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Abstract. A general equilibrium model for multiphase multicomponent
inorganic atmospheric aerosols is proposed. The thermodynamic equilibrium
is given by the minimum of the Gibbs free energy for a system involving an
aqueous phase, a gas phase and solid salts. A primal-dual algorithm solv-
ing the Karush-Kuhn-Tucker conditions is detailed. An active set/Newton
method permits to compute the minimum of energy and track the presence or
not of solid salts at the equilibrium. Numerical results show the efficiency of
our algorithm for the prediction of multiphase multireaction chemical equi-
libria.

Key Words. Inorganic aerosols, thermodynamic equilibrium, constrained
minimization, primal-dual methods, active sets.

1 Introduction

Over the last two decades, a series of thermodynamic modules, such as Equil

(Ref. 1), Mars (Ref. 2), Sequilib (Ref. 3), Scape (Refs. 4-5), Scape2

(Refs. 6-7), Equisolv II (Refs. 8–10), and Isorropia (Refs. 11-12), has
been developed in the atmospheric modeling community to predict the phase
transition and multistage growth phenomena of inorganic aerosols. These
modules calculate the composition of atmospheric aerosols by solving a set

of nonlinear algebraic equations derived from chemical equilibrium relations.
One of the most challenging parts is the prediction of the partitioning of
the inorganic aerosol components between aqueous and solid phases. By
relying on a priori and often incomplete knowledge of the presence of solid

phases at a certain relative humidity and overall composition (information
extracted from empirical data), these modules often fail to accurately predict
the phase state and composition and the multistage growth phenomena of
inorganic aerosols (Refs. 13-14).

On the other hand, thermodynamic models that are based on the mini-

mization of the Gibbs free energy, such as Gfemn (Ref. 14) and Aim (Refs.
15–19), implicitly predict phase transition and multistage aerosol growth
without any a priori knowledge of the behavior of inorganic aerosols. How-
ever, such direct minimization of the Gibbs free energy is computationally
intensive making its use in 3D air quality models infeasible (Refs. 13-20).

In this paper, a primal-dual active set algorithm for the efficient and ac-
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curate prediction of the phase transition and multistage growth phenomena
of inorganic aerosols is presented. The mathematical framework for modeling
solid-liquid equilibrium reactions is based on the canonical stoichiometry of
inorganic aerosols (Ref. 21). The canonical form is elucidated from the anal-
ysis of the algebraic structure of aqueous electrolyte solution system and the
Karush-Kuhn-Tucker (KKT) conditions for the constrained minimization of
the Gibbs free energy. The concentrations of solid species in solid-liquid equi-
librium are interpreted as the Lagrange multipliers of dual linear inequality
constraints. This primal-dual relation is the key for the development of our
primal-dual active set algorithm, whose principal features can be summarized
as follows.

The algorithm applies Newton’s method to the reduced KKT system of
equations that is projected on an active set of solid phases to find the next
primal-dual approximation of the solution. The active set method permits
us to add/delete salts to/from a working set of saturated salts until the
equilibrium set of solid phases is obtained. The linear inequality constraints
are enforced on the dual variables such that the solution remains dual feasible
with respect to the solid constraints, until an inequality constraint becomes
active at an iteration and the active set is modified by adding a saturated
salt into it. The concentrations of the saturated salts in the active set are
the Lagrange multipliers of the dual active constraints so that their non-
negativeness is enforced by deleting a saturated salt from the active set when
its concentration becoming negative.

A second order stability criterion is implemented by keeping the reduced
Hessian of the Gibbs free energy positive definite so that the algorithm con-
verges to a stable equilibrium (local minimum) rather than any other first
order optimality point such as a maximum or a saddle point. To avoid the
non-positiveness and poor-scaling of the concentrations in the computation,
a logarithmic change of variables is performed so that the concentrations fol-
low a path that is infeasible with respect to the mass balance constraints in
the first few iterations, then converge quadratically to the minimum of the
Gibbs free energy.

The structure of this paper is the following: in Section 2, the steps of
the mathematical modeling of inorganic aerosols are presented. In Section 3,
the optimization problem is derived and modified until obtaining a suitable
formulation from both the chemical and mathematical points of view. Then,
in Section 4, an active set/Newton method is detailed for solving this mini-
mization problem. Numerical results are presented in Section 5 to illustrate
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the efficiency of our approach. Section 6 consists in the conclusions.

2 Modeling of Inorganic Aerosols

2.1 Chemical Equilibrium Problem

The multi-phase and multi-reaction chemical equilibrium for a closed inor-
ganic aerosol system at constant temperature and pressure and a specified
element-abundance feed vector b̂ is the minimization problem

min G(nl, ng, ns) = nT
l µl + nT

g µg + nT
s µs, (1a)

s. t. nl > 0, ng > 0, ns ≥ 0, (1b)

Âlnl + Âgng + Âsns = b̂, (1c)

where nα ∈ R
mα , µα ∈ R

mα and Âα ∈ R
me×mα are the concentration vector,

the chemical potential vector and the element-based formula matrix for the
species set α = l, g, s respectively. The subscripts l, g, s denote the liquid,
gas and solid phases respectively. Here me denotes the number of elements
in the system and mα denotes the number of species in species set α. Let
Gα = nT

αµα denote the Gibbs free energy related to the phase α. The aqueous
and gas phases are assumed to exist at the equilibrium.

Remark 2.1. Let X1, . . . ,Xm denote the m chemical species expected to
be present in the system, whose molecular structures are described by the
formula vectors â1, . . . , âm, defined by

Xj =
me
∑

i=1

âijEi, ∀j = 1, . . . , m, (2)

where the species are constituted as the linear combinations of the me basic

elements E1, . . ., Eme
.

Let Eme
, the last basic element in (2), be the electronic charge. Then, the

first me − 1 rows of Âg, Âl and Âs are non-negative, the last rows of Âg and

Âs are zeros, and the last equation in the element-balance constraints of (1)
describes the electro-neutrality of the system.

