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Abstract

In Europe traffic accidents are now widely recorded in national databases. In view of the massive

amounts of accident data, the use of data mining tools is essential to sift truly relevant informa-

tion, and to extract reliable relationships between injury severity and potential causation factors.

We present an innovative data mining approach for in depth investigation of causation in accidents

databases. Classical statistical tools evaluate the strength of potential causal relationships by es-

sentially linear techniques, or strongly rely on ad hoc specific models. We outline here how mutual

information ratios (based on conditional entropies) contribute to rigorously quantify the influence

of causation factors on accident outcome descriptors such as injury type and severity. Information

theoretic methods help to automatically select small groups of factors with high causation impact on

accidents severity, with no hypothesis on underlying relationships between observed variables. We

successfully apply this approach to analyze causation factors in the German In Depth Accident Study

database, which is one of the largest and most complete in depth accident survey and data collection

in Europe.

Key Words: mutual information, conditional entropy, risk analysis.

This work was conducted in the framework of the European project TRACE (Traffic Accident Causation

in Europe).
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1 Introduction

Traffic accidents are a major concern due to their economic and social costs and, above all, because

accident injuries are often incapacitating or fatal. Accident injuries can result from a large number of

causes, including human, vehicle, safety or environment factors. Informations on traffic accidents in

Europe are todays stored in large databases that systematically record many descriptive fields. In the

German In Depth Accident Study (GIDAS) database, dedicated to traffic accidents in Germany, more

than 800 fields are assigned to describe each accident and more than 2000 new accidents are stored each

year. Intensive data mining on such databases is clearly a major task to address. Extraction of significant

injury causation factors hidden in massive databases is an important goal for improving our knowledge

of traffic accidents and traffic safety. New preventive actions can emerge from in depth investigations of

accidents data, with the objective to reduce the rate and severity of accidents (Hautzinger et al, 2008).

In accident databases, the type and severity of injuries are essentially described by a small number

of indicators, referring to injured body parts. But the list of potential causation factors for injury sever-

ity is very large. The link between accident descriptors, on one side, and injury severity, on the other

side, needs to be quantified, or statistically estimated. Ordered probit or logit models have been used

to analyze injury severity frequencies (Abdel, 2003; Yamamoto et al., 2004; Milton et al, 2008). In the

modeling approach, the selection of explanatory variables is mainly performed by stepwise regression as-

sociated with Bayesian Information Criteria (BIC) or Akaike Information Criteria (AIC), or by standard

regression associated with Student’s test to eliminate variables with no significant impact (Yau, 2004).

Classification and regression trees have also been applied to establish a relationship between injury sever-

ity and accident descriptors (Chang et al.,2006) and to analyze the effects of road geometry and traffic

characteristics on accident rates for rural roads (Karlafatis et al., 2002).

Depending on the nature of the variables involved, the strength of the dependency between accident

descriptors and injury severity is measured differently. For continuous variables, the correlation coeffi-

cient ρ2 is a long-standing measure of statistical dependency between two variables, and is often used in

accidents analysis (Huang et al., 2007). For categorical data, statistical dependency is often quantified

by Cramer ′s V , based on the χ2 statistics. The Cramer indicator provides a zero-to-one range value

comparable to ρ2. Moreover, dependency coefficients, as well as modeling, rely on specific underlying

hypotheses. Correlation coefficients are known to measure only linear dependencies between variables.

If variables are linked by non linear relationships, then the use of correlation is definitely not the most

efficient choice. During a stepwise or backward linear regression, variables are selected according to

multivariate linear coefficients R2. For databases with a large number of descriptive fields, prior knowl-

2



edge of functional relationships between variables is never directly available and consequently, the use of

correlation coefficients, based on linear assumptions, can be totally inappropriate to measure statistical

dependencies (Li, 1990). For qualitative variables, the Cramer ′s V indicator, based on χ2 test, is also

inappropriate, in the case of sparse contingency tables.

Mutual information (MI), introduced by Shannon (1949) is a measure of statistical dependency that

is able to catch complex relationships between variables, even in case of non linear dependency (Billings-

ley, 1965; Cover et al., 1991). Mutual information ratios can be computed for discrete, continuous and

discrete-continuous variables (Brillinger, 2004). MI provides a powerful extension of the classical corre-

lation coefficient and of Cramer ′s V measure. Mutual information has been used to evaluate the link

between different kinds of variables. For instance, Granger et Lin (1994) have identify temporal lags for

non-linear models and, in the spectral domain, MI has been used to infer frequency statistical dependency

between seismic time series (Brillinger et Guha, 2006).

