
This article was downloaded by: [91.195.72.14]
On: 16 April 2014, At: 05:43
Publisher: Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Quantitative Finance
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/rquf20

Real-time market microstructure analysis: online
transaction cost analysis
R. Azencottab, A. Beric, Y. Gadhyand, N. Josephe, C.-A. Lehallef & M. Rowleyg

a Department of Mathematics, University of Houston, Houton, TX, USA
b Ecole Normale Supérieure Cachan, Cachan, France
c Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA
d Cluster Innovation Center, University of Delhi, Delhi, India
e Crédit Agricole Cheuvreux, Quantitative Research, Paris, France.
f CFM, Quantitative Research, 23/25, rue de l’Université, Paris 75007, France
g Rowley Consulting LLC, Quantitative Research, Princeton, NJ, USA
Published online: 31 Mar 2014.

To cite this article: R. Azencott, A. Beri, Y. Gadhyan, N. Joseph, C.-A. Lehalle & M. Rowley (2014): Real-time market
microstructure analysis: online transaction cost analysis, Quantitative Finance, DOI: 10.1080/14697688.2014.884283

To link to this article:  http://dx.doi.org/10.1080/14697688.2014.884283

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of
the Content. Any opinions and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied
upon and should be independently verified with primary sources of information. Taylor and Francis shall
not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other
liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/rquf20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14697688.2014.884283
http://dx.doi.org/10.1080/14697688.2014.884283
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Quantitative Fnance, 2014
http://dx.doi.org/10.1080/14697688.2014.884283

Real-time market microstructure analysis: online
transaction cost analysis

R. AZENCOTT†‡, A. BERI§, Y. GADHYAN¶, N. JOSEPH‖, C.-A. LEHALLE∗††
and M. ROWLEY‡‡

†Department of Mathematics, University of Houston, Houton, TX, USA
‡Ecole Normale Supérieure Cachan, Cachan, France

§Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA
¶Cluster Innovation Center, University of Delhi, Delhi, India

‖Crédit Agricole Cheuvreux, Quantitative Research, Paris, France
††CFM, Quantitative Research, 23/25, rue de l’Université, Paris 75007, France

‡‡Rowley Consulting LLC, Quantitative Research, Princeton, NJ, USA

(Received 10 March 2013; accepted 6 January 2014)

Motivated by the practical challenge in monitoring the performance of a large number of algorithmic
trading orders, this paper provides a methodology that leads to automatic discovery of causes that
lie behind poor trading performance. It also gives theoretical foundations to a generic framework
for real-time trading analysis. The common acronym for investigating the causes of bad and good
performance of trading is transaction cost analysis Rosenthal [Performance Metrics for Algorithmic
Traders, 2009]). Automated algorithms take care of most of the traded flows on electronic markets
(more than 70% in the US, 45% in Europe and 35% in Japan in 2012). Academic literature provides
different ways to formalize these algorithms and show how optimal they can be from a mean-variance
(like in Almgren and Chriss [J. Risk, 2000, 3(2), 5–39]), a stochastic control (e.g. Guéant et al. [Math.
Financ. Econ., 2013, 7(4), 477–507]), an impulse control (see Bouchard et al. [SIAM J. Financ.
Math., 2011, 2(1), 404–438]) or a statistical learning (as used in Laruelle et al. [Math. Financ. Econ.,
2013, 7(3), 359–403]) viewpoint. This paper is agnostic about the way the algorithm has been built
and provides a theoretical formalism to identify in real-time the market conditions that influenced its
efficiency or inefficiency. For a given set of characteristics describing the market context, selected
by a practitioner, we first show how a set of additional derived explanatory factors, called anomaly
detectors, can be created for each market order (following for instance Cristianini and Shawe-Taylor
[An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 2000]).
We then will present an online methodology to quantify how this extended set of factors, at any
given time, predicts (i.e. have influence, in the sense of predictive power or information defined in
Basseville and Nikiforov [Detection of Abrupt Changes: Theory and Application, 1993], Shannon
[Bell Syst. Tech. J., 1948, 27, 379–423] and Alkoot and Kittler [Pattern Recogn. Lett., 1999, 20(11),
1361–1369]) which of the orders are underperforming while calculating the predictive power of this
explanatory factor set. Armed with this information, which we call influence analysis, we intend to
empower the order monitoring user to take appropriate action on any affected orders by re-calibrating
the trading algorithms working the order through new parameters, pausing their execution or taking
over more direct trading control. Also we intend that use of this method can be taken advantage of to
automatically adjust their trading action in the post trade analysis of algorithms.

Keywords: Transaction costs; Performance evaluation; Learning and adaptation; Market
microstructure; Empirical time series analysis

JEL Classification: C14, C81

1. Introduction

Institutional investors use optimal dynamic execution strate-
gies to trade large quantities of stock over the course of the day.

∗Corresponding author. Email: charles@lehalle.net

Most of these strategies have been modelled quantitatively to
guarantee their optimality from a given viewpoint: it can be
from an expectation (see Bertsimas and Lo (1998)), a mean-
variance (like in Almgren and Chriss (2000)), a synchronized
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2 R. Azencott et al.

portfolio (e.g. Lehalle (2009)) or a stochastic control (Bouchard
et al. 2011) perspective.

Algorithmic trading analyzes high frequency market data,
viewed as actionable information, in order to automatically
generate and place automated trading orders. Hence, auto-
matic trading algorithms can be viewed as parameterized black
boxes. They are initialized and monitored by human traders,
who have the capability to set and adjust some high-level
parameters that drive the algorithm—incorporating the trader’s
view and allowing reaction to unexpected events. However
standard automatic trading systems, do not currently offer ad-
vanced computerized discovery of potential causes for poor
trading performance. Our paper focuses on automated online
monitoring of portfolio performance by real-time scanning of
static (like the sector, the country, etc., of the traded stock)
and dynamic (like the bid-ask spread, the volatility, the mo-
mentum, the fragmentation of the traded stock) ‘explanatory’
market variables quantifying their current influence on port-
folio performance. The Influence Analysis methodology we
have developed and tested can provide real-time feedback to
traders by detecting the most significant explanatory factors
influencing current degradations of trading performance on
specific portfolios.

Transaction cost analysis (TCA) practitioners, in particular
for real-time analysis, are faced with the problem of automat-
ing the understanding of how market context affects trading
performance of a large number of orders. This paper is the
first theoretical formalization of such a process proposing a
framework to understand and improve TCA (off line or in real-
time) in several aspects: (1) augmenting the description of the
market context (using scoring Section 2.3 and pattern detec-
tion Section 3) to identify relationships between this enhanced
description and the performance of a large basket of orders.
A key feature of our influence analysis methodology is that it
does not require actual knowledge of the trading algorithms’
mechanisms. Online influence analysis could hence be useful
in updating trade executions as well as in re-calibrating trading
algorithms. Influence analysis on historical data could also
improve existing trade scheduling algorithms, selecting new
significant signals in their kinematics.

Our online influence analysis generates in real-time a very
short list of market factors ‘explaining’ the current lack of
performance in a collection of intra-day trades. The automatic
trading algorithms can be arbitrary; it can be a result of a
classical mean-variance optimization (see Almgren and Chriss
(2000)), stochastic control of a brokerage benchmark (see
Bouchard et al. (2011)), stochastic control of a market
making scheme (see Guéant et al. (2013)), a liquidity-seeking
algorithm driven by a stochastic algorithm optimization (see
Laruelle et al. (2013)), or even purely heuristic driven ones.The
analysis conducted here is supported by automatic detection of
the conjunction of poor trading quality and singularity or rarity
of the market context.The influence analysis can be launched as
soon as a portfolio performance evaluation criterion is selected,
such as the slippage with respect to the arrival price, to the
VWAP (volume-weighted average price), etc. Our online influ-
ence analysis relies on extensions of classical relative entropy
techniques (see for instance Brillinger (2004), Mougeot and
Azencott (2011), Azencott et al. (2007), Billingsley (1965)) to
generate in real-time optimized empirical relations between an

automatically selected small set of high influence explanatory
factors and any pre-assigned trading performance criterion.
Our approach also quantifies at each time t the current influ-
ence of a given pool of market factors on trading performance
degradation.

We first describe typical sets of market variables and trading
performance criteria to which our influence analysis applies,
and we outline our benchmark sets of intra-day data, used to
test our approach. In Section 2 we describe the market dataset
considered for our study. We then present in Section 3 the
three online anomaly detectors we have developed to enrich
in real-time any set of dynamic input market variables. Such
detectors are a bespoke implementation of a more generic class
of detectors that could be used like wavelet coefficients (see
Mallat (2008)). Section 5.3 outlines our generic framework
for influence analysis. We select and fix any pragmatic binary
trading performance criterion Yt detecting low trading perfor-
mance at time t . This binary criterion will be deduced from
a variable of performance PEt of the trading portfolio. Given
any small set G of explanatory variables X

G = {X j
t , j ∈

G} (deduced from a multiscale analysis of market context
descriptors {M j

t , 1 ≤ j ≤ J }), we generate the current ‘best’
predictor Ŷt = ht ({X G}) of Yt based on these explanatory
variables, and we compute its current predictive power, which
we call the influence coefficient Jt (G) of the group G on Yt

The time dependent set Gmax
t which maximizes Jt (G) among

all small groups G of explanatory factors is then determined,
and if Jt (Gmax

t ) is high enough, the set Gmax
t can be exported

in real-time to traders, as the set of market variables which best
explains current trading performance degradations. In Section
6.2 we present the accuracy analysis of the influence computa-
tion, and obtain pragmatic conditions for robust identification
of explanatory variables. We then present the steps to compute
optimized parametric predictors based on single explanatory
factors, and to generate hierarchical combinations of optimal
predictors. Section 9 presents the test results of our influence
analysis on benchmark intra-day datasets provided by Crédit
Agricole Cheuvreux Quantitative Research Group. Section 10
concludes.