Let I be the index set of the species in the system and m := |I|. The
index set I can be split into Ig, Il and Is, with mg := |Ig|, ml := |Il|,
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ms := |Is|, according to the gas, aqueous and solid phases, respectively.
The element-based formula matrices in (1) are defined by Âα = (âj)j∈Iα

for
α = g, l, s. The chemical potential vectors µα, α = g, l, s, in (1) are given by

µg = µ0
g + RT log ag, (3)

µl = µ0
l + RT log al, (4)

µs = µ0
s, (5)

where R is the universal gas constant and T is the system temperature.
In (3), µ0

g is the standard chemical potential vector of the gas species at a
pressure of 1 atm and the system temperature, and ag is the activity vector
of the gas species. This activity vector is given by

ag = fg (6)

where fg is the fugacity vector of the gas species and is given by fg =
(p1 atm/nair)ng, where p1 atm is the ratio P/(1 atm) with P denoting the sys-
tem pressure and nair is the total number of moles of air in the system.

In (4), µ0
l is the standard chemical potential vector of the aqueous species

at the system temperature and pressure, and al is the activity vector of the
aqueous phase that is predicted via an activity coefficient model. In (5), µ0

s

is the standard constant chemical potential vector of the solid species at the
system temperature and pressure.

Let us denote by R++ the strictly positive real numbers. Note that the
chemical potential vector µl is defined as the gradient of the Gibbs free energy
of the aqueous phase: Gl : R

ml
++ → R+, so that, for all nl > 0,

µl = ∇Gl(nl).

The first-order homogeneity of Gl is the basis for the relation

Gl(nl) = nT
l µl,

and the Gibbs-Duhem equations:

∇2Gl(nl)nl = 0, (7)

equivalently

(∇µl) nl = 0 or (∇ log al)nl = 0.
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The respective Hessian matrices are given by

Hl = ∇2Gl(nl), Hg = diag(1/ng) and Hs = 0.

The above Gibbs-Duhem relations are used in the derivation of the optimality
conditions for problem (1) in Section 3.

3 Description of the Problem and Optimality

Conditions

3.1 KKT System and Canonical Stoichiometry

Assuming that the aqueous and gas phases are present at equilibrium, the
solution of the chemical equilibrium (1) is characterized by the Karush-Kuhn-
Tucker (KKT) system of the first order necessary optimality conditions, see
e.g. (Ref. 22):

µl + ÂT
l λ = 0, (8a)

µg + ÂT
g λ = 0, (8b)

µs + ÂT
s λ ≥ 0, ns ≥ 0, nT

s (µs + ÂT
s λ) = 0, (8c)

Âlnl + Âgng + Âsns = b̂. (8d)

The KKT system (8) is referred to as the non-stoichiometric form of the
equilibrium conditions. These conditions can be expressed in an alternative
and computationally more relevant form, the stoichiometric form, by extract-
ing a set of component species from the aqueous species as described in the
sequel.

To ensure the feasibility of solid-liquid and gas-liquid equilibrium reac-
tions in (1), the species sets Iα, α = g, l, s, in the system are assumed to be
consistent in the sense that

range(Âl, Âg, Âs) = range(Âl). (9)

The consistency (9) requires that all the gas and solid species in the system
can be generated as a linear combination of the aqueous species. It is also
assumed that ml > me, i.e., the number of the aqueous species is larger than
the number of the elements. Let mc (≤ me) be the rank of Âl. The next

6



step is to select the mc chemical species which play the role of components
of the system. Thus, the set Ic (⊂ Il) is a set of mc aqueous species whose
corresponding formula vectors âj are linearly independent. These species are

called the components. Let Âc := (âi)i∈Ic
∈ R

me×mc be the formula matrix
for the components. If mc = me, i.e., Âc is of full row rank, then Â−1

c exists;
otherwise, the pseudoinverse of Âc is denoted by

Â−1
c := (ÂT

c Âc)
−1ÂT

c ∈ R
mc×me .

The vector b̂ ∈ R
me is assumed to belong to range(Âl). Let In be the set

of the remaining mn = ml − mc aqueous species with the formula matrix
Ân := (âi)i∈In

∈ R
me×mn . These species are called the non-components. Let

us define

Aα = (aα
ij) := Â−1

c Âα, for α = c, n, g, s,

the component-based formula matrix for species set α. Notice that Ac = Imc
.

Remark 3.1. The matrices Aα, α = c, n, g, s are also called the canoni-

cal stoichiometric matrices as their rows are formed of the stoichiometric
coefficients associated to the canonical chemical equilibrium reactions:

Xj �

∑

i∈Ic

aα
ijXi, ∀j ∈ Iα, for α = c, n, g, s. (10)

The corresponding canonical equilibrium-constant vector kα = (kα
j )j∈Iα

is
defined by

−RT log kα := AT
αµ0

c − µ0
α, for α = c, n, s, g (11)

and expresses the relation between the chemical potentials. Note that log kc =
0.

Let b = Â−1
c b̂ be the component-based feed vector, and nc ∈ R

mc

+ and nn ∈
R

mn

+ be the concentration vector of the components and non-components,
respectively. Then, the element balance equations in (1) can be replaced by
the component balance equations
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nc + Annn + Agng + Asns = b. (12)

The Gibbs free energy in the chemical equilibrium problem (1) can also be
reformulated by replacing the chemical potentials in terms of activities and
equilibrium constants via (3)-(5) and (11), and by taking into account (12):

G(nl, ng, ns) = bT µ0
c + RT

(

nT
c log ac

+ nT
n (log an + log kn) + nT

g (log ag + log kg) + nT
s log ks

)

.

Let cf > 0 be a characteristic quantity of the feed vector b (for instance
cf = eT b). Let us define the adimensional feed vector b̃, the adimensional
concentration vectors ñα, and the adimensional Gibbs free energy G̃ by

b̃ =
1

cf
b, ñα =

1

cf
nα, α = c, n, g, s,

G̃ = ñT
c log ac + ñT

n (log an + log kn) + ñT
g (log ag + log kg) + ñT

s log ks.

The problem (1) can be written in the adimensional canonical stoichiometric

form (dropping the tilde in the notation):

min G(nl, ng, ns) = nT
c log ac + nT

n (log an + log kn) (13a)

+nT
g (log ag + log kg) + nT

s log ks, (13b)

s. t. nl =

(

nc

nn

)

> 0, ng > 0, ns ≥ 0, (13c)

nc + Annn + Agng + Asns = b. (13d)

The KKT system of (13) can be written in the primal-dual canonical stoi-

chiometric form:
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log ac + λ = 0, (14)

log an + AT
nλ = − log kn, (15)

log ag + AT
g λ = − log kg, (16)

log ks + AT
s λ ≥ 0, ns ≥ 0, (17)

nT
s (log ks + AT

s λ) = 0, (18)

nc + Annn + Agng + Asns = b. (19)

Remark 3.2. The above KKT system furnishes the mass action laws (14)-
(18) in addition to the mass balance constraints (19). The mass action laws
are in a logarithmic form. An immediate consequence of the logarithmic form
is that the mass action laws in the primal-dual form (14)-(18) are linear with
respect to the dual variable λ.