In this paper, we show how this method can successfully be used in the domain of accidentology in

order to select the most informative variables that explain injury severity in a large dataset, without

constraints on variable nature or linearity.

2 Mutual Information

Mutual information, based on conditional entropy, quantifies the relationships between two random vari-

ables X and Y. For example, let consider Y an injury severity descriptor and X a potential accident

causation factor. The Entropy measures the average quantity of information provided by the knowledge

of the actual value of a random variable. For a random variable X with modalities αi and occurrence

probabilities pi = Probability(X = αi), 1 ≤ i ≤ m, the entropy, HX , is defined by:

HX = −
m∑

i=1

pilog(pi) (1)

with the convention, 0log(0) = 0.

If X is deterministic, its entropy is minimal, and HX=0: knowing the actual values taken by X in

random trials brings no new information since X is constant. But if X has a uniform distribution, its

entropy is maximal: HX = −log(m): all actual new values of X, which have the same probability to

occur, bring new information. For example, for a variable that takes two modalities (m = 2), if only

one modality is observed for all observations (p1 = 0 or p1 = 1), the entropy is minimum and equals 0.

It means that no variability can be observed in the set of data. On the opposite, if both modalities are

observed in equal proportions (p1 = p2 = 0.5), then the entropy is maximum and equals 1.
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For two discrete variables X and Y, with modalities αi and βj , and with joint probabilities pij =

Probability(X = αi, Y = βj), 1 ≤ i ≤ m, 1 ≤ j ≤ p, the joint entropy, HX,Y is defined by:

HX,Y = −
p∑

j=1

m∑

i=1

pij log(pij) (2)

Conditional entropy HY/X quantifies the average information brought by discovering the actual

value of Y when the value of X is already known, and is defined by:

HY/X = −
p∑

j=1

m∑

i=1

pij log(pj/i) (3)

pj/i denotes the conditional probability of Y = βj given that X = αi. If X and Y are independent,

then HY/X = HY : knowing the value of X doesn’t bring any information about the value of Y.

Mutual information, based on conditional entropy, is a measure of statistical dependency between

two variables X and Y. IX,Y quantifies the average amount of information about the actual value of Y

provided by the knowledge of the actual value of X.

IX,Y = HY −HY/X (4)

Normalized by the entropy of variable Y, the mutual information ratio (MIR), RX,Y , is a zero to one

range measure of the dependency of X and Y.

RX,Y =
IX,Y

HY
(5)

For two independent variables X and Y, prior knowledge of X doesn’t provide any information on

Y, and RX,Y = 0. But if a deterministic functional relationship exists between X and Y, then prior

knowledge of X completely determines the value of Y, and the mutual information ratio is maximal:

RX,Y = 1. Mutual information ratio is a non parametric measure of association between at least two

variables, Y and X. It can be applied to symbolic data (categories) as well as numerical data. In the

bivariate case, mutual information is the Kullbak-Leibler distance between the joint distribution of (X, Y )

and the product of its marginal X, Y (Brillinger, 2004).

Some illustrative examples are presented in figure 1. In these toy examples of joint distributions, X

and Y each have 4 modalities: a, b, c, d for X and A,B, C, D for Y. The number of observations remains

equal to 100 for all cases, but the proportion of deterministic coupling between modalities of X and Y

ranges from case to case.

INSERT FIGURE 1
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For the 1st joint distribution (left display), there is a one-to-one deterministic relationship between

X and Y, and MIR equals 100%. For the 2nd distribution (right display), given any modality of X, all

modalities of Y are equally probable, and MIR equals 0; X modality brings no information to forecast

any Y modality. For the last joint distribution (center display), most modalities of X have a one-to-one

relationship with a specific modality of Y, but for one X modality, the Y value remains ambiguous: in

this case MIR equals 68%.

The random variables X and Y considered above take only a finite set of possible values (m modalities

for X and p for Y). It is however possible to define the mutual information IX,Y for continuous random

variables. Conditional entropy, from an actual set of continuous observations of X and Y, impose the

discretization of the possible values of both variables X and Y. Consider a continuous random variable

X, taking values in the set of real numbers R, with a density function f(x) defined on the support [A,B].