2. Dynamic dataset to be monitored online

2.1. The automated trading process

Only few assumptions are demanded to a trading process to
be monitored by the methodology proposed here. By ‘trading
process’ we mean the operation of buying or selling shares or
any other financial instrument in more than one transaction.
Since the ‘last leaf’ of any investment or hedging strategy is to
obtain transactions, a trading process is needed if block execu-
tion cannot be obtained. With the conjunction of the financial
crisis and regulation changes (mainly Reg NMS in the US in
2005 and MiFID in Europe in 2007, see Lehalle et al. (2013) for
details), the capability to close a deal in one transaction strongly
decreased. Hence most market participants are ‘slicing’ their
large orders (see Almgren and Chriss (2000), Bouchard et al.
(2011) or Pagès et al. (2011) for quantitative approaches of
optimal slicing). At a δt min time scale (say δt = 5), an
important variable of a trading process is its ‘participation
rate’ ρm·δt ; the trader (manually or tuning parameters of some
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Real-time market microstructure analysis 3

trading robots), succeeds in obtaining ρm·δt Vm·δt shares during
the mth interval of δt min when the whole market traded Vm·δt
shares.

The adequate trading rate is difficult to achieve. First because
its optimal value is a function of market conditions during the
whole trading process (i.e. it is not causal). Secondly, mar-
ket conditions are either price driven (like the volatility, the
presence of price jumps or trends, correlations between some
assets, etc.) or liquidity driven (the bid-ask spread, the market
depth, etc.); that all of these are difficult to anticipate or predict.
Moreover, even if the theoretically optimal trading rate would
have been known in advance, the actions of the trader himself
have an impact on future market conditions (see Moro et al.
(2009)). A trader is thus continuously monitoring his trading
rate in conjunction with market conditions to check: first that
ex-post his trading rate has been close to the expected one,
second that a change in his trading rate does not come from
an unexpected change of market conditions, and last that he is
not impacting the price formation process (PFP). The faster he
understands what is happening to the trading process, the more
efficiently he will be able to react.

The motivation to buy or sell does not change the way to
apply the ‘influence analysis’ methodology presented in this
paper. It can be driven by long term considerations (typical
for orders sent by institutional investors to executing brokers’
trading desks), to hedge a derivative portfolio, to implement
an arbitrage strategy, or even inside a market making scheme
(see Guéant et al. (2013)). For all of these motivations the
same trading process takes place: a human being monitors a
trading rate according to performance criteria (that are specific)
and tries to adjust his trading rate as fast as possible to take
into account changes in market conditions. The methodology
proposed in this paper provides decision support to the trader.

2.1.1. Performance criteria of a trading process. In our
framework, the proxy for the target of the trader is called his
performance evaluation criterion. Let us define a few possible
criteria:

• for a market-maker: a decreasing function of his inventory
imbalance, and his profits are good performance criteria;

• for a brokerage trading desk: a decreasing function of the
distance to a fixed participation rate (for instance 10 or
20% of the market traded volume), the obtained average
price compared to the VWAP of the market, or to the
arrival price, or to the close price, are meaningful criteria;
and

• for an arbitrageur: a decreasing function of his tracking
error, and his profits should be chosen.

2.1.2. Description of the market context. In addition to the
performance evaluation criteria, we will need market descrip-
tors to quantify the market context. They will be used by the
proposed methodology to build an online understanding of the
causes of bad performance. Typical market descriptors are:

• Price driven market descriptors:

◦ Prices returns or price momentum (signed to be in the
same direction as the side of the monitored order) are

important since it is more difficult to buy when the
price is going up rather than when it is going down.

◦ The volatility is a common proxy for the amount of
uncertainty in the price dynamics. Its influence on
trading performances is not straightforward since some
volatility can help to capture passively some flows,
but a too high volatility level can lead to adverse
selection. Moreover, market impact models link the
volatility to the impact of a trade a negative way (see
Almgren et al. (2005)), meaning that a too high level of
volatility is negative for almost all trading processes.

• Liquidity driven market descriptors:

◦ The bid-ask spread is the distance (in basis points of
the current price) between the best ask price and the
best bid one. It thus describes the state of the ‘auction
game’between market participants (see Lehalle (2013)
for more details and terminology).

◦ Market traded volume is an important characteristic of
the market since it is easier to buy or sell when the
market is active than when nothing is traded.

◦ The visible size at first limits (also called average
volume on the books) can also be used to quantify the
current market depth.

Any other characteristic of the trading instruments can be
added in the analysis. For shares, modal variables like the sector
of the stock or the market capitalization of the listed firm are
of importance.

2.1.3. Anomaly detectors. To be able to capture the causes
of bad trading performance, it is often useful to have access to
information other than the averaged values of market variables.
For instance price jumps, price trend changes, volume peaks
and crenels are not captured by averages and we would like to
take them into account in our influence analysis methodology.
Section 3 shows how to build such detectors that will be used
in the analysis.

2.1.4. A priori and choice of variables. Our approach is
non parametric, since we do not need any modelled relationship
between the considered variables; nevertheless it is worthwhile
to give some clues to the reader on usual models considered
in optimal trading. Our selection of variables has been guided
by usual models, stylized facts on market microstructure (see
Lehalle et al. (2013) for more details) and practice.

As it is stated earlier: volatility, bid-ask spread, and traded
volumes are the variable commonly used in quantitative trad-
ing. For instance in their seminal paper Almgren and Chriss
(2000) provide a model dedicated to optimize the trading rate
of an order thanks the following decomposition of the value of
a large trade of size v∗ over T discrete time intervals (buying
vt on the t th interval):

W = v S0︸︷︷︸
price without frictions

+
∑

t

xtσtξt

︸ ︷︷ ︸
price uncertainty

− κ
∑

t

σt (xt − xt+1)

(
xt − xt+1

Vt

)γ
︸ ︷︷ ︸

liquidity cost

, (1)
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4 R. Azencott et al.

where xt = ∑
s≥t vt is the remaning quantity to buy at t , ξt

the innovation of a Gaussian random walk, γ and κ parameters
of the market impact and Vt the traded quantity by the whole
market during the t th time slice.

Sometime the second term is named market risk instead
of price uncertainty and the third one market impact instead
of liquidity cost. We would like to monitor if the behaviour of
these terms is the expected one or not, but only if it impact the
quality of the trading process (i.e. the value of W ).

We added a momentum component that is not often used
in models since academic proposals are often agnostic to the
direction of the market, leading to martingale assumptions
on the price dynamics. Nevertheless, once we are monitoring
in real-time the price moves, a variable is needed to capture
adverse or favourable ones. Typically favourable moves (i.e.
negative trends for a buy order) will have as a consequence
an unexpected increase of the realized trading rate, and often
lead to adverse selection (it could have been better to buy in
few minutes if the price continues to fall). And adverse moves
(positive trends for a buy orders), should imply an unexpected
decrease of the trading rate; being late the trading algorithm
will probably have to ‘catch the falling knife’ to cope with its
planned trading rate, thus increasing its average price W .

Detecting abnormal behaviours of the monitored variables
(abnormal in the sense that they are not following ex ante
martingale of diffusive assumptions) can be done by likelihood
computations, scoring, or pattern detection. We choose to use
the two latter approaches, and provide the methodology to
implement such computations, but a given practitioner could
choose other ways to build these detectors. We mainly focus on
how to relate the emergence of unlikely values of our variables
with bad performances of the trading algorithms.

Our approach targets to capture dependencies between po-
tential explanatory market descriptors and performances; it
will nevertheless have to deal with dependencies between mar-
ket descriptors themselves, as it will be observed latter.

2.2. Trading orders

We consider a portfolio of at most K trading orders T(k),
k = 1, . . . , K driven by automatic trading algorithms, and
supervised by one or more traders. Each trading order is de-
fined by a few ‘static’ variables such as buy/sell label, order
size, trading place, section, country, capitalisation, free-float,
benchmark type (VWAP, arrival price, etc.), etc. In our intra-
day benchmark studies a portfolio typically involves 200 ≤
Kt ≤ 700 active orders at any arbitrary 5 min time slice.

2.3. Market descriptors

Each trading order T(k) focuses on a specific asset whose dy-
namics is recorded at each time point t through a fixed number
of basic ‘market descriptors’ M1

t (k),M2
t (k),M3

t (k), . . .; in our
benchmark study below, we have focused on a subset of the
following market descriptors:

• M1 = Volatility,
• M2 = Bid-Ask spread,

• M3 = Momentum in bid-ask spread,
• M4 = Momentum in basis points (bp).