3.2 Chemical Equilibrium Problem at Fixed Relative

Humidity

In atmospheric aerosol thermodynamic calculations, the ambient relative hu-
midity (RH) is usually treated as a known constant. Then the water deserves
a special treatment in the system and is isolated from the other components.
This is described in the following remark.

Remark 3.3. The ratio pw/p0
w between the water partial pressure pw and

the saturation vapor pressure p0
w is defined to be equal to the RH expressed

in the 0 to 1 scale. From the definition of log aH2O(g) in (6) and log kH2O(g) in
(11), it follows that

log aH2O(g) + log kH2O(g) = log pw − log p0
w = log RH, with RH =

RH100

100
.

Let the gas/particle partitioning of the total amount of H2O be

nH2O(total) = nH2O(g) + nH2O(pm), (20)

where the subscript pm denotes the particulate matter, i.e. the water under
particulate form.
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In light of Remark 3.3, the total feed vector b is split into the no-water
part b̄ and the water part as follows:

b = b̄ + nH2O(total)aH2O, (21)

where aH2O is the formula vector for H2O. Let Īg = Ig \ {H2O(g)} be
the index set of gas species excluding the water vapor, and n̄g = (ng,j)j∈Īg

and Āg = (ag,j)j∈Īg
be the corresponding concentration vector and formula

matrix, respectively. Then, by combining (20) and (21) with the relations
Agng = Āgn̄g + nH2O(g)aH2O and nT

g (log ag + log kg) = n̄T
g (log āg + log k̄g) +

nH2O(g) log RH, the (adimensional) component balance equations in (13) can
be written as

nc + Annn + Āgn̄g + Asns = b̄ + nH2O(pm)aH2O,

and the (adimensional) Gibbs free energy in (13) can be written as

G(nl, n̄g, ns, nH2O(pm)) = nT
c log ac + nT

n (log an + log kn)

+ n̄T
g (log āg + log k̄g) + nT

s log ks − nH2O(pm) log RH

+ nH2O(total) log RH,

where the last term nH2O(total) log RH is a fixed quantity for a known relative
humidity, so can be ignored. The chemical equilibrium problem gives

min G(nl, n̄g, ns, nH2O(pm)) = nT
c log ac + nT

n (log an + log kn) (22a)

+n̄T
g (log āg + log k̄g) + nT

s log ks − nH2O(pm) log RH, (22b)

s. t. nl =

(

nc

nn

)

> 0, ng > 0, ns ≥ 0, nH2O(pm) > 0 (22c)

nc + Annn + Āgn̄g − nH2O(pm)aH2O + Asns = b̄. (22d)

The KKT system for the chemical equilibrium problem (22) can be written
in the primal-dual canonical stoichiometric form:
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log ac + λ = 0, (23)

log an + AT
nλ = − log kn, (24)

log āg + ĀT
g λ = − log k̄g, (25)

log RH + aT
H2Oλ = 0, (26)

log ks + AT
s λ ≥ 0, ns ≥ 0, (27)

nT
s (log ks + AT

s λ) = 0, (28)

nc + Annn + Āgn̄g − nH2O(pm)aH2O + Asns = b̄. (29)

Remark 3.4. In atmospheric aerosol models such as Sequilib, Scape2,
Equisolv II, and Isorropia, the amount of the water partitioned in the
particle phase is assumed to be equal to the aqueous water content nl,w, i.e.

nH2O(pm) = nl,w, by neglecting the part of nH2O(pm) that is dissociated into
electrolytes via

H2O(aq) 
 2H+ + OH−.

The aqueous water content nl,w is usually predicted using an empirical rela-
tionship (Zdanovskii, Robinson and Stokes equation, Zsr (Ref. 23)). The
shortcomings of this empirical method are the additional needs of the satu-
rated molarities of electrolytes according to the relative humidity and, as a
result, the thermodynamic inconsistency with the specific activity coefficient
model that is used for the prediction of the activity of the aqueous phase.

From now on, let us drop the bar in the variables relative to the gas phase
and replace n̄g by ng, etc.

In the KKT system of the primal-dual canonical stoichiometric form (23)-
(29), the primal variables nH2O(pm) and ns occur only in the mass balance
constraints (29). They can be viewed respectively as the multipliers of the
saturation constraints (26) and (27) on the dual variable λ, thus will be
eliminated by applying the so-called null-space method for the solution of
(23)-(29). This observation is the key for the development of the primal-dual
active set algorithm detailed in the next section.
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4 Active Set/Newton Method

4.1 Phase Stability Criterion and Active Set

A primal-dual solution of the KKT system (14)-(19) or (23)-(29), generally
non-unique, is called a KKT point. But this solution may not be a local
minimizer of the Gibbs free energy. One needs to perform a phase stability

analysis to determine whether a postulated KKT point is thermodynamically
stable with respect to any perturbation in nl, ng and ns. Let (n†

l , n
†
g, n

†
s, λ

†)
correspond to a KKT point of (14)-(19) or (23)-(29) and

Ī†
s := {i ∈ Is : n†

s,i > 0}, (30)

and m̄s := |Ī†
s |. It is important to note that Ī†

s is a priori unknown. In order
to perform the phase stability analysis, the following second order sufficient

condition is assumed. It states that,

pT Hp > 0, for all nonzero vector p such that Āp = 0. (31)

In (31), H = ∇2
nl,ng,ns

G(n†
l , n

†
g, n

†
s) is the Hessian matrix of the Gibbs free

energy of the system, Ā = [Al, Ag, Ās] and Ās := (as
i )i∈Ī

†
s
. The following

assumptions are also made:

(H1) The formula matrix Ās ∈ R
mc×m̄s is assumed to be of full column rank

with m̄s ≤ mc. This assumption is consistent with the chemical relation
called Gibbs phase rule, see for instance (Ref. 24), giving an a priori

estimate for the number of phases existing at the equilibrium. The full
rank assumption implies the feasibility for the dual solution λ† with
respect to the saturation constraints

log k̄s + ĀT
s λ† = 0, with k̄s = (ks,i)i∈Ī

†
s
,

extracted from the complementary slackness conditions (18) or (28).

