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kernel functions

In kernel methods such as S.V.M., a kernel function should be determined
a priori.

Supervised learning

Objective function is clear. Kernels are designed to optimize the function.

Unsupervised learning

The choice of kernel is subjective. It is determined to reflect the user’s
notion of similarity.
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kernel functions for sequences

Texts

Count features, which represent the number of each symbol contained in a
sequence

Biological sequences

Count does not work ’out of the box’ primary due to frequent context
change
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A DNA sequence with hidden context information. Suppose the hidden
variable (’h’) indicates coding/noncoding regions.
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New way to design a kernel

Visible

Hidden

Joint &
MarginalizedHMM
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HMM

A hidden Markov model (HMM) is a statistical Markov model in which the
system being modeled is assumed to be a Markov process with unobserved
states.
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Example of HMM

A limited number of sequences whose structures are known. We want to
train the four HMMs of secondary structures to make the prediction

Helix

Sheet

Turn

Other
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block diagram
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HMMs of secondary structures Combined HMM for prediction
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marginalized kernel

x , x ∈ X , h, h′ ∈ H, where H is a finite set. z = (x , h), z ′ = (x ′, h′)

K (x , x ′) =
∑
h∈H

∑
h′∈H

p(h|x)p(h′|x ′)Kz(z , z ′)

p(x |x) has to be estimated from the data. When the cardinality of H is
too large, the calculation can be intractable.
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marginalized kernel from Gaussian mixture

K (x , x ′) =
∑
h∈H

p(h|x)p(h′|x ′)xTAhx
′

where Ah is the inverse of covariance matrix.
Distance in feature space

D(x , x ′) =
√
K (x , x) + K (x ′, x ′)− 2K (x , x ′)
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marginalized count kernel
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second-order marginalized count kernel
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Definition of the Fisher kernel

Assume a probabilistic model p(x |θ) is defined on X , where θ is a
parameter vector. Let θ̂ denote parameter values which are obtained by
some learning algorithm. Then the Fisher kernel between two objects is
defined as

Kf (x , x ′) = s(x , θ̂)TZ−1(θ̂)s(x ′, θ̂)

where s is the Fisher score

s(x , θ̂) := ∇θ log p(x |θ̂)

and Z is the Fisher information matrix

Z (θ̂) =
∑
x∈X

p(x |θ̂)s(x , θ̂)s(x , θ̂)T
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Fisher kernel from latent variable models

the Fisher score is described as

∇θ log p(x |θ̂) =

∑
h∈H ∇θp(x , h|θ̂)

p(x |θ̂)

=
∑
h∈H

p(x , h|θ̂)

p(x |θ̂)

∇θp(x , h|θ̂)

p(x , h|θ̂)

=
∑
h∈H

p(h|x , θ̂)∇θp(x , h|θ̂)
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The Fisher kernel is described as a marginalized kernel

Kf (x , x ′) = ∇θp(x |θ̂)TZ (θ̂)−1∇θp(x ′|θ̂)

=
∑
h∈H

∑
h′∈H

p(h|x , θ̂)p(h′|x ′, θ̂)Kz(z , z ′)

where the joint kernel is Kz(z , z ′) = ∇θp(x , h|θ̂)TZ (θ̂)−1∇θp(x ′, h′|θ̂)
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experiment settings

84 amino acid sequences from 5 genera in Actinobacteria
The number of sequences in each genus is listed as 9,32,15,14,14
Pairwise identity is 62%-99%
BLAST scores cannot directly be converted to kernels
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Two kinds of experiments–clustering and supervised classification are
performed on the following kernels:

CK1: Count kernel

CK2: Second-order count kernel

FK: Fisher kernel

MCK1: Marginalized count kernel

MCK2: Second-order marginalized count kernel
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clustering result
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classification result

Genera 1 and 2 are not used because they can be seperated easily by all
kernels. We do one vs one for the rest three.
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effect of HMM states
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conclusion

Fisher kernel is a special case of MCK.

second-order kernels perform better than first-order kernels

number of HMM states’ effect
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