This list can be augmented by the rarity scores Score(Mi ) of
the market variables Mi . These scores are defined by Score
(Mi ) = Fi (Mi ) where Fi is the cunulative distribution func-
tion of Mi .

This list can be augmented by the rarity scores Score(Mi )

of the market variables Mi . Recall that for any random vari-
able V the rarity score is formally defined by Score(V ) =
F(V ) where F is the cumulative distribution function of V,
and Score(V ) always has a uniform distribution (see Borovkov
(1998)).

If poor performance on a given set of stocks is due to a
strong increase in the volatility level, the concrete cause may
either be due to volatility reaching an ‘absolute’ psychological
threshold, or to volatility being high relatively to its usual
levels. In this last case the volatility score will be a better
explanatory factor for poor performance. We will use here
the following scores, increasing our number of market
variables:

• M5 = Volume Rarity Score,
• M6 = Volatility Rarity Score,
• M7 = Spread Rarity Score.

2.3.1. Empirical computation of rarity scores. At time
slice n, the last n − 1 successive observations of the market
variable V, namely [V1, . . . , Vn−1] are available . The best
natural estimate Sn of Score(Vn) is given by Sn = Rn/n
where Rn is the rank of Vn in the sequence [V1, . . . , Vn].
When the Vi are independent, the accuracy of the ‘quantile’
estimate Sn is roughly proportional to 1/n1/2 for moderately
large n > 100 since n1/2(Sn − Score(Vn)) is asymptotically
Gaussian as n → ∞. Robust 95% confidence intervals for Sn

are provided by the Woodruff formulas (see Woodruff (1952))
Indeed the easy to use Woodruff formulas have been shown
(see Sitter and Wu (2001)) to perform surprisingly well even
when Vn does take rare values.

When the correlations between Vi and Vi+k are roughly
bounded by aρk for some positive constants 0.05 < a < 1
and ρ < 1 the accuracy and confidence intervals for Sn can be
handled similarly provided n is replaced by the smaller value
n/r where r = max 1, log(50a)/ log(1/ρ).

2.3.2. Short comments on market descriptor choices. For
our analysis, we use the three main variables used in classical
optimal trading theory (like in equation (1)) : volatility, bid-ask
spread, and volumes. We added the momentum; this variable
is difficult to estimate a priori, but in this analysis we just
need to estimate the momentum during the last few minutes
of trading, thus this very short term ex-post measurement is
possible. We decided to express the volatility and the bid-ask
spread in their usual units (bp per 10 min for intraday volatility,
estimated using the Garman-Klass estimator (see Garman and
Klass (1980)), and bp for the bid-ask spread). The momen-
tum is expressed in two units, giving birth in two different
descriptors: one in bid-ask spread (putting the emphasis on
a balance between the recent price moves and the level of
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Real-time market microstructure analysis 5

Figure 1. Example of intraday behaviour of performance variables for a given order. Top: the prices (the variations of the average obtained
price is in gray, the market VWAP in dark); bottom: the cumulative traded volume (grey) and market volume (dark).

liquidity during this move), and the other in basis points (being
a straightforward measurement of the move, potentially useful
to identify cross sectional price moves across different traded
stocks).

We use the volume not in its natural unit (i.e. a number of
traded shares for a stock), but only as a rarity score, since
it is difficult to compare the number of traded shares on two
different stocks. First because the number of share is a function
of the free float of the stock (i.e. its tradable capitalization)
and second because the intensity of the volume seasonality
(intraday, weekly, monthly, etc.) vary a lot from a security to
the other. The Volume Rarity Score is far easier to compare
from one stock to the other.

For potential ease of homogeneity, we added a Volatility
Rarity Score and a Bid-Ask Spread Rarity Score.

Figure 1 displays typical intraday (14 January 2011) plots
of the time series corresponding to the seven basic market
variables listed above for an anonymous stock.

We also display heat map representations of rarity scores for
multiple stocks in figures 2 and 3, where each row displays the
time series of rarity scores for one single stock (associated to
one trading order in our benchmark data), and each column
represents one time slice. Clearly ‘extreme’ rarity scores tend
to appear in clusters, and to co-occur across multiple stocks.

As will be seen below, high co-occurrence frequency of
‘dynamic anomalies’ such as peaks, jumps, etc. within a group
of stocks tend to ‘explain’ simultaneous lack of performance
for the corresponding trading orders (figure 4).

2.4. Trading performance evaluation

We also select a ‘trading performance evaluator’ PE providing
at each time point t , and for each active trading order T(k), a
quantitative evaluation PEt (k) for the current performance of
T(k).

In our study we have selected by default PE = ‘slippage
in bid-ask spread’ (slippage being the average price of the
order minus the benchmark—VWAP, arrival price, close price,
etc.—for a sell order, and the opposite for a buy order), but there
are no restrictions on the user choice for this PE variable. In
particular, other examples of PE include ‘slippage in bp’ (basis
points), ‘Slippage in Dollars’, ‘Absolute value of slippage in
bid-ask spread’, etc. We are assuming that degraded perfor-
mances are associated to low values of PE. For each trading
order T(k) the performance evaluator and the seven market
descriptors are volume averaged over successive time slices of
arbitrary duration (set at 5 min for our benchmark study). Thus
we generate eight time series M1

t (k), . . . ,M7
t (k) and PEt (k)

indexed by time slices t . These time series generically have
missing values since orders do not necessarily begin or end at
the same time. Fix a low percentile threshold q such as q = 3%
to binarize the performance evaluator.

At time slice t , call Kt ≤ K the number of currently active
trading orders T(k). The q%— quantile of the correspond-
ing Kt performance evaluations PEt (k) is denoted by �t . We
consider �t as a PE-threshold, separating ‘bad trading per-
formances’ (tagged ‘1’) from ‘normal trading performances’
(tagged ‘0’). We then binarize the performance evaluations
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6 R. Azencott et al.

Figure 2. Heat map of online performances of a traded basket of 7 orders (top) in conjunction with values of one explanatory variable (the
volatility; bottom), the correspondance between the two heat maps is not obvious.The abscissa represents the evolution over five-minute time
slices.

PEt (k) by setting

Yt (k) = 1 if PEt (k) < �t ,

Yt (k) = 0 if PEt (k) ≥ �t . (2)

In figure 1, we plot an example of the intraday behaviour of a
trading algorithm. Its trading performance evaluation PEt can
observed within a trading day, in real-time, like some of the
market context variable we used. A trading order may or may
not be active at a given time slice as observed in figure 2.

Figure 3 displays synchronous intraday plots of trading per-
formance evaluations in conjunction with the values of a few
selected market variables. An essential goal of our method-
ology is, for each fixed time slice, to quantify on line the
current influence of a market variable on trading performance
degradation. Our automated online influence quantification re-
places expert visual inspection of current trading orders perfor-
mances, to identify critical market variables explaining trading
performance degradations. For instance, visual inspection of
figures 2 and 3 will naturally ‘explain’ the low performances
observed at time slices t = 39, 40, 41 by the obvious trend
changes simultaneously observed on rarity scores as well as
by the volatility peak.

On figure 3 one can notice some conjunctions not only be-
tween the performance and the market descriptors, but between
the market descriptors themselves. Around the 40th time slice
the performance decreases and the volume, volatility, and bid-
ask spread scores drop simultaneously. Nevertheless we can
note that at the beginning of the day, two market descriptors had

unexpected behaviours (traded volumes and bid-ask spread)
without any performance degradation, and during the perfor-
mance drop of slice 30, only one market descriptor (the bid-ask
spread) show some level of abnormality.

The joint behaviour of market descriptors is very difficult
to capture explicitly, since sometimes (like around slide 40 in
our example), the market exhibits mutual deviations: figure 1
explains what append: the price move up probably because
of another (buy) order impacting the price in few minutes: the
result is an increase of traded volume, bid-ask spreads (because
of the sudden consumption of liquidity), and volatility (as a
measure of the up and down move of the price usually observe
in market impact events).

On the contrary, the degradation of performance around
slice 30 is more subtle, and probably mainly due to a sudden
increase of the bid-ask spread: it may be because the monitored
trading algorithm has been detected (thus other market partic-
ipant moved some steps away to see how greedy the trading
algorithm was).

On average some dependences between descriptors are known
to be verified (like a balance between volatility, bid-ask spread
and the number of trade per day, see Hastie et al. (2011)), but
fitting a model on each stock to try to remove these common
effects will not help our methodology since we need to capture
explanations of the performances traders can easily understand
and take means to adjust the behaviour of the trading algorithms
they pilot. Correcting a performance degradation identified as
an unexpected deviation from a usual common move is very
difficult, but a trader knows how to correct bad performances

D
ow

nl
oa

de
d 

by
 [

91
.1

95
.7

2.
14

] 
at

 0
5:

43
 1

6 
A

pr
il 

20
14

 



Real-time market microstructure analysis 7

coming from simultaneous cross sectional abnormal levels of
bid-ask spread and volatility.

Our approach will typically take these dependencies into
account even if there is no parametric model coding them: we
will detect if there is a conjunction of common factors affecting
the performance of a large significant subset of orders. The
detection will deliver a clear message to the trader who will
be able to fine tune in real time the parameters of the trading
algorithms.