(H2) The formula vectors of solids actually precipitated in the system (as
i )i∈Ī

†
s

are assumed to be linearly independent (linear independent constraints

qualification, see also (Ref. 25) for instance).

(H3) The strict complementary condition holds, i.e. log ks + AT
s λ ≥ 0, ns ≥

0, nT
s (log ks+AT

s λ) = 0 (equivalent to (27) (28)), but also ns +(log ks +
AT

s λ) > 0 (i.e. ns and (log ks + AT
s λ) are not simultaneously zero).
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Recall that the inertia of a symmetric matrix is an ordered set of three
integers (i+, i−, io), where i+ is the number of positive eigenvalues, i− the
number of negative eigenvalues, and i0 the number of zero eigenvalues. For a
generic matrix A ∈ R

m×n, let ZA ∈ R
n×(n−m) denote a null space matrix of A

(i.e. a matrix such that AZA = 0). The relationship (31) is also equivalent
to requiring the so-called KKT matrix

K =

(

H ĀT

Ā 0

)

,

to have a certain inertia. This is the subject of the next theorem.

Theorem 4.1. Under assumptions (H1) and (H2) and if (31) is satisfied, the
KKT matrix K is invertible.

Proof. Based on an inertia result of Gould (Ref. 26), we have

inertia(K) = inertia(ZT
ĀHZĀ) + (mc, mc, 0), (32)

where ZĀ is a null-space matrix for Ā. Then (31) implies

inertia(K) = (ml + mg + m̄s, mc, 0). (33)

The matrix K is thus invertible.

The difficulty in solving (14)-(19) or (23)-(29) is mainly caused by the
combinatorial aspect of the KKT system, or more precisely by the comple-
mentary slackness conditions (18) or (28). The problem is not only to deter-
mine the concentrations but also to guess the optimal active set of solids (in
the “dual” sense)

Ī†
s := { j ∈ Is : log ks,j + aT

s,jλ
† = 0 }. (34)

Under assumption (H3) that the strictly complementary slackness condition
holds, Ī†

s is equal to the “primal” set defined in (30), i.e., Ī†
s := {i ∈ Is :

n†
s,i > 0}, the set of solid salts actually precipitated at equilibrium and the

complementary solid set of Ī†
s

Ĩ†
s := Is \ Ī

†
s = { j ∈ Is : log ks,j + aT

s,jλ
† > 0 } (35)

identifies the set of salts that are subsaturated with the aqueous solution.
Under assumption (H3) again, the set Ĩ†

s is equal to Ĩ†
s = {i ∈ Is : n†

s,i = 0},
the set of possible solid salts that are not precipitated at equilibrium.
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Based on a guess of the optimal active set of solid phases (34), the KKT
system (14)-(19) or (23)-(29) can be transformed into a system of nonlinear
equations, which is much more computationally tractable. With the nota-
tions

Ās := (as
j)j∈Ī

†
s
, Ãs := (as

j)j∈Ĩ
†
s
, n̄s := (ns,j)j∈Ī

†
s
, and ñs := (ns,j)j∈Ĩ

†
s
,

the exact solution of the chemical equilibrium problem (22) can be com-
puted from the following KKT system of equations:

log ac + λ = 0, (36)

log an + AT
nλ = − log kn, (37)

log ag + AT
g λ = − log kg, (38)

log RH + aT
H2Oλ = 0, (39)

log k̄s + ĀT
s λ = 0, n̄s > 0, (40)

log k̃s + ÃT
s λ > 0, ñs = 0, (41)

nc + Annn + Agng − nH2O(pm)aH2O + Āsn̄s = b̄, (42)

where the complementary slackness conditions (27) and (28) are split into
the equalities (40) and the strict inequalities (41), according to the optimal
active and inactive sets of solid phases, Ī†

s and Ĩ†
s , respectively.

In order to simplify the notations, let

Āλ = (−aH2O, Ās)
T , m̄λ = m̄s + 1, and b̄λ = (log RH,− log k̄T

s )T .

The “dual” saturation constraints (39) and (40) are combined to form the
dual linear equality constraint

Āλλ = b̄λ. (43)

The feasibility of (43) requires Āλ to be of full row rank, implying that
Ās must be of full column rank and that aH2O /∈ range(Ās). Notice that the
latter is always true if the solid salts do not contain hydrated water.

The dual variable λ that satisfies (43) can be expressed in terms of a
reduced variable η via
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λ = λ∗ + ZĀλ
η,

where ZĀλ
is a null-space matrix of Āλ and λ∗ is a particular solution of

(43). The primal variables nH2O(pm) and n̄s are viewed as the multiplier of
the combined dual equality constraint (43). Replacing λ by the reduced
variable η and projecting the KKT system (36)-(42) onto the null-space ZĀλ

to eliminate (nH2O(pm), n̄s), gives the following reduced KKT system of the

primal-dual canonical stoichiometric equations:

log ac + ZĀλ
η = −λ∗, (44)

log an + AT
nZĀλ

η = − log kn − AT
nλ∗, (45)

log ag + AT
g ZĀλ

η = − log kg − AT
g λ∗, (46)

ZT
Āλ

nc + ZT
Āλ

Annn + ZT
Āλ

Agng = ZT
Āλ

b̄. (47)

Once the solution (nc, nn, ng, η) of the reduced system (44)-(47) is known,
one can compute the primal variables nH2O(pm) > 0 and n̄s > 0, from the
mass-balance equations (42) via

(

nH2O(pm)

n̄s

)

=
(

ĀT
λ

)−1 (

b̄ − nc − Annn − Agng

)

(48)

where
(

ĀT
λ

)−1
is the left pseudoinverse of ĀT

λ . From now on, let us denote by
n̄s the union of n̄s and nH2O(pm). Note that the set of all possible active sets
grows exponentially with ms, the number of all possible solid salts considered.