The interval [A,B] is split into m disjoint intervals J1, J2, . . ., Jm and an arbitrary point Dk is selected

in each interval Jk (1 ≤ k ≤ m). The ”discretized” random variable is defined as Um = Dk whenever the

random value of X falls in Jk. The random variable Um takes only a finite number of m values. As ”m”

tends to infinity, this classical discretization scheme provides, from the point of view of measure theory, a

good approximating sequence of X by the sequence of random variables Um. The absolute entropy HUm

can be computed as above since Um has a finite number of modalities. A similar discretization scheme

can be applied to an arbitrary pair X,Y of continuous variables with a joint density, and this approach

provides, as m tends to infinity, an explicit formula for the MIR of (X, Y ).

2.1 Estimation of Mutual Information

In operational cases, exact joint distributions of variables are naturally unknown and MIR must be

estimated. Consider N independent observations of (X, Y) extracted from an accident database. Let

vk
ij = 1 when X = αi and Y = βj for observation k and let vk

ij = 0 otherwise. Joint probabilities can be

estimated as follow:

p̂ij =
1
N

N∑

k=0

vk
ij (6)

The plug-in estimate of the mutual information ratio is then ÎX,Y = ĤY − ĤY/X with

ĤX,Y = −
p∑

j=1

m∑

i=1

p̂ij log(p̂j/i) (7)

and

R̂X,Y =
ÎX,Y

ĤY

(8)
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Theoretical results can be achieved to quantify the estimation error between true entropy and its

empirical estimate. For a categorical variable X with m modalities and for a large number of N obser-

vations, the estimation error ĤX −HX can be approximated by a Gaussian random variable with zero

mean and standard deviation bouned by log(m)/
√

mN (Azencott, 2006). Confidence intervals can then

be computed for MIR coefficients.

2.2 Factor selection using mutual information ratio

Given a specific injury severity indicator Y and p potential causation factors (X1, . . . , Xp), mutual infor-

mation can be used to estimate and statistically compare the strength of the causal relationship between

Y and the factors of the group. Mutual information ratios are first computed between Y and all Xj ,

1 ≤ j ≤ p, using equation (7). Each MIR coefficient lies between 0 and 100%, and evaluates the percent-

age of information on the value of Y which is provided by X .Then, to compare the individual influence

levels of Xj on the severity indicator Y, the MIR coefficients RXj ,Y are ordered by decreasing magnitude.

X(1) denotes the factor with the largest MIR, associated to the highest predictive power for Y.

R̂X(1),Y = max{j}
{
RXj ,Y

}
(9)

Mutual information can also be computed for multivariate factors (Joe, 1989). Let X = (Xi1 , . . . , Xik
)

be a multivariate variable regrouping k factors (k ≤ p). The MIR of Y with respect to X is computed

as above using natural extensions of equations (6) and (7). To select a group Gk of k factors having the

highest joint predictive power for Y, we proceed as above for single factors, and hence select the group

Gk of k factors with the highest MIR ratio R(Gk, Y ). Among all groups of k factors , the group Gk best

explains the Y values. Finding the best group of k factors among p factors is generally computationally

infeasible. Hence, we proceed with a greedy algorithm. The following pseudo code details the algorithm

for multivariate variables selection based on MIR (table 1).

This method provides also an efficient and rigorous way of constructing increasing hierarchies of

causation factors for a given severity indicator Y. This method is applied to GIDAS data to extract

group of factors with a high predictive power on injury severity.

2.3 MI and dependance analysis for accident data

Mutual information ratio is a non parametric measure of association between at least two variables, Y

and X. Let us sketch some alternative approaches.

The MIR quantifies the level of general non linear functional dependency between X and Y, while the

usual correlation ρX,Y (equation 10) only quantifies the level of linear dependency between X and Y.

Moreover correlations have no intrinsic meaning for categorical observations (Li, 1990). Recall that
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Notations:

Y is the target variable, X1, ....Xp the p factors.

Initialisation:

Z0 = {}; G0 = {}; J0 = 1...p;

choose K ∈ {1..p}; K size of the multivariate group of selected factors

Algorithm:

for k=1 to K do

j0 = ArgMaxj∈Jk−1MIR(Y, Uk(j)) with Uk(j) = [Zk−1; Xj ];

Gk = [Gk−1; j0];

Zk = [Zk−1;Xj0 ];

Jk = Jk−1 − {j0};
end

GK is the multivariate group of size K with high predictive power on Y.