3. Online anomaly detectors

3.1. Anomaly detection

Online anomaly detection is a critical step in many applica-
tions, such as safety of complex systems, safety monitoring in
automotive or aeronautics industries, remote health
monitoring in biomedicine, real-time quality control for
industrial production lines, etc. (see Aviv (1991), Basseville
and Nikiforov (1993), Basseville (1988), Gustafsson (2000),
Lehalle and Azencott (2007)).

In the context of trading performance online monitoring,
it is also quite natural to systematically enrich raw market
descriptors by automated detection of anomalies affecting their
dynamics. We have thus developed algorithmics dedicated to
the online implementation of this processing step.

Our approach is highly non parametric, nevertheless a para-
metric reading of the use of such anomaly detectors is simple.
Since trading algorithms are usually built assuming martin-
gality of the PFP, giving birth to price decomposition like
the one of equality (1), one can expect that any abnormal
behaviour of variable involved in the PFP (traded prices and
volumes here) with respect to this assumption will disturb the
performance of the trading process. Price jumps, price small
trending periods, and volume crenels are typical abnormal
under such assumptions.

The occurrence of such anomalies can be detected by
algorithmic tracking of local regime changes in market
descriptors dynamics, and may have potentially strong influ-
ence on performance degradation for the corresponding trading
orders. We have hence developed and implemented a set of
three parameterized anomaly detectors, dedicated to the on-
line identification of ‘significant’ Peaks or Crenels, Jumps,
and Trend Changes on generic time series (figure 5). These
three detectors automatically locate emerging anomalies, quan-
tify their intensities, and filter them through adjustable gravity
thresholds.

3.2. Building online detectors

Consider a generic discrete time series Ut . A smoothed ‘base-
line’ BUt is generated as a moving local median of Ut . One then
computes the local standard deviation σt of the ‘noise’ Ut −
BUt , and in turn, this defines ‘outlier’ values of Ut . Our three
online anomaly detectors are based on local trend extractions at
each time slice t by fitting linear or quadratic regression models
on short moving time windows to the left and the right of t . The
detector parameters have simple geometric interpretations for

the users and are kept fixed during online influence analysis.
Each anomaly detector is dedicated to a fixed type of anomaly,
and generates a binary time series encoding the presence or
absence of this anomaly type at successive time slices of Ut .

3.2.1. Peaks/crenels detector. A ‘peak’ is the sudden oc-
currence of a high ‘outlier’ value of Ut . More generally, a
‘crenel’ is a cluster of successive high ‘outliers’ with approxi-
mately equal values. Each crenel is described by three geomet-
ric ‘crenel features’, namely, its time duration, its thickness (i.e.
absolute difference between highest and lowest crenel points),
and its height above the baseline BUt . Minimal threshold
values are imposed on these three features, as well as a minimal
time gap between successive crenels.

To detect peaks and/or crenels on the series Ut , one first
extracts outliers with respect to the baseline BUt ; then one
applies simple filters to detect local geometric configurations
of outliers which satisfy the threshold constraints imposed on
the three ‘crenel features’ described above. If a peak or crenel
is detected at time t , then ‘peak/crenel intensity’ Peakt is set
equal to ‘height’ of the peak/crenel above the baseline. If no
peak or crenel is detected at time t , one sets Peakt = 0.

3.2.2. Jumps detector. A ‘jump’ at time t is a sudden level
change between the Us values on finite time windows to the
left and to the right of t . Bona fide jumps are described by 2
features, namely, a duration 2L and a minimal jump size 	.
For each t , one fits two distinct quadratic regressions to the
baseline BUs , namely Reg− for (t − 1 − L) ≤ s ≤ (t − 1)
and Reg+ for t ≤ s ≤ (t + L), where L is a fixed parameter.

Ajump is detected at t if the ‘jump size’ J S(t) = |Reg+(t)−
Reg−(t)| is larger than 	, provided the two regressions have
small enough residuals. If a jump is detected at time t on the
series Ut , then ‘jump intensity’ Jumpt is set equal to the ‘jump
size’ J S(t). If no trend change is detected at time t , one sets
Jumpt = 0.

3.2.3. Trend changes detector. Bona fide ‘trend changes’
are described by three features, a duration 2L , a minimal slope
change λ, and a continuity modulus ε. For each t , one fits as
above two quadratic regressions to the baseline BUs , namely
Reg− to the left of t and Reg+ to the right of t . Call α+, α−
the slopes of Reg+, Reg−, and define the ‘trend change size’

T C S(t) = |α+ − α−|.
Alocal ‘trend change’ is detected at time t if Reg+, Reg− have
sufficiently small residuals and verify

T C S(t) > λ ; and |Reg+(t)− Reg−(t)| < ε.

If a Trend Change is detected at time t on the series Ut , then
‘trend change intensity’T rendt is set equal to the ‘trend change
size’ T C S(t). If no jump is detected at time t , one sets
T rendt = 0.
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8 R. Azencott et al.

Figure 3. Conjunction of the performance (top curve) of one traded order (first line of figure 3) with the market context (bottom heatmap).

Figure 4. Heat Map of online performances of the some basket of 7 orders (top) in conjunction with the scores of the same explanatory
variable (the volatility; bottom), compared to Figure 3, one can see that the scores change the high and low values of the explanatory variables,
giving birth to more potential conjunctions with bad trading performances.
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Real-time market microstructure analysis 9

Figure 5. The three abnormal patterns targeted by our three anomaly detectors: (1) price trends, (2) price jump, (3) volume peak, (4) volume
crenel.

4. Probabilistic framework for influence analysis

4.1. The enriched set of explanatory factors

For each trading order T(k) and each market descriptor M j ,
online analysis of the time series t → Ut = M j

t (k) by the three
anomaly detectors progressively generates three time series of
‘anomaly intensities’ Peak j

t (k), Jump j
t (k), T rend j

t (k)which
respectively encode the ‘anomaly intensities’ of the
Peaks/Crenels, Jumps, Trend Changes detected on the time
series Ut . Applying the three anomaly detectors to our seven
basic market descriptors yields a set of 3 × 7 = 21 time
series A1

t , . . . , A21
t of anomaly intensities. Let At = A j

t be
any one of these 21 anomaly intensities. A high value of As

detected at time s may have a degradation influence on trading
performances observed not only at time slice s but also on
performances observed at later time slices t ∈ [s, s +τ ], where
the short time lag τ is fixed (as a user selected parameter). When
we analyze below the influence at time t of detected anomalies,
we will hence take account of all the recent anomaly intensities
As where t − τ ≤ s ≤ t . To this end, we will replace each one
our 21 anomaly intensities At by a smoothed anomaly intensity
at scale τ [[At |τ ]] defined by the following formula,

[[At |τ ]] = max
t−τ≤s≤t

As .

From now on we will assume that a time scale τ is fixed,
and note [[At ]] instead of [[At |τ ]]. Note that [[At ]] ≥ 0

records the maximal gravity of recent anomalies (of fixed type)
affecting the dynamics of a fixed market variable, and that for
‘most’ time slices t one has [[At ]] = 0 for most scales τ .
We thus generate online N = 28 time series X1

t , . . . , X N
t of

explanatory factors, namely the seven current market descrip-
tors M1

t , . . . ,M7
t and their associated 21 smoothed anomaly

intensities [[A1
t ]], . . . , [[A21

t ]] at chosen time scales.
At each time slice t , and for each trading order T(k), denote

by Xt (k) ∈ R
N the vector

Xt (k) =
[

X1
t (k), . . . , X N

t (k)
]
,

which regroups the current values of our N = 28 explanatory
factors.

In the online context, the K × N time series of explanatory
factors become progressively available, and provide at each
time slice t the Kt × N incoming new values X j

t (k), where
1 ≤ k ≤ Kt ≤ K , 1 ≤ j ≤ N and Kt is the number of trading
algorithms handling active orders at time t . These factors are
viewed as potential ‘causes’for eventual degradations affecting
the current binary performance evaluation Yt (k) of trading
order T(k)where Yt binarizes the performance evaluations PE.
The goal of our online influence analysis is to identify at each
time t the explanatory factors which have the most significant
degradation influence on current trading performances of the
whole portfolio.
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10 R. Azencott et al.

4.2. Probabilistic framework

To analyze functional relationships between trading perfor-
mance evaluations and explanatory factors, we introduce a time
dependent probabilistic framework.

Fix any time slice t . We consider that each one of the Kt

trading order T(k) currently active at time t has been extracted
at random from a very large finite pool� of ‘virtually observ-
able’ trading orders T(ω) , with ω = 1, 2, . . . , K̄ , where the
fixed cardinal K̄ of � is much larger than Kt .

We consider � as a probability space endowed with the
uniform probability. The binary evaluations Yt (ω) of current
trading performances defined in (2) can then be viewed as a sin-
gle binary valued random variable Yt defined on �, verifying
for each ω ∈ �

Yt (ω) = 1 if PEt (ω) < �t ,

Yt (ω) = 0 if PEt (ω) ≥ �t . (3)

Similarly all our N explanatory factors X j
t , j = 1, 2, . . . , N ,

can be viewed as real valued random variables X j
t (ω) defined

on � and for which we have only observed the Kt values
currently available at time t , namely the values X j

t (k) ∈ R

for i = 1, 2, . . . , Kt . Then Xt = [X1
t , . . . , X N

t ] becomes a
random vector defined on �, with values in R

N . Our online
influence analysis is performed anew at each fixed time slice t
and involves only the currently available Kt joint observations
of the random vector Xt and of the random variable Yt . For
each fixed t , we will often omit the subscript t and adopt the
abbreviated notations

Y = Yt ; X j = X j
t ; X = Xt = [X1, . . . , X N ]

5. Binary valued predictors and their predictive power

The time slice t is kept fixed and deliberately omitted in this
whole section, where we introduce the precisely relevant no-
tions of predictors, predictive power, and quantitative influence
of explanatory factors.