4.2 Primal-Dual Active Set Method

In order to solve (14)-(19) or (23)-(29), a primal-dual algorithm is presented,
based on the active-set strategy that makes a sequence of sets converging to
the optimal active set of solid phases. This sequence of the so-called active
sets, denoted by Īs, is defined in the “dual” sense as it was done for the
optimal active set Ī†

s in (34) by

Īs := { j ∈ Is : log ks,j + aT
s,jλ = 0 }, (49)

where the dual variable λ, together with the primal variable (nl, ng, ns) con-
sists of a sequence of iterates that converges to the primal-dual solution

15



(n†
l , n

†
g, n

†
s, λ

†) of the KKT system (23)-(29). By the definition (49), Īs is
the set of the linear inequalities (27) becoming active at λ. Starting as an
approximation of Ī†

s , a priori unknown, the set Īs is expected to converge
quickly to the optimal active set Ī†

s as soon as λ is in a neighborhood of λ†.
The complementary solid set of Īs, denoted by Ĩs, is the set of the linear
inequalities (27) being inactive at λ, i.e.,

Ĩs := Is \ Īs = { j ∈ Is : log ks,j + aT
s,jλ > 0 }. (50)

In our active-set algorithm, the sequence of the dual variable λ is required
to satisfy the active constraints in Īs as equalities, i.e.,

log ks,j + aT
s,jλ = 0, ∀j ∈ Īs, (51)

and stay feasible with respect to the inequality constraints that are inactive,
i.e.,

log ks,j + aT
s,jλ ≥ 0, ∀j ∈ Ĩs. (52)

The principle of the algorithm is the following. The dual feasibility condition
of inequalities (52) enforces the dual variables to remain feasible with respect
to the inequality constraints, until the saturation is reached at an iteration
and the inequality constraint is set to be active and is added into the active
set. The dual feasibility condition of equalities (51) enforces every active con-
straint to remain active, until the corresponding primal variable ns,j becomes
negative at a certain iteration and the corresponding equality constraint is
set to be inactive and becomes an inequality. Thus the corresponding salt is
removed from the active set.

The problem is to construct a sequence of active sets which converges to
Ī†

s . The active set strategy is the following. Along the process of applying
the active-set strategy, the KKT system (23)-(29) is first projected onto the
current active set Īs to form a reduced KKT system of the form similar to
that of (44)-(47) with the particular solution λ∗ of (43) being the current
dual variable λ.

Then one Newton iteration is applied to the reduced system to find the
next primal-dual approximation (nl, ng, λ) of the solution, where the new
estimate of λ is updated from the current one by stepping along a null-
space direction defined by ZĀλ

. The displacement along this direction is
restricted to a certain length so that λ stays feasible with respect to (52).
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Finally, the next active set Īs is obtained by adding constraints that are
encountered by the new λ and the KKT system (23)-(29) is projected onto the
new active set. Once the sequence of (nl, ng, λ) has converged to a solution of
the reduced KKT system, the concentrations n̄s of the saturated salts in the
active set are computed via equation (48). Since n̄s is viewed as the Lagrange
multipliers of the dual active constraints (51), its non-negativeness is enforced
by removing a saturated salt from the active set Īs when its concentration
becomes negative. The above process continues until the equilibrium set of
solid phases Ī†

s is obtained.

Let us ignore (for the moment) the fact that n̄s must remain non-negative,
and simply apply Newton’s method to the reduced KKT system projected
on Īs to compute a displacement in (nl, ng, λ) denoted by (pnl

, png
, pλ) with

pλ = ZĀλ
pη for a certain η as λ must satisfy (51). The reduced KKT system

is the following symmetric indefinite system:





Hl 0 AT
zl

0 Hg AT
zg

Azl Azg 0









pl

pg

pη



 =





bl

bg

bη



 , (53)

where

Hl = ∇(log al), Hg = ∇(log ag) = diag (1/ng),

Azl = ZT
Āλ

Al, Azg = ZT
Āλ

Ag,

and

bl = − log kl − log al − AT
l λ,

bg = − log kg − log ag − AT
g λ,

bη = ZT
Āλ

(

b̄ − Alnl − Agng

)

.

Note that Azl is of full rank. Let

Ĩg := { j ∈ Ig : ZT
Āλ

ag
j = 0 }, (54)

Īg := Ig \ Ĩg, m̄g := |Īg|, (55)

Āg := (ag
j)j∈Īg

, Āzg := ZT
Āλ

Āg. (56)

Note that Āzg is of full rank and we have then

AzgP = (Āzg, 0), (57)
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where P is a permutation matrix.
The displacement in λ is obtained from pη as a displacement in the null-

space, defined by pλ = ZĀλ
pη. A new estimate of the solution of the KKT

system (23)-(29) is then obtained by

n+
l = nl + α pl, (58a)

n+
g = ng + α pg, (58b)

λ+ = λ + α pλ. (58c)

The parameter α is a steplength computed by

α = min(ᾱ, αmax),

where αmax is a fixed upper bound on the steplength and ᾱ is the maximum
feasible steplength that can be taken along the direction pλ. The parameter
αmax is usually taken to be 1; it can also be adjusted to ensure that a merit

function is sufficiently reduced so that the primal-dual method converges
globally, see e.g. (Ref. 27). The maximum feasible steplength ᾱ is computed
by using a ratio test

ᾱ = min

{

log ks,j + aT
s,jλ

−aT
s,jpλ

: aT
s,jpλ < 0, j /∈ Īs

}

, (59)

so that the new estimate λ+ stays feasible with respect to the inequality
constraints (52), i.e. log k̃s + ÃT

s λ+ ≥ 0. A step α is called restricted if
α < αmax, i.e, a constraint is encountered by λ+ in the line-search. Otherwise,
the step is referred to as unrestricted. As λ+ is updated along a null-space
direction, it satisfies naturally (51).

The updates of the active sets are now described, starting with the addi-
tion of constraints into the active set. The initial active-set Ī0

s is required to
only contain constraints that are active at λ0. By the feasibility arguments
(43), the associated matrix Ā0

s is of full rank, so is Ā0
λ. Let Pa denote the

index set of constraints that are encountered by λ+ in the line-search at a
Newton iteration, i.e.,

Pa = { j /∈ Īs : aT
s,jpλ < 0, log ks,j + aT

s,jλ
+ = 0 }.