Table 1: g

reedy algorithm for to select multi variate factors using MIR criteria.
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ρX,Y =

∑
i,j pi,j(Xi − X̄)(Yj − Ȳ )

σXσY
(10)

where σX and σY are the standard deviation of X and Y. Note that arbitrary strictly monotone

transformations of the variables X and Y do not affect the existence of a functional dependency between

X and Y. Hence the fact that MIR(X,Y) is invariant under such monotone transformations of X and Y

confers to MIR a strong intrinsic robustness. Indeed the correlation ρX,Y can be arbitrarily modified by

such monotone transformations, since the Xi, Yj values occur explicitly in its definition. For instance

a perfect correlation ρX,Y = 1 can be lowered arbitrarily by non linear transformation of one of the

variables. Both Mutual Information ratios and Correlations can a priori be used for ordering explanatory

variables by decreasing influence levels when one seeks to explain an injury severity descriptor Y by p

potential explanatory variables X1 . . . Xp . The MIR approach seems nevertheless more generic and more

robust. One major advantage is that MI can be applied to symbolic data (categories) as well as numerical

data.

CART (Classification And Regression Tree) is a non parametric methodology to point out depen-

dencies between variables (Breiman et al., 1998) which has been applied to analyze traffic injury severity.

Karlafatis et al. (2002) used tree-based regression to analyze the effects of road geometry and traffic

characteristics on accident rates for rural roads. Chang et al. (2006) have applied a CART model to

establish a relationship between injury severity and accident descriptors. The algorithm identifies the

most relevant factors and the associated categories (or the associated threshold for continuous variable)

by partitioning the feature space of explanatory variables into a set of rectangles, and provides recursive

binary trees.The construction of the tree is data-driven and based on local optimization. It should be

note that following this methodology, the same explanatory variable X can appear many times in dif-

ferent position within the tree due to the possible split of the set of defined categories (see hereafter for

illustration on accident data). Compared to CART, MIR generates a hierarchical list of ranking factors

which best explains a target variable. Each factor appears only ones in the list. The construction of the

list is global for each variable.

3 Accidents database

In Germany, since 1999, a consortium of two institutes (BAST, -Federal Highway Research Institute-

and FAT, -German Association for Research on Automobile-Technique-) drives an important German In-

Depth Accident Study (GIDAS). In the areas of Hanover and Dresden, personal injury traffic accidents

are systematically reported by the police and the fire department stations. Annually, approximately 2,000

traffic accidents are recorded in this way and the information is stored in an historical database.
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Standardized classification systems are used to describe the severity of injuries, such as AIS (Abbre-

viated Injury Scale). Each accident is analyzed in detail and the motions of the vehicles and occupants

reconstructed. Since collisions processes are generally dependent on technical background conditions

and the resulting injuries often affected by these conditions, GIDAS investigations can be used for most

aspects of passive and active safety.

The GIDAS database is now the largest and most complete In-Depth accident survey and data col-

lection in Europe. The number of available observations in the GIDAS database was, at the end of 2006,

around 14 000 with the following per year repartition: 1999 (1018); 2000 (1987); 2001 (1906); 2002 (1643);

2003 (1806); 2004 (1849); 2005 (2007); 2006 (1737).

4 Applications to risk factor quantification

In the GIDAS database, most variables are qualitative, we hence have a natural situation where classical

correlation analysis may be of limited use, and information theoretic methods based on conditional

entropy computation offer a more rigorous tool to explore association or causation relationships between

variables. We have applied to GIDAS data the MIR methodology outlined above, with, at the end of

2006, 14000 observations, described by more than 800 fields. All vehicles, and people involved in a crash

data (when at least an injured people can be found) are stored in the database. A preliminary filtering

treatment has first been applied to the whole database, to eliminate inappropriate values (Mougeot et

al., 2007). For our whole study, tests and analyzes have been implemented by programs we developed

using the R statistical programming software [R development Core Team]. All the code and functions

to compute the theoretical coefficients have been programmed using R standard language. No specific R

toolboxes has been used for this application.