5.1. Binary predictors

On a probability space � consider an arbitrary random vector
X = X1, . . . , X N of ‘explanatory factors’ and an arbitrary
binary valued random variable Y . We call binary valued pre-
dictor of the binary random variable Y any random variable
Ŷ which is a deterministic function of X. Clearly Ŷ is then
necessarily of the form ŶB = 1B(X) where 1B is the indicator
function of a fixed but arbitrary Borel subset of R

N → {0; 1}.
This class of binary predictors is naturally imbedded in the

convex set of “randomized” binary predictors Ŷφ of Y , indexed
by arbitrary “decision functions” φ ∈ �, where � is the set
of all Borel functions φ(x) defined for x ∈ RN and such that
0 ≤ φ(x) ≤ 1. The predictor Ŷφ defined by each suchφ verifies

P(Ŷφ = 1|X) = φ(X) ; P(Ŷφ = 0|X) = 1 − φ(X)

Note that � is a closed compact convex subset of L∞(RN ),
endowed with its weak topology as dual of L1(RN ).

5.2. Probabilities of correct predictions

For randomized binary predictors Ŷφ of the true but yet un-
known Y , the accuracy of Ŷ is usually characterized by the
two conditional probabilities of correct prediction p1 and p0,
or equivalently by the two absolute probabilities of correct
prediction P1 = P1(φ) and P0 = P0(φ), defined by

p1 = P(Ŷ = 1|Y = 1) and P1 = P(Ŷ = 1; Y = 1)

p0 = P(Ŷ = 0|Y = 0) and P0 = P(Ŷ = 0; Y = 0)

(4)

The obvious expressions

P1 = E(φ(X)1Y=1) ; and P0 = E((1 − φ(X))1Y=0)

show that P1(φ) and P0(φ) are weakly continuous functionals
ofφ ∈ �. Intuitively the predictive power of a predictor should
be an increasing functional of p1 and p0, or equivalently an
increasing functional of P1 and P0. Indeed the classical 2 × 2
confusion matrix for the estimation of Y by the binary predictor
Ŷ is determined by p1, p0 as follows:

Y = 0 Y = 1
Ŷ = 0 p0 1 − p1

Ŷ = 11 − p0 p1

This motivates the following definition of predictive power
(figure 6).

5.3. Predictive power

For any random vector of ‘explanatory variables’ X ∈ RN and
any binary random variable Y jointly defined on a probability
space�, the joint probability distribution μ of (X, Y ) belongs
to the compact convex set M of all probabilities on RN ×
{0; 1}. Select and fix any non-negative continuous function
Q(μ, a, b) of μ ∈ M , 0 ≤ a ≤ 1, 0 ≤ b ≤ 1 which is a
separately increasing function of a and b.

We then define the predictive power π(φ) = π(μ, φ) of
each randomized binary predictors Ŷφ of Y by

π(φ) = Q(μ, P1, P0) = Q(μ,μ1 p1, μ0 p0) (5)

where μ1 = P(Y = 1) and mu0 = P(Y = 0). Note that in
our benchmark study below, due to our adaptive binarization
of trading performance, the probabilities μ1 and μ0 will be
constant in time and will have known pre-assigned fixed values
such as 3 and 97%.

The predictive power π(μ, φ) is then clearly continuous in
(μ, φ) for the weak convergence topologies of M and �.

We shall see in the next paragraph that this definition of
predictive power is compatible, and these definitions actually
extend the predictive power quantification by relative entropy.

The functional Q(μ, P1, P0)will be called a predictor qual-
ity function. Here are basic examples of functions Q often used
in the accuracy analysis of predictors.

• Qmin = min{P1, P0},
• Qweight = u P1 + (1 − u)P0, for some 0 < u(μ) < 1.

Compared to the common use of a ‘ROC curve’ (see for in-
stance the very good tutorial in Flach (2004)), Q characterizes
the predicting power of a predictor once it is fully specified.
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Real-time market microstructure analysis 11

In this impact analysis the predictor is only restricted to be an
arbitrary binary valued function of a vector of market variables.
In the context of this paper, the quality of a given predictor is
predefined by a fixed but quite general functional Q(p+, p−)
of the two probabilities of correct prediction. By contrast,
the ROC curve characterizes a whole range of predictors, for
instance binary predictors (see Section 5.3) derived by all
possible thresholds θ . ROC curves quality evaluators such
as the classical Area under ROC curve (AUROC) criterion
would then attribute a single quality level to the collection
of all the (p+(θ), p−(θ)) , characterizing the quality of the
whole package of predictors indexed by θ . It gives clues to
choose an adequate value for θ , with respect to the AUROC
criterion. In this paper we produce a way to obtain the best
possible predictor, and then use it to understand the root of bad
performances. Qualitatively, it means that if the best possible
predictor using a specific market variable (say the volatility
score) has a good predictive power of bad performance, we
can deduce that the volatility regime is at the root of the bad
performance.

5.4. Predictive power based on mutual information and/or
relative entropy

An information theoretic characterization for the predictive
power of a predictor Z = Ŷ of Y is the amount of information
which Z reveals on the yet unknown variable Y . This has classi-
cally been quantified by relative entropy criteria such as the mu-
tual information ratio MIR(Z , Y ) (see for instance Brillinger
(2004), Azencott et al. (2007), Mougeot and Azencott (2011),
Billingsley (1965), Khinchin (1957), Shannon (1948)). Recall
that the entropy H(U ) of a random variable U taking only a
finite number of values ui is given by

H(U ) = −
∑

i

P(U = ui ) log P(U = ui ),

The mutual information ratio MIR(Z , Y ) between Y and its
predictor Z = Ŷ is defined by

MIR(Z , Y ) = H(Z)+ H(Y )− H(Z , Y )

H(Y )
,

where H(Z), H(Y ), H(Z , Y ) are the respective entropies of
the three random variables Z , Y and (Z , Y ). Here Z and Y are
binary valued and (Z , Y ) takes only four values.

The ratio MIR(Z , Y )which is directly related to the relative
entropy of Z with respect to Y lies between 0 and 1, and reaches
the value 1 if and only if Y is a deterministic function of Z.
Good predictors Z of Y should thus achieve high values of
M I R(Z , Y ). Indeed we have the following result .

Proposition 5.1 Fix any random vector of ‘explanatory
variables’ X ∈ R

N and any binary random variable Y jointly
defined on a probability space�, and callμ the joint probabil-
ity distribution of (X, Y ). Assume that Y is not deterministic,
so that H(Y ) > 0. Then for all randomized binary predictor
Z = Ŷφ of Y defined by arbitrary Borel decision functions 0 ≤
φ ≤ 1, the mutual information ratio MIR(Z , Y ) is a separately
increasing functional of the two conditional probabilities of
correct decisions p1 = P(Ŷ = 1|Y = 1) and p0 = P(Ŷ =
0|Y = 0), provided p1 ≥ 1/2 and p0 ≥ 1/2.

Proof The joint distribution of (Z , Y ) on {0; 1}2 is easily
seen to be determined by the three parameters p1, p0, and
μ1 = P(Y = 1). Since H(Y ) is fixed, MIR(Z , Y ) is an
increasing linear function of H(Z)− H(Z , Y ). An elementary
computation easily proves the identity

H(Z)− H(Z , Y ) = −μ1 Ent (p1)− μ0 Ent (p0)

where Ent (p) = −p log(p) − (1 − p) log(1 − p) and μ0 =
1−μ1. Since the entropy Ent (p)decreases with p for p ≥ 1/2,
this concludes the proof. �

5.5. Generic optimal randomized predictors

We now characterize the randomized predictors achieving op-
timal predictive power.

Proposition 5.2 Fix a random vector X ∈ RN of explana-
tory factors and a target binary variable Y . Let 0 ≤ v(x) ≤ 1
be any Borel function of x ∈ RN such that v(X) = P(Y =
1 | X) almost surely.

For any Borel decision function φ ∈ �, define the
predictive power of the randomized predictor Ŷφ by π(φ) =
Q(μ, P1(φ), P0(φ)), where Q is a fixed continuous and
increasing function of the probabilities of correct decisions
P1, P0 . Then there exists ψ ∈ � such that the predictor Ŷφ
has maximum predictive power

π(ψ) = max
φ∈� π(φ)

Any such optimal Borel function 0 ≤ ψ(x) ≤ 1 must almost
surely verify, for some suitably selected constant 0 ≤ c ≤ 1.