Note that Pa may be the empty set. The new active set is then defined by
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Ī+
s = Īs ∪ Īa

s ,

where Īa
s ⊆ Pa is required to satisfy

Pa 6= ∅ implies Īa
s 6= ∅. (60)

The implication of (60) is that if new constraints are encountered in the
line-search, at least one of them must be added, and also that no all the
constraints encountered need to be active. In practice, exactly one new
constraint is added at one time. Since λ+ satisfies all the constraints in Ī+

s ,
by the feasibility arguments (43), the associated matrix Ā+

s must have full
rank, so does Ā+

λ , see also (Ref. 28).
On the other hand, the choice of a rule for removing constraints from

the active-set is now detailed. As described before, the solution (nl, ng, λ)
is computed by Newton’s method and the constraints encountered by λ in
the line-search are added to the active set Īs, until the sequence of Newton
iterates (nl, ng, λ) converges to a solution of the reduced KKT system (44)-
(47) which satisfies the inequality constraints. The concentrations n̄s are
then computed and the set

Pd = { j ∈ Īs : ns,j < 0 }

is identified. If Pd 6= ∅, the new active set is defined by

Ī+
s = Īs \ Ī

d
s ,

where Īd
s ⊆ Pd is required to satisfy

Pd 6= ∅ implies Īd
s 6= ∅. (61)

The implication of (61) is that if solid salts have negative concentrations, at
least one of them must be removed, and also that no all the solid salts having
negative concentrations need to be inactive. In practice, only one constraint
is removed at one time. The KKT system is then projected on the new
active set and a new loop of Newton iterations is restarted until convergence
is achieved.

If Pd = ∅, a feasible solution of (23)-(29) is reached, and the algorithm
stops. This active set/Newton algorithm is summarized in Table 1.

19



Table 1. Active set/Newton method: summary of the algorithm.

Step 0. Initial n0
l , n

0
g, λ

0 and Īs are given;

Step 1. Compute the reduced Newton direction (pl, pg, pλ)

by solving (53);

Step 2. Compute the steplength ᾱ with (59);

Step 3. Update n+
l , n+

g and λ+ with (58);

Step 4. Test if the Newton method converged;

(a) If no, consider the steplength ᾱ:

- if ᾱ < 1 (restricted step),

update Ī+
s = Īs ∪ {i} and go to (1);

- if ᾱ ≥ 1 (unrestricted step), go to (1).
(b) If yes, compute the primal variables

n̄+
s and n+

H20 with (48):

- If n̄+
s , n+

H20
≥ 0, Stop;

- If ∃j ∈ {1, . . . , ns} such that n̄+
s,j < 0,

update Ī+
s = Īs\{j} and go to (1)
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Remark 4.1. In comparison with other thermodynamic models, this algo-
rithm neither assumes nH2O(pm) = nl,w, nor uses the Zsr relationship in its
prediction of the amount of the water partitioned in the particulate phase at
a fixed relative humidity.

4.3 Computation of Newton Direction

Consider the linear KKT system (53) and define the associated KKT matrix

K̄ =





Hl 0 AT
zl

0 Hg AT
zg

Azl Azg 0



 .

First note that the Hessian matrix of the gas phase Hg = diag(1/ng) is
positive definite with inverse H−1

g = diag(ng).

Lemma 4.1. The condition (33) is equivalent to

inertia(K̄) = (ml + mg, mzc, 0), (62)

where mzc = mc − m̄λ.

Proof. The proof is a direct consequence of (32) applied to the matrix K̄.

Let Āzg and AT
zl have the following QR factorizations:

Āzg = (Qg Q̃g)

(

Rg

0

)

= QgRg, AT
zl = (Ql Q̃l)

(

Rl

0

)

= QlRl,

where (Qg Q̃g) and (Ql Q̃l) are orthogonal with Qg ∈ R
mzc×m̄g , Q̃g ∈ R

mzc×(mzc−m̄g),
Ql ∈ R

ml×mzc, and Q̃l ∈ R
ml×(ml−mzc), and Rg ∈ R

m̄g×m̄g and Rl ∈ R
mzc×mzc

are nonsingular.

Theorem 4.2. The condition (31), together with the assumptions (H1) (H2),
is equivalent to

ZT
Azl

HlZAzl
> 0, (63)

Z̃T
Azl

HlZ̃Azl
+ R−T

g H̄gR
−1
g > 0. (64)

where Z̃Azl
= QlR

−T
l Qg and H̄g = diag(1/ng

j)j∈Īg
. Conditions (63) and (64)

are sufficient conditions for the system (53) to be solvable.
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Proof. The following proof is a constructive proof that also emphasize the
solution method of (53) and the computation of the Newton direction.

The range-space method is applied to eliminate pg from (53), giving

(

Hl AT
zl

Azl −Sg

) (

pl

pη

)

=

(

bl

cη

)

, (65)

where cη = bη − AzgH
−1
g bg and Sg = AzgH

−1
g AT

zg is the Schur complement.
Once (65) is solved, pg can be easily obtained from pη via

pg = H−1
g (bg − AT

zgpη). (66)

Let

K̃ =

(

Hl AT
zl

Azl −Sg

)

.

Lemma 4.2. Relationship (62) is equivalent to

inertia(K̃) = (ml, mzc, 0). (67)

Proof. The inertia relation, see for instance (Ref. 26), leads to

inertia(K̄) = inertia(Hg) + inertia(K̃),

and the conclusion holds since inertia(Hg) = (mg, 0, 0).

Let us turn to the solution of (65). It follows from (57) that

Sg = AzgH
−1
g AT

zg = AzgPP TH−1
g PP TAT

zg = ĀzgH̄
−1
g ĀT

zg.

Then, the inertia of Sg is given by

inertia(Sg) =

{

(m̄g, 0, mzc − m̄g), if mzc ≥ m̄g,
(mzc, 0, 0), otherwise.

(68)

The condition (68) implies that Sg is positive definite only if the number of
saturated salts becomes larger than the number of components subtracted by
the number of “active” gas species (m̄s ≥ mc − m̄g); otherwise, Sg is positive
semi-definite. Note that Hl is singular, due to the Gibbs-Duhem relation (7).
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For the solution of the system (65), the nullity of Sg has to be eliminated
first. Consider the QR factorization of Azg. Then it is easy to see that the
Schur complement Sg has the block structure

Sg = (Qg Q̃g)

(

RgH̄
−1
g RT

g 0
0 0

) (

QT
g

Q̃T
g

)

.