4.1 Injury severity indicators

We have focused our exploratory causation analysis on three indicators of injury severity for different

body parts (Y variable) : Maximum Injury Severity (MAIS), Head Injury Severity(HWS) and leg injury

Severity (AISBEIN).

4.1.1 Maximum Injury Severity (MAIS)

In the GIDAS database, MAIS values fall into 7 categories 0 . . . 6, corresponding to 7 possible values for

the maximum severity of injuries.

INSERT FIGURE 2
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In order to analyze whether accidents led to severe, light of non injuries, the initial 7 modalities of

MAIS have been regroup into 3 categories . The 3 labels Safe, Slightly Injured and Severe Injured denote

respectively accidents with no injury (MAIS tag = MAIS0), accidents with some minor injuries (MAIS

tag ∈ {1, 2}), and accidents with severe injuries (MAIS tag ≥ 3). In the database, a frequency of 60%

is observed for ”no injury” accidents , and a frequency of 74% for ”slight injury” accidents (MAIS tag

≤ 1). Histograms are built with 11586 observations.

4.1.2 Neck Injury Severity(HWS)

In the GIDAS database, the variable HWS focus on Neck Injury Severity and has 7 modalities, as defined

for MAIS.

INSERT FIGURE 3

Figure 3 shows that a large majority of accidents (80%) lead to no neck injury. Histograms are built

with 11586 observations. As above, we split the 7 modalities of HWS into 3 broad categories labeled

Safe, Slightly Injured and Severe Injured for the neck.

4.1.3 Leg Injury Severity(AISBEIN)

In the GIDAS database, Leg Injury Severity is recorded by the variable AISBEIN, which has 7 modalities,

as defined for MAIS and HWS.

INSERT FIGURE 4

Figure 4 shows that a large majority of accidents (80%) lead to no leg injury. Histograms are also

built with 11586 observations. As above, we split the 7 modalities of AISBEIN into 3 broad categories

labeled Safe, Slightly Injured and Severe Injured for the legs.

4.2 Potential causation factors for injury severity

A key objective of this study was to focus on a target list of potential causation factors for injury

severity, to estimate and compare the causation strengths between potential causation factors and the

injury severity descriptors, and to determine which combination of causation factors has the highest

power to predict injury severity. A list of potential causation factors was first prepared by the German

BAST institute. Groups of factors describing as collision, environment, human, safety, site and vehicle

characteristics were chosen (table 2).
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INSERT TABLE 2

Different type of factors are observed as continuous, discret or nominal (table 3).

INSERT TABLE 3

The collision is described by six factors : the initial speed of the collision (continuous), the kind of

opponent (6 categories), the main damage to the car (7 catagories), the type (7 categories) and kind of

accident (10 categories) and if it’s a rollover accident (binary). Environmental factors take into account:

the speed limit (17 categories), the place (binary) and the time of the accident (3 categories). Human

effects are analyzed through following variables: the age of the driver (8 categories), its gender (binary),

and its guiltiness (binary). The Vehicule is described by its age (continuous) and the airbag equipment

(binary). Safety is described by the use (or not) of the seatbelt (binary variable).

Table 4 presents the initial target list of potential causation factors for the injury severity indicators

MAIS, HWS and AISBEIN.

INSERT TABLE 4

This exploratory study was restricted to three injury severity indicators MAIS, HWS and AISBEIN, to

better evaluate the practical impact of the mutual information approach. 15 factors have been selected for

this study : 13 factors are categorial variables and the 2 remaining factors (COLLSPEED and CARAGE)

are continuous and have been divided into 10 classes as described for the computation of MIR. Figure

13) shows the barplots or histograms of the selected factors.

INSERT FIGURE 13

5 Results

In this section, mutual information ratios (MIR) are computed to estimate the causation strengths be-

tween potential factors and accident outcome descriptors (MAIS, HWS, AISBEIN). Each MIR is com-

puted using more than 8000 observations, depending on the proportion of missing values for the studied

variables. Each specific MIR involves only a precise small set S of variables, and to compute this MIR
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coefficient, we temporarily eliminate all records having missing values for some of the variables in S. MIR

coefficients are separately estimated then sorted for each potential causation factor. We then successively

determine groups of multivariate factors of different size which best explain the injury severity indicator.