ψ(X) = 1 for v(X) > c ; ψ(X) = 0 for v(X) < c (6)

Proof Predicting the actual value of the yet ‘unknown’binary
random variable Y given the random vector X of explanatory
variables is clearly equivalent to deciding between the two
formal ‘hypotheses’:

H0 : {Y = 0} versus H1 : {Yt = 1}
on the basis of the observed X, which is a standard testing
problem (see Lehmann and Romano (2005)). Any borelian
‘rejection region’ B ⊂ R

k defines the binary valued predic-
tor 1B(Y X of Y which rejects H0 whenever X ∈ B. More
generally any Borel decision function 0 ≤ φ(x) ≤ 1 defines
the binary predictor Ŷφ which, given the observed X rejects
H0 with probability φ(X). This test has ‘confidence level’
α = 1 − P0, and ‘detection power’ P1 where P1, P0 are
the probabilities of correct decisions for the predictor Ŷφ .

Classical testing of H0 versus H1 involves the likelihood
function defined with probability 1 by

L(X) = P(Y = 1 | X)
P(Y = 0 | X) = v(X)

1 − v(X)

By Neymann-Pearson theorem (see Lehmann and Romano
(2005)), for each “confidence level” 0 ≤ (1−α) ≤ 1 there ex-
ists a randomized binary predictor Ŷφ which maximizes P1(φ)

among all predictors verifying P0(φ) ≥ 1 − α. Morover one
can find c ≥ 0 such that the Borel function 0 ≤ ψ(x) ≤ 1
verifies almost surely

ψ(X) = 1 for L(X) > c ; ψ(X) = 0 for L(X) < c
(7)
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12 R. Azencott et al.

Since both P0 = P0(φ) and P1 = P1(φ) are weakly con-
tinuous functions of φ ∈ �, the predictive power π(φ) =
Q(μ, P1(φ), P0(φ)) of Ŷφ is also weakly continuous in φ and
thus must reach its maximum on the weakly compact set� for
some Borel function φ∗ ∈ �.

Since Q(μ, P1, P0) is an increasing function of P1 and P0,
we see that the optimal predictor Ŷφ∗ must necessarily maxi-
mize P1(φ) among all predictors verifying P0(φ) ≥ P0(φ∗).
Select the confidence level 1 − α = P0(φ∗) and apply the
Neyman-Pearson theorem just recalled above to conclude that
there exists a threshold c ≥ 0 and an associated ψ of the form
(7) such that P0(ψ) ≥ P0(φ∗) and P1(ψ) ≥ P1(φ∗). This
implies the following inequality between predictive powers

π(ψ) = Q(μ, P1(ψ), P0(ψ))

≥ Q(μ, P1(φ∗), P0(φ∗)) = π(φ∗)

and hence π(ψ) = π(φ∗) since Ŷφ∗ has maximal predictive
power. This clearly achieves the proof. �
Definition 5.3 In the preceding situation we will quantify
the capacity of the random vector X to ‘explain’ the target
binary variable Y by an ‘influence coefficient’I(X, Y ) defined
as the predictive power π(ψ) of an optimal randomized binary
predictor Ŷψ of Y . More precisely the influence coefficient of
X on Y is given by

I(X, Y ) = π(ψ) = max
φ∈� π(φ)

Clearly, once the quality function Q is selected and fixed,
the influence I(X, Y ) depends only on the joint probability
distribution μ of (X, Y ).

The notion of influence coefficient is immediately extended
to arbitrary subsets of explanatory factors. To any subset of
indices G ⊂ {1, 2, . . . , N }, we associate the random vector
X G = {X j | j ∈ G} of explanatory factors, with #(G) ≤ N ,
and we define as above the influence coefficient by

J (G) = I(X G , Y ) ≤ I(X, Y ) (8)

6. Quantifying on line the influence of groups of
explanatory factors

6.1. Benchmark study context

In our intraday data study below, at each fixed time slice t ,
we observe simultaneously on Kt < 700 trading lines the
current values of our random vector X ∈ RN of N = 28
explanatory factors (see Section 3), and the corresponding
current values of the binarized trading performances Y . Ideally,
for each subgroup X G = {X j | j ∈ G} of explanatory factors,
where G ⊂ {1, 2, . . . , N }, we want to estimate the current
influence coefficient J (G) of X G on Y by the formula (8),
using only the current sample of Kt jointly observed values of
(X G , Y ). Statistical reliability of the J (G) estimates will lead
us below to consider only groups G of small cardinal.

Our goal was to determine, at each time slice t , one or possi-
bly several groups G of explanatory factors having small cardi-
nal and high influence J (G) on current trading performances,
and to specifically focus on detecting small groups of current
‘major causes’ for the trading performance degradations just
observed at time t .

To this end we selected a class of asymmetric predictive
power functionals parameterized by one parameter 70% ≤ r ≤
100%, called here the ‘floor predictive power’. For each pre-
dictor Ŷ of Y with current conditional probabilities of correct
predictions p1, p0, the predictive power of Ŷ was computed
by

Qr (p1, p0) = p1, if min(p1, p0) ≥ r%,
Qr (p1, p0) = 0, if min(p1, p0) < r%.

(9)

Note that Qr emphasizes strongly the probability p1 of cor-
rectly predicting bad trading performance. The associated in-
fluence coefficients J (G) then quantify the current impact of
the explanatory factors X G on ‘performance degradation’. In
our benchmark study of intraday datasets, systematic tests led
us to fix r = 85%.

6.2. Influence computation: accuracy analysis

As in the preceding subsection, the time slice t is fixed and we
keep the same notations. We now analyze how to implement
a numerical computation of the current influence coefficients
J (G) for small groups X G of explanatory factors. Let m be
the cardinal of G and denote X G = Z = [Z1, . . . , Zm].
To compute J (G) we need to compute an optimal decision
function 0 ≤ ψ(Z) ≤ 1 , maximizing the predicting power
of the predictor Ŷ defined by P{Ŷ = 1|Z} = ψ(Z). By
proposition 5.2 , for each value z of Z currently observed at
time t , this requires first to estimate by empirical frequencies
v̂(z) the probabilities

v(z) = P [ (Z = z) ∩ (Y = 1) ]
and then to find an optimal threshold 0 < c < 1 for the
v̂(z) values. At time t the estimates v̂(z) are derived only
from the moderately sized sample of Kt ≡ 700 of currently
observed joint values for the pair (Z , Y ). By construction of
the binarized trading performance (see Section 2) the empirical
frequency {Y = 1} is kept constant equal to q = 3%. So
the number of currently observed values z of Z for which
v̂(z) is non-zero will always be inferior to Kt × 3/100  20.
Empirical thresholding of the v̂(z) at time t can then obviously
be restricted to exploring at most 20 values of c.

We seek then an optimal decision function 0 ≤ ψ(Z) ≤ 1,
which according to formula (6), should be associated to some
threshold 1 > c > 0, with ψ(Z) = 1 when v(Z) > c and
ψ(Z) = 0 when v(Z) < c. To achieve statistical robustness
and fast online computation, we restrict ψ(Z) to only take the
values 0 or 1, and we thus impose ψ(Z) = 1v(Z)≥c. At time
t , the predictive power g(c) = π(ψ) = Q(P1, P0) of the
estimator Ŷ = ψ(Z) depends only on its current probabilities
of correct prediction

P1 = P{(v(Z) > c) ∩ (Y = 1)}
P0 = P{(v(Z) < c) ∩ (Y = 0)}

At time t , these probabilities are approximated by current
empirical frequencies P̂1, P̂0 after replacing v(Z) by the
current estimates v̂(Z). This yields an estimated predictive
power ĝ(c) and the optimal threshold c∗ is selected from at
most 20 threshold values by a trivial maximization of ĝ(c).
The current estimate of the influence coefficient of the group
of factors G is then Ĵ (G) = ĝ(c∗).
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Real-time market microstructure analysis 13

The practical accuracy of the estimates Ĵ (G) is strongly
determined by the accuracy of the estimators v̂(z) of the
probability v(z). Given the moderate size of Kt , we
deliberately discretize all our explanatory factors so that the
vector Z = X G is restricted to take only a finite number s
of distinct values. Under the favourable assumption of ap-
proximate independence of the Kt trading orders observed
at time t the errors of estimations ε(z) = v̂(z) − v(z) have
standard deviations v(z)(1 − v(z))/Kt and hence the relative
errors ε(z)/v(z) on v(z) are of the order of 1/

√
v(z)Kt , which

is inferior to 1/
√
wKt where w = minz v(z).

The optimal threshold c∗ is computed above by empirically
thresholding a set of at most 20 estimated v̂(z), since 3% × Kt

is of the order of at most 20 in our data set. The relative error of
estimation on c∗ will then be roughly of the order of 1/

√
wKt .

Thus to obtain a relative error inferior to, say, 11% for the
estimation of the optimal c∗, one needs to at least impose the
constraint 1

wKt
< 1.21/100, which yields 1/w < 1.21Kt

100 .
Since P(Z = z) ≥ w for each z in the currently observed
range of Z = X G which after discretization contains s values,
we have 1 ≥ sw and hence s < 1/w < 1.21Kt

100 . In our
benchmark intraday data, the number Kt of orders active at
time t is Kt ≡ 700 , and hence the cardinal of observable
values for the discretized random vector Z = X G should be
less than eight.

Maximal discretization of each explanatory factor is reached
when each factor is binarized. But even in this case, since the
vector Z = X G is of dimension m = cardinal(G), the number
s of distinct values for X G is s = 2m and hence we must still
impose the constraint cardinal(G) ≤ 3.