Lemma 4.3. By defining pη1 = QT
g pη and pη2 = Q̃T

g pη, the linear system
(65) is equivalent to solving

(

Hl + Sl AT
zlQ̃g

Q̃T
g Azl 0

) (

pl

pη2

)

=

(

cl

Q̃T
g cη

)

, (69)

where

cl = bl + AT
zlQgR

−T
g H̄gR

−1
g QT

g cη, (70)

Sl = AT
zlQgR

−T
g H̄gR

−1
g QT

g Azl. (71)

Proof. Let

V =

(

Iml
0

0 Q

)

.

Hence

V T K̃V =

(

Hl AT
zlQ

QT Azl −QT SgQ

)

=





Hl AT
zlQg AT

zlQ̃g

QT
g Azl −RgH̄

−1
g RT

g 0

Q̃T
g Azl 0 0



 .

(72)
The system (65) is multiplied by V T from the left on both sides and (72) is
used to write the resulting system as a 3×3 block system. With symmetrically
block rows and columns permutations, the resulting linear system is:





−RgH̄
−1
g RT

g QT
g Azl 0

AT
zlQg Hl AT

zlQ̃g

0 Q̃T
g Azl 0









pη1

pl

pη2



 =





QT
g cη

bl

Q̃T
g cη



 . (73)

Since −RgH̄
−1
g RT

g , the (1, 1) block, is nonsingular, the range-space method
is applied to eliminate pη1 from (73), giving (69) - (71).
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Note that, with the definitions in Lemma 4.3, pη is obtained from

pη = (Qg Q̃g)

(

pη1

pη2

)

= Qgpη1 + Q̃gpη2 . (74)

Once (69) is solved, the direction pη1 can easily be obtained from pl via

pη1 = −R−T
g H̄gR

−1
g QT

g (cη − Azlpl). (75)

Then let us define the matrix K̈ of the linear system (69) by

K̈ =

(

Hl + Sl AT
zlQ̃g

Q̃T
g Azl 0

)

. (76)

A stability analysis for the solvability of the system (69) is performed in the
next lemma.

Lemma 4.4. The condition (67) is equivalent to the condition

ZT
l (Hl + Sl)Zl > 0, (77)

where Zl ∈ R
ml×(ml−mzc+m̄g) is a null-space matrix of Q̃T

g Azl. Under condition
(62) or (77), the linear system (69) is solvable.

Proof. Relationship (32) leads to

inertia(K̃) = inertia(−RgH̄
−1
g RT

g ) + inertia(K̈).

Since RgH̄
−1
g RT

g > 0, relationship (67) implies that

inertia(K̈) = (ml, mzc − m̄g, 0). (78)

The Schur complement Sl in (76) is positive semidefinite. Since Q̃T
g Azl ∈

R
(mzc−m̄g)×ml in (76) is of full rank mzc − m̄g by (32), we have

inertia(K̈) = inertia(ZT
l (Hl + Sl)Zl) + (mzc − m̄g, mzc − m̄g, 0),

Relationship (78) implies that

inertia(ZT
l (Hl + Sl)Zl) = (ml − mzc + m̄g, 0, 0)

which is equivalent to (77) and the desired conclusion follows

24



A particular matrix Zl is now considered. To construct Zl, let us consider
the QR factorization of AT

zl. Then, we have

Azl = RT
l QT

l , A−1
zl = QlR

−T
l ,

where A−1
zl is the right pseudoinverse of Azl, i.e. AzlA

−1
zl = Imzc

. The matrix
Zl is defined as the following null-space matrix of Q̃T

g Azl:

Zl = (ZAzl
, Z̃Azl

),

where

ZAzl
= Q̃l, Z̃Azl

= A−1
zl Qg = QlR

−T
l Qg.

Note that

ZT
l Zl =

(

Q̃T
l

QT
g R−1

l QT
l

)

(Q̃l QlR
−T
l Qg) =

(

Iml−mzc
0

0 QT
g R−1

l R−T
l Qg

)

.

From the condition (77), we have

0 < ZT
Azl

(Hl + Sl)ZAzl
= ZT

Azl
HlZAzl

+ ZT
Azl

SlZAzl
,

0 < Z̃T
Azl

(Hl + Sl)Z̃Azl
= Z̃T

Azl
HlZ̃Azl

+ Z̃T
Azl

SlZ̃Azl
.

Taking into account of the definition of Sl in (71), we have

ZT
Azl

SlZAzl
= ZT

Azl
AT

zlQgR
−T
g H̄gR

−1
g QT

g AzlZAzl
= 0,

Z̃T
Azl

SlZ̃Azl
= QT

g A−T
zl AT

zlQgR
−T
g H̄gR

−1
g QT

g AzlA
−1
zl Qg

= R−T
g H̄gR

−1
g > 0.

Thus, (77) is equivalent to require that the conditions (63) and (64) hold and
the conclusion of the theorem holds.

Remark 4.2. Note that the condition (63), i.e., ZT
Azl

HlZAzl
> 0, implies

that

inertia

(

Hl AT
zl

Azl 0

)

= (ml, mzc, 0).

That is, if m̄g = 0, the condition (63) alone implies that K has the desire
inertia (33). For m̄g > 0, the additional condition (64) is required.
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From the solvability condition (77) that is derived from the above anal-
ysis on the phase stability, the system (69) is then solved by the null-space
method. To ensure that the primal-dual algorithm converges to a minimum
or stable equilibrium rather than any other first order optimality point such
as a maximum or a saddle point, the condition (31) is enforced by controlling
Hl at each iteration, i.e. by replacing Hl by a modification H̃l if ZT

l (Hl+Sl)Zl

is not sufficiently positive definite so that ZT
l (H̃l + Sl)Zl is sufficiently posi-

tive definite. Various methods for modifying Hl may be found in (Ref. 29)
for instance. Note that

ZT
l (H̃l + Sl)Zl = ZT

l H̃lZl +

(

0 0
0 R−T

g H̄gR
−1
g

)

.

The system (69) or, more precisely, the system

(

H̃l + Sl AT
zlQ̃g

Q̃T
g Azl 0

) (

pl

pη2

)

=

(

cl

Q̃T
g cη

)

(79)

has the solution given by:

pl = Zl(Z
T
l (H̃l + Sl)Zl)

−1ZT
l

(

cl − (H̃l + Sl)p
∗
l

)

+ p∗l , (80)

pη2 =
(

AT
zlQ̃g

)−1 (

cl − (H̃l + Sl)pl

)

, (81)

where
(

AT
zlQ̃g

)−1

is the left pseudoinverse of AT
zlQ̃g, given by

(

AT
zlQ̃g

)−1

= Q̃T
g (A−1

zl )T ,

and p∗l is a particular solution of the second equation of (79), given by

p∗l = A−1
zl cη.

