any realization T2 is an order
of magnitude higher than the distance between two realizations of either T1 or T2, or their
rotated versions. Thus, we see that the distance is able to discriminate textures up to
rotations.

The results in Table 2 are obtained by resampling the auto covariance on the grid Z3

4

while the results in Table 3 are obtained using the auto covariance resampled on Z3

2 . The
finer grid does not give any significant improvement. Hence, in this case, resampling on
Z3

2 is enough. Table 4 shows the results obtained with the autocovariance defined on the
original grid Z3. Here T1,0 and T1,π

2
are at a much larger distance from each other than

two realizations of T1,0 or T1,π
2
. Same is true for T2,0 and T2,π

2
as well. Since we have not

resampled the autocovariance function on a finer grid in this case, we end up rotating by a
simple linear interpolation. Hence, we conclude that rotation by simple linear interpolation
is not enough. The data must be resampled on a grid that is fine enough to keep the error
due to linear interpolation under control.

Finally, observe that the Euler angles corresponding to the minimizer for each case
are listed below each distance. They have been normalized by π to make it easier to read.
Hence, in each case we list the angles (α∗/π, β∗/π, γ∗/π), where (α∗, β∗, γ∗) is the minimizer
for the optimization problem required to calculate the distance. This minimizer corresponds
to the rotation that must be applied on one texture to get the other in case one is a rotated
version of the other. As we can observe in Tables 2 and 3, , all these minimizers are close
to the expected values modulo the symmetries assumed, i.e. each can be off by ±π.
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For the experiments described above we only took two distinct textures to test the
rotational invariance of the our distance function. Next, we study five distinct textures,
two of which are the ones presented above (T1 and T2) while the other three, denoted by
T3, T4 and T5, are produced using GMRF models with higher order neighborhoods. Now,
since we still use order one neighborhood to get the texture signatures, the estimate for
σ2 may not be the same as, or even close to, the σ2 used to produce these textures. In
fact, for the examples we use here, even though we used the same σ2 (but different θs) to
produce T3, T4 and T5, the value of σ2 estimated for a order one GMRF fitted to each of
these three textures is different. Thus, in this case, the estimate of σ2 might be enough to
discriminate textures. It is interesting to note that this difference in the value of σ2 is not an
impediment for our distance function. This is evident from the results tabulated in Table 5.
For each of the five textures, we see that the distance between two of its realizations is still

T1 T2 T3 T4 T5

T1 0.0006 0.0073 0.4232 2.3180 1.7724

T2 0.0125 0.0010 0.4894 2.5227 1.8381

T3 0.4466 0.5134 0.0004 0.5208 0.4563

T4 2.4314 2.6315 0.5605 0.0021 0.3533

T5 1.8200 1.9227 0.4318 0.2540 0.0043

Table 5: Distances between five distinct textures using the rotationally invariant distance
defined in Equation (23) and autocovariance resampled on the grid Z3

2 .

relatively much smaller than its distance from other textures. Thus, we see that we can
even discriminate textures arising from higher order GMRFs using our scheme. This shows
that this classification scheme is not limited to synthetic textures produced using GMRFs
with order one neighborhoods, and may also be applied to a larger class of textures.

6 Conclusion and Future Work

In this chapter we have presented a novel approach to rotationally invariant 3-D texture clas-
sification. We define a rotationally invariant distance on GMRF-based texture signatures.
Rotation of a texture is achieved via rotation of the autocovariance function corresponding
to the texture. The practical implementation of the rotationally invariant distance is shown
to work well on experimental data. Moving forward, we want to test if these GMRF-based
texture signatures, along with the rotationally invariant distance, can be used to separate
natural 3-D textures arising, for example, in medical imaging. We have used a 2-D version
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of this scheme to separate natural textures (taken from the Brodatz library for instance)
that are not generated using a GMRF. The positive results in 2-D together with the fact
that we could discriminate textures obtained from higher order GMRFs in 3-D, makes our
scheme a promising candidate for rotationally invariant classification of natural textures in
3-D.
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