5.1 MAIS

The MIR coefficients are first estimated using the 7 original modalities of MAIS, and then estimated

again using only the coarser categories (Safe, Slightly Injured, Severe Injured for MAIS. The coefficients

evaluate how well MAIS is explained by each potential causation factor. These coefficients are then sorted

by decreasing order of magnitude (Figure 5).

INSERT FIGURE 5

The results are presented in Figure 5. Fixing an outcome descriptor such as MAIS, the MIR coefficient

computed for each single factor is represented by the length of an horizontal bar. The tag name of the

corresponding factor is displayed on the left and table 4 gives the list of all tag names. The number of

joint observations used for computing the MIR is displayed on the right. At the right end of each bar, we

display a confidence interval for the MIR value, computed for a 95% confidence level. All MIR coefficients

lie between 0 and 100%.

For MAIS indicator, this analysis shows that the most influent factor OPPONENT with a MIR around

23%. When the 7 initial modalities are regrouped into coarser classes, this feature is even sharper and

MIR increases to 28%. Accident KIND appears in second position (MIR = 13%), and accident TYPE

comes in third position (MIR = 10%). All MIR coefficients increase when computed for coarser ternary

distribution. SPEED of collision, PLACE, and SPEED LIMIT obtain similar MIR coefficients.

SEATBELT factor appears in the middle of the list with a small MIR (1.95%). At first sight, this

is surprising since SEATBELT usage is considered to be an important factor affecting injury severity of

vehicle traffic accidents. Recall that today, drivers and passengers are required by law to use their seat

belt, so that 97% of the observations in our database correspond to the use of seat-belts (Figure 6). So

the MIR coefficient is here overwhelmingly determined by cases where seatbelt is used, and hence reflects

only partially the intrinsic risk associated to the absence of seatbelt.

To focus on the severity of accidents due non seatbelt usage, we have artificially selected a random

set of GIDAS data with equal proportions of ”seatbelt use” and ”no seatbelt use” (Figure 6). The small

proportion (3%) of accidents records with non usage of seatbelt have all been retained, and have been

completed with an equal proportion of observations, taken at random among the numerous accident

records with corresponding to seatbelt usage. To obtain a robust estimation of the MIR, this procedure
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has been replicated 20 times, and the MIR has been averaged over all replications. For this specific mixture

of observations, better suited to evaluate the impact of the SEATBELT factor, the MIR increases from

1.95% to 14%, which is a quite high value, corresponding to a 2nd position in the ranked list of causation

factors. SEATBELT usage remains an important causation factor directly linked to injury severity. Since

only a very small minority of drivers do not wear seatbelts, the proportion of accidents where this factor

becomes really active remains extremely small.

INSERT FIGURE 6

ROLLOVER accidents are quite rare, and their impact on MAIS is high (MIR 5.8%), but the intrinsic

risk associated to ROLLOVER is much higher. To compute the severity impact of ROLLOVER, we use

the same procedure as for SEATBELT, and select an artificial random sample of accidents, with 50% of

ROLLOVER cases. We observe that the MIR coefficients increases to 27%, which confirms the exceptional

gravity of rollover accidents.

The GENDER variable has fairly small MIR, and hence does not seem to have a strong impact on

MAIS.

Multivariate analysis is then conducted to analyze for a given number of explanatory variables, which

group of factors has the highest mutual information ratio with MAIS, and hence best explains Maximum

Injury Severity. The following graph presents, for MAIS, the highest MIR feasible as function of the

number of potential causation factors (Figure 7).

INSERT FIGURE 7

For instance, the 3rd column indicates that the group of 3 factors (OPPONENT, Collision SPEED and

Accident KIND) has a joint MIR of 38%; this group has the highest predictive power for all groups of 3

factors. It is interesting to observe that, for the single factor analysis, OPPONENT, Accident KIND and

Accident TYPE were respectively in 1st, 2nd and 3rd position, regarding the association strength level

(figure 5). In the multivariate analysis, Collision SPEED, which was in 4th position for the single factor

analysis, replaces Accident TYPE in the most predictive combination of 3 factors. This is essentially due

to the sizable redundancy between accident KIND and TYPE, as can be seen from their pairwise MIR

which is equal to 52%. The MIR coefficients estimated for MAIS confirmed here by objective computation

the knowledge of BAST Experts about the main injury severity causation factors in accidents,in the list

of chosen fators.
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Classification And Regression Tree have been computed for MAIS on the same data using Tree library

of R software. Figure 8 shows the CART graph. We observe that variables opponent, collision speed,

and accident kind are first selected for both methods. In the MIR methodology, each variable appears

only one time, in the successive selection of factors. For CART, the optimization process split, during

the analyze, the categories which can appears also at different levels.