In summary, for the solution of (53), the combination of Schur comple-
ments and null-space methods permits to solve successively (79) to obtain pl

and pη2
. Then pη1 is obtained from (75), giving pη with (74) and pλ = ZĀλ

pη.
Finally pg is obtained with (66) to increment all the variables (nl, ng, λ) for
next iteration.
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5 Numerical Results

The primal-dual active set algorithm has been implemented into UHAERO,
a general thermodynamic model that can predict efficiently and accurately
the phase transition and multistage growth phenomena of inorganic aerosols
under a wide range of atmospheric conditions. Physical parameters as tem-
perature, relative humidity and pressure are input parameters, as well as
the feed vector b̄ and stoichiometry matrix A = [Al, Ag, As]. The Gibbs free
energy and the activity coefficients are computed with the Extended UNI-

QUAC model, see for instance (Ref. 30). Two numerical examples in the
multi-stage growth of atmospheric aerosols are considered here to illustrate
the efficiency of the algorithm.

5.1 Sulfate Aerosols

A sulfate aerosol (NH4)2SO4-H2SO4-H2O is assumed to be diluted in the air.
Three solid phases (A:(NH4)2SO4, B:(NH4)3H(SO4)2 and C:NH4HSO4) may
possibly appear at equilibrium. The chemical reactions which may appear
between the chemical components of the system are given in Table 2.

The vapor-liquid equilibrium reaction expresses the changes between wa-
ter (l/aq = liquid/aqueous phase) and water vapor (g=gas phase), in which
the relative humidity is a given constant; the speciation equilibria describe
the interactions in the aqueous phase, while the solid-liquid equilibria are
the reactions giving birth to a solid phase. In Figure 1, the reconstructed
sulfate aerosol phase diagram is illustrated. For each weight ratio of the feed
vector b̄, the method allows to predict the existence or non-existence of each
solid phase and the weight amount of water in the aerosol particle due to
the instantaneous vapor-liquid equilibrium. The level lines of the relative
humidity show easily that, for high relative humidity, no solid salts appear
at equilibrium. In Figure 2, the evolution of the aerosol particle with the
feed vector b̄ corresponding to three solids A, B and C in Figure 1, respec-
tively, are illustrated in function of the relative humidity RH. For each feed
ratios of the aerosol particle, the figure shows that the phase changes are
very accurately tracked by discontinuities in the trajectory. Figure 3 shows
the typical Newton iteration in UHAERO.

27



Table 2. Chemical equilibrium reactions in the sulfate aerosol. The first class
denotes the vapor-liquid equilibrium; the second class describes the reactions
in the aqueous phase, without phase changes; finally the third class is the
reactions with phase changes which may lead to the creation of a solid.

• Vapor-Liquid Equilibrium:

H2O(l) � H2O(g)

NH3(l) � NH3(g)

H2SO4(l) � H2SO4(g)

• Speciation Equilibria:

H2SO4(l) � H+(aq) + HSO−
4 (aq)

HSO−
4 (aq) � H+(aq) + SO2−

4 (aq)

NH3(l) + H2O(l) � NH+
4 (aq) + OH−(aq)

H2O(l) � H+(aq) + OH−(aq)

• Solid-Liquid Equilibria:

(NH4)2SO4(s) � 2NH+
4 (aq) + SO2−

4 (aq)

(NH4)3H(SO4)2(s) � 3NH+
4 (aq) + HSO−

4 (aq) + SO2−
4 (aq)

NH4HSO4(s) � NH+
4 (aq) + HSO−

4 (aq)

5.2 Urban and Remote Continental Aerosols

The second example is two types of aerosols: urban and remote continen-
tal (Ref. 11), consisting of sulfate, nitrate and ammonium diluted in the air
(with the specific ratio of H2O-H2SO4-HNO3-NH3). Four solid phases (A,
B, C and D) may possibly appear at equilibrium. They consist of the solids
(NH4)2SO4, (NH4)3H(SO4)2, NH4HSO4 and NH4NO3. Again, the chemical
equilibrium reactions which are possible between the chemical components
of the system are given in Table 3.

In Figures 4 and 5, the mass ratios of inorganic components and water in
typical urban and remote continental aerosols are given as a function of the
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Figure 1. Modeling of a sulfate aerosol. Reconstruction of the phase diagram
at 25oC with tracking of the presence of each solid phases. For each region
of space the existing phases at equilibrium are represented.
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relative humidity. Figures 4 and 5 illustrate clearly that the phase transitions
are accurately tracked without any a priori knowledge of the existing phases.
In Figures 6 and 7, the evolution of solid contents is investigated. For high
relative humidity, no salts appear at the equilibrium. When the humidity
decreases, the mass of salts increases until reaching a constant value for low
relative humidity. The distribution of solid salts at low relative humidity is
totally dependant on the inorganic feed composition.
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Figure 2. Modeling of a sulfate aerosol. Evolution of the particle mass in
function of the relative humidity RH. The creation/disappearance of a solid
phase appears through a discontinuity in the derivatives of the trajectories.
(f is the feed mole ratio:

n(NH4)2SO4

n(NH4)2SO4
+nH2SO4

and W0 is the amount of inorganic

feed).
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6 Conclusions

The modeling of atmospheric inorganic aerosols has been proposed in the
framework of the canonical stoichiometry. The thermodynamic equilibrium
corresponds to the minimum of the Gibbs free energy for a system involving
a gas phase, an aqueous phase and solid salts. A numerical method for the
solution of this optimization problem has been investigated. It is based on
an active set/Newton method to take advantage of the constant chemical
potentials for the solid phases. Numerical results have been presented to
show the ability of our algorithm in the prediction of phase equilibria and its
good numerical properties, especially in terms of convergence rate.
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Figure 3. Modeling of a sulfate aerosol. Newton iteration at fixed RH = 0.85
in case of the inorganic feed B:(NH4)3H(SO4)2.
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Figure 6. Evolution of solid content of aerosol in Figure 4. W0 =
14.496µg/m3.
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Figure 7. Evolution of solid content of aerosol in Figure 5. W0 =
15.665µg/m3.
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