These cardinality constraints show that:

• for cardinal(G) equal to three, all three factors in X G must
be binarized;

• for cardinal(G) equal to two, one of the two factors in X G

must be binarized and the other one must be discretized
with at most three values; and

• for cardinal(G) equal to one, the single factor involved
must be discretized with at most eight values.

In our benchmark study of intraday data the number Kt of
trading orders concretely ranged anywhere between 400 and
700. The preceding analysis thus showed that at each time t
and for any group G of explanatory factors, the computation
of the influence coefficient J (G) could only be statistically
robust if cardinal(G) was equal to one or two and if each
explanatory factor was binarized. In practice, at each time t , a
key computing task is to select an optimal binarization of each
explanatory factor, as indicated below.

7. Influence computation: optimized discretization of
explanatory factors

7.1. Influence computation for a single explanatory factor

Consider any real valued single explanatory factor Z having
a continuous conditional density function w(z) given Y = 1.
To predict Y given Z the best binarization of Z should select a
subset B of S maximizing the predictive power of the predictor
1B(Z). An easy extension of the proposition 5.2 proved above,

Figure 6. Typical predictor defined by two intervals (−∞, θ−) and
(θ+,+∞).

shows that any optimal B should be the set of all z ∈ R

such that w(z) > c for some c > 0. Thus an optimal B
must be a closed level set L of the unknown conditional den-
sity function w(z). The family of all closed sets in R is well
known to have infinite Vapnik-Cervonenkis dimension (see
Vapnik and Chervonenkis (1971), Vapnik (2010)). So, in view
ofVapnik’s theorems on automated learning (seeVapnik (2006),
Cristianini and Shawe-Taylor (2000)), empirical optimal
selection of B among all closed sets will have weak
generalization capacity, increasing extremely slowly with the
number Kt of data. Other classes of predictors commonly used
in statistical learning (like artificial neural networks, logis-
tic regressions, random forests, etc.—see REF for more) thus
cannot be more optimal than the Borel functions defined by
propositions of Section 5.5, they have nevertheless a lower
Vapnik-Cervonenkis dimension. Use such functions will not
be enough to guarantee decent generalization capabilities, as
the short accuracy analysis of Section 6.2 underlined. Focusing
on extreme or rare events (3% of the worst performing trading
algorithms of a pool of few hundreds) demand to use predictors
with very few parameters. This has naturally led us to select
sub-optimal but much more robust classes of predictors, with
radically reduced Vapnik-Cervonenkis dimension.

In the cases where w(z) can be considered as roughly
unimodal or monotonous, the level sets of w are unions of
at most two disjoint intervals. We thus deliberately restrict our
class of binary predictors of Y to two-sided ones:

Definition 7.1 (Two-sided binary predictor) Two-sided binary
predictors are of the form hθ = 1B(Z)where B is the union of
the two disjoint intervals (−∞, θ−) and (θ+,+∞) , indexed
by the vector θ = (θ−, θ+) ∈ R

2, with θ− < θ+.

Note that hθ predicts bad trading performances if and only if
the explanatory factor Z takes sufficiently large or
sufficiently small values. Hence these estimators of trading
performance degradation have an immediate interpretability
for natural users of online trading performance monitoring.

At time t , given the current Kt joint observations of the
explanatory factor Z and of the binarized trading performance
Y , an immediate counting provides for each θ the empirical
estimates P̂1 and P̂0 of the probabilities of correct prediction
P1, P0 for the estimator hθ , given by

P1 = P{(Z < θ−) ∩ (Y = 1)} + P{(Z > θ+) ∩ (Y = 1)}
P0 = P{(θ− < Z < θ+) ∩ (Y = 0)}

The predictive power π(θ) of hθ is then readily estimated by
the explicit formula

π̂(θ) = Qr (P̂
1, P̂0).
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14 R. Azencott et al.

Figure 7. Predictive power as a functional of the two thresholds θ+ (y-axis) and θ− (x-axis) of the market variable Volume Score at time
slice t = 72. It can be seen that θ− lower than 10 and θ+ around 65 generate an efficient predictor of bad trading performance during this
time slice.

The influence coefficient I(Z , Y ) of Z on Y at time t is then
estimated by maximizing π̂(θ) over all θ in R

2. At time t , the
set S of currently observed values of Z has cardinal inferior
or equal to Kt . The previous formulas show that to maximize
π̂(θ), we may in fact restrict both θ− and θ+ to belong to S,
so one needs only explore at most K 2

t /2 values of θ .
Clearly this computation tends to underestimate the influ-

ence I(Z , Y ). Nevertheless in our benchmark studies we have
systematically applied this approach for the following reasons.

• the set of binary predictors hθ has the merit of having
finite Vapnik-Cervonenkis dimension equal to two, so that
our empirical estimate of the maximum of π(θ) will be
statistically robust even for moderate realistic values of
Kt ≡ 700;

• the immediate interpretability of the predictors hθ enables
user friendly online graphic displays of the explanatory
factors currently having high influence on performance
degradation; and

• at each time t , at most K 3
t basic operations suffice to

implement the brute force maximization of π(θ) which
generates our current evaluation of I(Z , Y ).

Note that the two optimal thresholds (θ−, θ+) will of course
strongly depend on the time slice t .

When the explanatory factor Z is one of the 21 smoothed
anomaly detectors [[At ]] ≥ 0 introduced above in Section
3, the preceding implementation can be simplified. Recall that
[[At ]] records the maximal gravity of very recent anomalies of

fixed type affecting the dynamics of a fixed market variable,
and that for ‘most’ time slices, [[At ]] takes the values 0. Thus it
is natural to expect that only higher values of [[At ]] to be poten-
tial explanations for currently degraded trading performances.
So for practical applications to Z = [[At ]] of the preceding
approach, we may actually impose the constraint θ− = 0, with
essentially no loss of predictive power.

7.2. A few examples for single explanatory factors

The empirical strategy just presented to estimate the influence
J (G) when cardinal (G) equals one has been numerically
validated on our benchmark set of intraday data. We now
outline a few examples. Recall that our benchmark study used
the predictive power functional π = Qr (P1, P0) given above
by formula (5), which is specifically sensitive to predictors
capacity to detect degradations of trading performances. On
our intraday data sets, we have methodically tested the values
r = 70, 75, 80, 85, 90 and 95% for the ‘floor predictive power’
r ; the value r = 85% turned out to be the best choice for these
data sets, and was adopted for all results presented below.

Figure 7 illustrates for the fixed time slice t = 45, the
predictive power of the predictors hθ based on the single market
variable Z = ‘Momentum in Bid-Ask Spread’.

The trading performance evaluator PE is the ‘slippage in
bid-ask spread’. The PE-thresholds �t = �45 determining low
trading performance is fixed at the 3% -quantile of all perfor-
mance evaluations observed at time t = 45.

D
ow

nl
oa

de
d 

by
 [

91
.1

95
.7

2.
14

] 
at

 0
5:

43
 1

6 
A

pr
il 

20
14

 



Real-time market microstructure analysis 15

Figure 8. Predictive powers of some explanatory variables (horizontal scale is time in slices of 5 min).

Figure 9. Auto adaptive alarm zones on the Volume Score explanatory variable for the order T (139) displayed in figure 3; Top: four alarm
zones are active, two realizations of the Volume Score exceed the auto adaptive thresholds and thus emerge as a highly likely explanation for
the bad performance exhibited by this order (see Bottom graph).

The x and y axes in the graph (figure 7) indicate the threshold
values (θ−, θ+) for the market variable Z = ‘Momentum in
Bid-Ask Spread’. The z axis displays the predictive power
π(θ) of hθ . The red marker indicates at time t = 45, the
estimated influence coefficient I(Z , Y ) on Y for this specific
market variable Z , which turns out to be equal to 100%. The

threshold vector θ = θ45 which achieves maximum predictive
power at time 45 is equal to (66.76, 3.87). At each time t ,
our seven basic market variables can then be ranked on the
basis of their approximate influence values computed as above,
which provides a ranking of their respective capacity to explain
current bad trading performances.
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16 R. Azencott et al.

Figure 10. Auto adaptive alarm zones on the Bid-Ask spread Score explanatory variable for the order of figure 3; Top: one alarm zone is
active, since the Bid-Ask Score exceeds the auto adaptive thresholds, and thus emerges as a quite likely explanation of bad trading performance
(as validated on the bottom figure).

Figure 11. Auto adaptive alarm zones for the Volatility Score explanatory variable for the order of figure 3; Top: two alarm zones are active,
one realization of the Volatility Score exceeds the auto adaptive thresholds giving and thus provides a highly likely explanation of the current
bad trading performance (as displayed on the bottom graph).

8. Influence computation for pairs of explanatory factors

Again at fixed time t , we now sketch our online ‘optimized
fusion’ of predictors to estimate the influence coefficient J (G)
when G is a group of two explanatory factors Z = [Z1, Z2].
Our statistical robustness analysis above indicates the neces-
sity to consider only classes of trading performance predictors
having radically low Vapnik-Cervonenkis dimension. So our
predictive power maximization among predictors based on Z
is deliberately restricted to the following class of predictors.