INSERT FIGURE 8

5.2 HWS

Just as for MAIS, the Mutual Information Ratios are computed between HWS and the potential causation

factors listed in Table 4.

INSERT FIGURE 9

As above, the MIR coefficients estimated for HWS are sharper when computed for a ternary dis-

tribution as for the original distribution (Figure 9). The OPPONENT type is, as for MAIS, the most

influential factor explaining head injury severity however the causation strength is smaller (14% as com-

pared to 23%). The same holds true for the factors Accident KIND and TYPE which are again placed 2nd

and 3rd. GUILTY, which records the driver’s responsibility, is now at 4th place. The driver’s GENDER

becomes a quite important factor for head injuries, indicating that women are more vulnerable than men

from this point of view. The mainly damaged part of the car (DAMAGE) comes also into play, probably

reflecting that rear end collisions play a high role in the occurrence of severe head injuries.

Multivariate analysis is then conducted, as above, to select which group of factors has the highest

mutual information ratio, and hence best explains head injury severity. Results are presented Figure 10.

INSERT FIGURE 10

The two factors, which jointly best explain head injuries, are: OPPONENT type and GENDER.

Observe that GENDER, which as a single factor influencing HWS was in 5th position, is now the factor,

which in combination with OPPONENT type, best explains head injuries (considering more than 9.000

observations of GIDAS database). This result confirm a fact known to experts, namely that, in traffic

accidents, women are more vulnerable than men for head and neck injuries.
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5.3 AISBEIN

Just as for MAIS and HWS, the MIR are computed between AISBEIN and the potential causation factors

listed in Table 4.

INSERT FIGURE 11

As for MAIS and HWS, the MIR coefficients are sharper when computed for a ternary distribution as for

the original distribution (figure 11). Comparing MAIS, HWS and AISBEIN analyses, we observe that

the same subsets of factors are associated with the highest MIR ratio. The type of OPPONENT, the

TYPE and KIND of accident, as defined in GIDAS, are the strongest factors.

INSERT FIGURE 12

For the multivariate analysis, we observe the same analogy. The group of tree factors is the same

for MAIS and AISBEIN. GENDER seems to have a stronger influence on head injuries, but less for leg

injuries.

6 Discussion and conclusions

In this study, we used Mutual Information Ratio to identify the risk factors that can influence the in-

jury severity in traffic accidents. This methodology provides a useful framework that enable studying

potentially influent factors with no constraint on the variable type. In the GIDAS database, the accident

outcome descriptors (MAIS, HWS, AISBEIN) take categorical values. The original seven modalities of

the descriptors have been merged into three coarser categories in order to analyze whether accidents led

to severe, light or non injuries. Regarding the outcome descriptor, different types of variables have been

considered: continuous variables (collision speed, age of the car), ordinal variables (speed limit, age),

binary variables (gender, setbelt...) or nominal data (car damage, opponent,...). Mutual information

ratios offer then a wide range of possibilities to study, in the same framework, causation links between

variables of different nature with continuous distributions as well as finite sets of modalities.

Factors selection using multivariate MIR yields groups of factors of minimal size with no redundancy,

that best explains the outcome descriptor. One main advantage of this approach is to intrinsically handle

multi-collinearity factors. If a deterministic relationship exists between two factors, only one of them will

be selected. This property is particularly useful when dealing with accidents because traffic data often

show serious correlation between variables (e.g. accident kind and accident type in our case).
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From a theoretical point of view, one strong advantage of MIR analysis is that it does not require

to specify a functional form of dependency such as correlation or Cramer ′ s indicator. In a classical

regression analysis, the estimated relationship between the predictor and the factors can be erroneous,

if the model is mis-specified. As well, in case of strong correlations between the factors, the estimation

of the coefficients is less precise in a regression analysis which can lead to wrong interpretations between

independent and dependant factors.

The analyze of GIDAS data shows that, for all accident outcome descriptors, opponent is the most

critical factor determining injury severity in traffic accidents. Factors such as accident kind or accident

type are respectively in second and third position when the influence of each factor is analyzed indepen-

dently.

