Marginalized kernels for biological sequences

Koji Tsuda, Taishin Kin and Kiyoshi Asai

AIST, 2-41-6 Aomi Koto-ku, Tokyo, Japan

Presented by Shihai Zhao

May 8, 2014

Introduction

- kernel functions
- hidden Markov model

2 Methods

- new kernel
- connections to the Fisher kernel

3 Results and Conclusion

In kernel methods such as S.V.M., a kernel function should be determined a priori.

Supervised learning

Objective function is clear. Kernels are designed to optimize the function.

Unsupervised learning

The choice of kernel is subjective. It is determined to reflect the user's notion of similarity.

Texts

Count features, which represent the number of each symbol contained in a sequence

Biological sequences

Count does not work 'out of the box' primary due to frequent context change

A DNA sequence with hidden context information. Suppose the hidden variable ('h') indicates coding/noncoding regions.

h: 122122122x: ACGGTTCAA

HMM

A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved states.

A limited number of sequences whose structures are known. We want to train the four HMMs of secondary structures to make the prediction

- Helix
- Sheet
- Turn
- Other

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Koji Tsuda, Taishin Kin and Kiyoshi Asai

 $x, x \in X, h, h' \in H$, where H is a finite set. z = (x, h), z' = (x', h')

$$K(x,x') = \sum_{h \in H} \sum_{h' \in H} p(h|x)p(h'|x')K_z(z,z')$$

p(x|x) has to be estimated from the data. When the cardinality of H is too large, the calculation can be intractable.

marginalized kernel from Gaussian mixture

$$K(x, x') = \sum_{h \in H} p(h|x)p(h'|x')x^{\mathsf{T}}A_h x'$$

where A_h is the inverse of covariance matrix. Distance in feature space

$$D(x, x') = \sqrt{K(x, x) + K(x', x') - 2K(x, x')}$$

h:
$$1 \ 2 \ 2 \ 1 \ 2 \ 2 \ 1 \ 2 \ 2$$

x: A C G G T T C A A
(A,1) = 1 (C,1) = 1 (G,1) = 1 (T,1) = 0
(A,2) = 2 (C,2) = 1 (G,2) = 1 (T,2) = 2

Koji Tsuda, Taishin Kin and Kiyoshi Asai

▶ < 불 ▷ 불 ∽ < < May 8, 2014 13 / 23

second-order marginalized count kernel

Assume a probabilistic model $p(x|\theta)$ is defined on X, where θ is a parameter vector. Let $\hat{\theta}$ denote parameter values which are obtained by some learning algorithm. Then the Fisher kernel between two objects is defined as

$$K_f(x,x') = s(x,\hat{\theta})^T Z^{-1}(\hat{\theta}) s(x',\hat{\theta})$$

where s is the Fisher score

$$s(x, \hat{ heta}) :=
abla_{ heta} \log p(x|\hat{ heta})$$

and Z is the Fisher information matrix

$$Z(\hat{\theta}) = \sum_{x \in X} p(x|\hat{\theta}) s(x,\hat{\theta}) s(x,\hat{\theta})^{T}$$

the Fisher score is described as

$$\begin{aligned} \nabla_{\theta} \log p(x|\hat{\theta}) &= \frac{\sum_{h \in H} \nabla_{\theta} p(x, h|\hat{\theta})}{p(x|\hat{\theta})} \\ &= \sum_{h \in H} \frac{p(x, h|\hat{\theta})}{p(x|\hat{\theta})} \frac{\nabla_{\theta} p(x, h|\hat{\theta})}{p(x, h|\hat{\theta})} \\ &= \sum_{h \in H} p(h|x, \hat{\theta}) \nabla_{\theta} p(x, h|\hat{\theta}) \end{aligned}$$

Koji Tsuda, Taishin Kin and Kiyoshi Asai

The Fisher kernel is described as a marginalized kernel

$$\begin{split} \mathcal{K}_f(x,x') &= \nabla_\theta p(x|\hat{\theta})^T Z(\hat{\theta})^{-1} \nabla_\theta p(x'|\hat{\theta}) \\ &= \sum_{h \in H} \sum_{h' \in H} p(h|x,\hat{\theta}) p(h'|x',\hat{\theta}) \mathcal{K}_z(z,z') \end{split}$$

where the joint kernel is $K_z(z, z') = \nabla_{\theta} \rho(x, h|\hat{\theta})^T Z(\hat{\theta})^{-1} \nabla_{\theta} \rho(x', h'|\hat{\theta})$

84 amino acid sequences from 5 genera in Actinobacteria The number of sequences in each genus is listed as 9,32,15,14,14 Pairwise identity is 62%-99% BLAST scores cannot directly be converted to kernels Two kinds of experiments-clustering and supervised classification are performed on the following kernels:

- CK1: Count kernel
- CK2: Second-order count kernel
- FK: Fisher kernel
- MCK1: Marginalized count kernel
- MCK2: Second-order marginalized count kernel

clustering result

MCK1

10110-0

MCK2

Image: A mathematical states of the state

Koji Tsuda, Taishin Kin and Kiyoshi Asai

0.04

0.02

0

0.02

▶ < 둘 ▶ 둘 ∽ ९. May 8, 2014 20 / 23 Genera 1 and 2 are not used because they can be seperated easily by all kernels. We do one vs one for the rest three.

Genera	CK1	CK2	FK	MCK1	MCK2
3-4	24.5 [9.67]	9.10 [7.87]	10.4 [9.15]	12.8 [9.85]	8.48 [7.76
3-5	12.7 [8.93]	6.43 [7.76]	10.9 [10.1]	10.4 [8.17]	5.71 (7.72
4-5	25.6 [13.0]	13.5 [15.5]	23.1 [14.3]	20.0 [14.6]	11.6 [14.6

effect of HMM states

- Fisher kernel is a special case of MCK.
- second-order kernels perform better than first-order kernels
- number of HMM states' effect