Let P2 be the set of all 16 functions mapping {0; 1}2 into
{0; 1}. The class H will be the set of all predictors of the form

h(Z) = m( f (Z1), g(Z2))

where m ∈ P2, and the indicator functions f (z) and g(z)
are both two-sided binary predictors in the sense of definition
7.1. The class of binary predictors H has Vapnik-Cervonenkis
dimension equal to four. Hence the estimation of maximal pre-
dictive power within H by empirical estimation of probabilities
P1 and P0 on the basis of the current Kt joint observations of
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Real-time market microstructure analysis 17

Y, Z1, Z2 will be statistically robust. This provides at time t a
stable estimator of J (G), which as above tends to undervalue
the true J (G).

In concrete implementation of this approach at fixed time
t , we first select only pairs of predictors f (Z1), g(Z2) which
already have reasonably high probabilities of correctly predict-
ing Y . To maximize the predictive power of h(Z) = m( f (Z1),

g(Z2)) we need to select the best binary polynomial m among
the 16 elements of P2. We then impose m(0, 0) = 0 and
m(1, 1) = 1, so that whenever the predictions of f (Z1), and
g(Z2) agree, we also have h(Z) = f (Z1) = g(Z2). This
‘accelerated fusion’ is fairly classical in multi-experts fusion
(see Alkoot and Kittler (1999)) and obviously provides an
acceleration multiplier of four in the online computation of
J (G).

For groups G of k = 3 or k = 4 explanatory factors, one
could estimate J (G) by similar sub-optimal but implementable
strategies. However the corresponding predictor classes have
Vapnik-Cervonenkis dimensions six and eight, and their statis-
tical robustness is hence much weaker in the concrete context
of our intraday datas set, since at each time t the key Vapnik
ratios Kt/6 and Kt/8 were resp. inferior to 120 and 70, values
which are much too small and strongly suggested to avoid the
estimation of J (G) for cardinal (G) ≥ 3.

9. Numerical results

We now present the numerical results obtained by applying
the above methodology to our benchmark dataset of intra-day
trading records.

9.1. Dataset (portfolio) description

Recall that our intra-day benchmark data involve a total of 79
time slices of 5 min each (i.e. this portfolio has been traded
from 8:55 to 15:30 London time), and that we are monitoring
a portfolio of 1037 trading orders, with a maximum of 700
trading orders active simultaneously at each time slice.

At each fixed time slice t , we compute the current influence
coefficient for each one of our 28 explanatory factors, namely
the seven market descriptors M j themselves and the 3 × 7
smoothed anomaly detectors monitoring the dynamic of these
market descriptors.

These 28 explanatory factors generate 378 = 28 × 27/2
pairs of factors. By accelerated fusion as above, we compute,
at each time slice t , the influence of each one of these 378 pairs
of explanatory factors.

Among these 406 = (378 + 28) groups of explanatory fac-
tors, at each time t , we retain only those having both conditional
probabilities of correct predictions (p1, p0) larger than r%.
Here r% > 70% is the user selected ‘floor predictive power’.
Note that each single factor or pair of factors retained at time
t can predict current degraded performance degradations with
a false alarm rate F AR = 1 − p0 inferior to (100 − r)%.

Among the retained groups of explanatory factors, we com-
pute the maximal influence max Jt achievable at time t . We
also determine the set Dt of dominating groups of explanatory
factors, defined as the groups of one or two factors having an

influence equal to Jt and achieving the minimal false alarm
rate (100 − r)%.

9.2. Predictive power of market descriptors

Figure 8 gives a heat map of the predictive power of a selected
subset of market descriptors on the whole portfolio. The display
shows that:

• no market descriptor is used before slice 60 (i.e. 14:00),
meaning that there are no significant predictive links be-
tween bad trading performances and specific values of the
descriptors.

• Then the Volume Score has the capability to explain bad
trading performance from 14:10 to 14:20 and from 14:50
to 15:00. It means that during these two time intervals, bad
performances occurred simultaneously with quite unusual
levels of traded volumes.

• The Volatility Score emerges as a complementary
explanatory factor between 14:55 and 15:05; orders with
bad trading performances focused on stocks having
unexpectedly high volatility levels during these 10 min.

• The Bid-Ask Spread Score conforts this automated
diagnosis: a rare event did indeed degrade trading
performances around 15:00. Keeping in mind that scores
are computed according to historical values during last
weeks, it means that for this portfolio, the worst perfor-
mances occurred on stocks for which volumes, volatility,
and bid-ask spread had abnormal values.

It is interesting to note that, before scoring, market perfor-
mances do not explain that well bad performances.

9.3. How alarm zones explain bad trading performance

Since the two-sided binary predictors are built to explain the
degraded performances of the worst trading orders, it is easy to
identify the most impacted orders one given market descriptor.
Here we consider the trading order T(139) whose lifecycle
is shown on figure 3, in order to visualize the impact of its
Volume Score, Volatility Score, and Bid-Ask Score on the order
performance. First note that this order has been active from
10:55 to 15:30 London time, with a start time two hours after
the launch of the portfolio. It means that 5 min slices on this
order are numbered from 0 to 49; they have to be shifted by 30
to be synchronized with the time scale of the other portfolio
orders.

9.3.1. Alarm zones on the volume score. Figure 9 shows
alarm zones for the Volume Score of order T(139): the top
subplot draws the value of the volume score through time and
the associated alarm zones have been added on top of it, when
triggered.

For the whole portfolio (figure 8), alarm zones are triggered
on the Volume Score from 14:10 to 14:20 and from 14:50 to
15:00 (i.e. slices 32 to 32 and 40 to 41 for this specific order).
They are drawn like ‘gates’ from the low threshold (θ−

t ) to
the high one (θ+

t ); if the value of the Volume Score is outside
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18 R. Azencott et al.

bounds for the given order: we thus state that ‘the Volume
Score contributed to the degradation of trading performance
for order T(139)’.

It is important to note that if if our thresholds had not been
adaptive as proposed by our ‘influence analysis’ methodology,
they would have generated false explanations at the start of the
order (around slice four, i.e. 11:15 London time).

Specifically for this order, the Volume Score does not enter
the first alarm zone (around 14.15); it is in line with the
performance of order T(139) that is normal (bottom subplot
of figure 9). The boundaries of the next alarm zone (around
15:00) are crossed by the order Volume Score; indeed this order
performs quite poorly at that time.

9.3.2. Alarm zones on the bid-ask spread score. Only one
alarm zone has been activated on the portfolio (around 15:00)
and the advantage of the auto adaptive approach proposed in
this paper is straightforward: a unique threshold for all the
duration of the portfolio would clearly not have been able to
separate the 41st slice of order T(139) from the others (figures
10 and 11).

9.3.3. Alarm zones on the volatility score. Once again it
is clear that the alarm zones succeeded in isolating slices to
efficiently explain the bad trading performance around 15:00.

9.3.4. To summarize. When applied to our real portfolio
of 1037 orders traded during 6 h and 35 min, the automated
influence analysis methodology presented and studied from a
theoretical viewpoint in this paper efficiently selects quite per-
tinent explanatory factors for degraded trading performance:

• our alarm zones use thresholds that are automatically
adapted online to successive time slices, as computed via
the predicting power of two-sided binary predictors (see
Definition 7.1) based on market descriptors.

• Our approach generates generates auto adaptive thresh-
olds taking into account currently observed synchronicity
between the user selected performance criterion (chosen
according to the trading goal, see Section 2.1) with market
descriptors market descriptors.

• At each time slice, the computed adaptive thresholds on
market descriptors apply to the whole portfolio, bad trad-
ing performance of orders for which market descriptors
take values outside alarm zones are said to be explained
or influenced by the given descriptors. We commented
real examples to illustrate these automated selection of
explanatory factors.

• The added value of augmenting the state space of market
descriptors using scores has been illustrated on several
examples within our benchmark data set o trading orders.

10. Conclusions

The approach presented in this paper quantifies in real-time, the
negative influence (on trading performances) of currently de-
tected abnormal behaviour of market factors.The paper presents

a theoretical framework to be used for TCA and uses it for on-
line TCA. Dynamic influence-based ranking of market factors
provides in real-time the most likely causality links between
current bad trading performance and currently detected ab-
normal behaviour of market variables. To accurately capture
the effect of anomalies detected on the dynamics of market
variables, binary performance predictors based on anomalies
have been extended to cover lagged recent occurrences of
anomalies. In particular, this captures and quantifies the pre-
dictive power of crenels, jumps over multiple time steps, etc.
Our algorithms provide real-time evaluations for the current
influence of specific market variables on currently observed
trading performance degradations, with a small time-delay de-
pendent on market liquidity. Moreover, influence analysis can
generate efficient real-time answers to online queries by mul-
tiple traders as well as post-trade analysis. Our methodology
enables fast in-depth dynamic evaluation of trade schedul-
ing algorithms, and should help to quantify the comparative
analysis of various trading algorithms. This will enhance new
automated approaches to optimize the parameters of trading
algorithms by intensive testing on historical data. Note that we
do not address here the issue of picking potential explanatory
market factors, possibly from a very large pool of available
factors. We consider here seven basic market variables as given
arbitrarily, or as pre-identified based on expert knowledge.
However, new variables could be automatically included as
potential explanatory factors by scanning a large set of market
variables and ranking them after computation of their respec-
tive influence on performance degradation. For instance, it is
advantageous to include factors which are uncorrelated and
have historically shown to provide reliable explanation for
performance degradation.
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