The MIR coefficients naturally depend on the histogram of factor modalities, and we show how factors

for which a single modality is overwhelmingly represented as for example the seat belt factor, yield under-

estimated causation strengths values. This can be solved, however, with adequate random re-sampling

of the data, which enables the MIR coefficient to correctly estimate causation strength even when one

single modality is omnipresent (see figure 6). This feature was illustrated for both seat belt and rollover

factors, and confirms that rollover accidents as well as the non usage of seat belts lead to serious injuries

(even if the actual proportion of accidents in which these factors were active is very small).

Due to the major probabilistic properties of MIR, these mutual information ratios are very efficient

to detect non linear causation links. Since mutual information ratios are model independent, they can be

used, prior to modeling, to select the most relevant group G of explanatory variables to predict a given

accident outcome Y. One can then construct a model to predict Y outcome given the group G of selected

variables: Y = FS(X(1), ..., X(k)). The empirical relationship FS naturally depends on the data set S of

observations used during learning. In preparatory analysis of accident data prior to model building, it

has been validated that, because it is model independent, mutual information is a powerful tool to select

the most relevant variables (Mougeot et Azencott, 2008). MIR appears then as a powerful method for

identifying the strength of relationship between variables of different natures without constraints on the

distribution laws. The most pertinent variables may then be included in predictive models.
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Figure 1: Mutual Information Ratio for some joint distributions. From left to right: RX,Y = 100%;

RX,Y = 68%; RX,Y = 0%.
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Figure 2: MAIS distribution for GIDAS data. Original and aggregated distribution of data.
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Figure 3: Head injuries distribution for GIDAS data. Original and aggregated distribution of data.
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Figure 4: Leg injuries distribution for GIDAS data. Original and aggregated distribution of data.

Factors nb Description

Collision 5 collision speed, rollover, opponent, main damage, type of Acc., kind of Acc.

Environment 3 speed limit, place(urban/rural/highway), time (day/night/dawn)

Human 3 age, gender, guilty

Safety 1 seat belt

Vehicle 2 car age, airbag

Table 2: Association factors used for MAIS, HWS or AISBEIN outcome descriptor.

Continuous data Collision speed, car age.

Binary data gender, seatbelt, rollover, place, guilty

Ordinal data speed limit, age,...

Nominal data car damage, opponent, acc. type, acc. kind

Table 3: Type of Association factors used for MAIS, HWS or AISBEIN outcome descriptor.
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Figure 5: MIR for MAIS (%). Left: initial distribution. Right: MIR computed fo trinary distribution of

safe and injured accidents.
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Figure 6: Seatbelt usage for GIDAS original data (yellow) or equaled proportion (blue). Corresponding

Impact on MIR.
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Figure 8: Classification and Regression Tree for MAIS descriptor.
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Figure 9: MIR for head injuries (%). Original and ternary distribution.
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Figure 10: Multivariate Mutual Information Ratio for Head descriptor (%).
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Figure 11: MIR for leg injuries (%). Original and ternary distribution.
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Figure 12: Multivariate Mutual Information Ratio for Leg descriptor (%).
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Figure 13: Histogram of potential association factors for MAIS, HWS and AISBEIN descriptor.
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Variable Description Number of modalities and brief description

GENDER Gender (2) male/ female.

PLACE Place of the accident (urban/rural) (2) urban/ rural.

TIME Time of the day (3) day/night/dawn

COLLSPEED Initial speed of collision Continuous

SEATBELT Seat belt usage (2)belted/ unbelted

ACCTYPE Type of accident (7) F/AB/EK/UES/RV/LV/SO

ACCKIND Kind of accident (10) unfall/ anfhrt/

LIMITSPEED Speed limit at the accident scene (17) 5 km/h// 140 km/h

GUILTY Responsible or not for the accident (2) yes/no

OPPONENT Opponent (7) Others Car HGV Bike Cyclist Pedestrian Object

AGE Age of the driver (8) (0,18] , (25,30] (30,35] (65,75] , (75,100]

AIRBAG Use of the airbag (2) AIRBAG /no AIRBAG

CARAGE Age of the car continuous

DAMAGE Main damage to the car (7) Front Right Side Bottom

ROLLOVER Rollover (yes/no) (2) yes/no

Table 4: Association factors used for MAIS or HWS outcome descriptor.
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