Chapter 5 Convex Optimization in Function Space

5.1 Foundations of Convex Analysis

Let \(V \) be a vector space over \(\mathbb{R} \) and \(\| \cdot \| : V \to \mathbb{R} \) be a norm on \(V \). We recall that \((V, \| \cdot \|)\) is called a Banach space, if it is complete, i.e., if any Cauchy sequence \(\{v_k\}_N \) of elements \(v_k \in V, k \in \mathbb{N} \), converges to an element \(v \in V \) (\(\|v_k - v\| \to 0 \) as \(k \to \infty \)).

Examples: Let \(\Omega \) be a domain in \(\mathbb{R}^d \), \(d \in \mathbb{N} \). Then, the space \(C(\Omega) \) of continuous functions on \(\Omega \) is a Banach space with the norm

\[
\|u\|_{C(\Omega)} := \sup_{x \in \Omega} |u(x)| .
\]

The spaces \(L^p(\Omega), 1 \leq p < \infty \), of (in the Lebesgue sense) \(p \)-integrable functions are Banach spaces with the norms

\[
\|u\|_{L^p(\Omega)} := \left(\int_{\Omega} |u(x)|^p \, dx \right)^{1/p} .
\]

The space \(L^\infty(\Omega) \) of essentially bounded functions on \(\Omega \) is a Banach space with the norm

\[
\|u\|_{L^\infty(\Omega)} := \text{ess} \sup_{x \in \Omega} |u(x)| .
\]

The (topologically and algebraically) dual space \(V^* \) is the space of all bounded linear functionals \(\mu : V \to \mathbb{R} \). Given \(\mu \in V^* \), for \(\mu(v) \) we often write \(\langle \mu, v \rangle \) with \(\langle \cdot, \cdot \rangle \) denoting the dual product between \(V^* \) and \(V \). We note that \(V^* \) is a Banach space equipped with the norm

\[
\|\mu\| := \sup_{v \in V \setminus \{0\}} \frac{|\langle \mu, v \rangle|}{\|v\|} .
\]

Examples: The dual of \(C(\Omega) \) is the space \(\mathcal{M}(\Omega) \) of Radon measures \(\mu \) with

\[
\langle \mu, v \rangle := \int_{\Omega} v \, d\mu , \quad v \in C(\Omega) .
\]

The dual of \(L^1(\Omega) \) is the space \(L^\infty(\Omega) \). The dual of \(L^p(\Omega), 1 < p < \infty \), is the space \(L^q(\Omega) \) with \(q \) being conjugate to \(p \), i.e., \(1/p + 1/q = 1 \).

The dual of \(L^\infty(\Omega) \) is the space of Borel measures.

A Banach space \(V \) is said to be reflexive, if \(V^{**} = V \).

In view of the examples before, the spaces \(L^p(\Omega), 1 < p < \infty \), are reflexive, but \(C(\Omega) \) and \(L^1(\Omega), L^\infty(\Omega) \) are not.
We denote by 2^V^* the power set of V^*, i.e., the set of all subsets of V^*.

Definition 5.1 (Weighted duality mapping)

Let $h : \mathbb{R}_+ \to \mathbb{R}_+$ be a continuous and non-decreasing function such that $h(0) = 0$ and $h(t) \to +\infty$ as $t \to +\infty$. Then, the mapping

$$J_h(u) := \{ u \in V^* \mid \langle u, u^* \rangle = \|u\|\|u^*\|, \|u^*\| = h(\|u\|) \}$$

is called the weighted (or gauged) duality mapping, and h is referred to as the weight (or gauge).

The weighted duality mapping is surjective, if and only if V is reflexive.

Example: For $V = L^p(\Omega), V^* = L^q(\Omega), 1 < p, q < +\infty, 1/p + 1/q = 1$, and $h(t) = t^{p-1}$, we have

$$J_h(u)(x) := \begin{cases} |u(x)|^{p-1}\text{sgn}(u(x)), & u(x) \neq 0 \\ 0, & u(x) = 0 \end{cases}.$$

Let V be a Banach space and $u_k \in V, k \in \mathbb{N}$, and $u \in V$.

The sequence $\{u_k\}_\mathbb{N}$ is said to converge strongly to u ($u_k \to u \ (k \to \infty)$ or $\text{s-lim } u_k = u$), if $\|u_k - u\| \to 0 \ (k \to \infty)$.

The sequence $\{u_k\}_\mathbb{N}$ is said to converge weakly to u ($u_k \to u \ (k \to \infty)$ or $\text{w-lim } u_k = u$), if $\langle \mu, u_k - u \rangle \to 0 \ (k \to \infty)$ for all $\mu \in V^*$.

Theorem 5.2 (Theorem of Eberlein/Shmulyan)

In a reflexive Banach space V a bounded sequence $\{u_k\}_\mathbb{N}, u_k \in V, k \in \mathbb{N}$, contains a weakly convergent subsequence, i.e., there exist a subsequence $\mathbb{N}' \subset \mathbb{N}$ and an element $u \in V$ such that $u_k \to u \ (k \in \mathbb{N}' \to \infty)$.

In the sequel, we assume V to be a reflexive Banach space.

Definition 5.3 (Convex set, convex hull)

Let $u, v \in V$. By $[u, v] \subset V$ we denote the line-segment with endpoints u and v according to

$$[u, v] := \{ \lambda u + (1 - \lambda)v \mid \lambda \in [0, 1] \}.$$

A set $A \subset V$ is called convex, if and only if for any $u, v \in A$ the segment $[u, v]$ is contained in A as well.

The convex hull $\text{co } A$ of a subset $A \subset V$ is the convex combination of all elements of A, i.e.,

$$\text{co } A := \{ \sum_{i=1}^{n} \lambda_i u_i \mid n \in \mathbb{N}, \sum_{i=1}^{n} \lambda_i = 1, \lambda_i \geq 0, u_i \in A, 1 \leq i \leq n \}.$$
The closure of the convex hull \overline{A} is said to be the closed convex hull.

Definition 5.4 (Affine hyperplane, supporting hyperplane, separation of sets)

Let $\mu \in V^*, \mu \neq 0$, and $\alpha \in \mathbb{R}$. The set of elements

$$H := \{ v \in V \mid \mu(v) = \alpha \}$$

is called an affine hyperplane. The convex sets

$$\{ v \in V \mid \mu(v) < \alpha \} , \ \{ v \in V \mid \mu(v) \leq \alpha \} , \ \{ v \in V \mid \mu(v) > \alpha \} , \ \{ v \in V \mid \mu(v) \geq \alpha \}$$

are called open resp. closed half-spaces bounded by H.

If $A \subset V$ and H is a closed, affine hyperplane containing at least one point $u \in A$ such that A is completely contained in one of the closed half-spaces determined by H, then H is called a supporting hyperplane of A and u is said to be a supporting point of A.

An affine hyperplane H is said to separate (strictly separate) two sets $A, B \subset V$, if each of the closed (open) half-spaces bounded by H contains one of them, i.e.,

$$\mu(u) \leq \alpha , \ u \in A , \ \mu(v) \geq \alpha , \ v \in B \ \text{resp.}$$

$$\mu(u) < \alpha , \ u \in A , \ \mu(v) > \alpha , \ v \in B .$$

Theorem 5.5 (Geometrical form of the Hahn-Banach theorem)

Let $A \subset V$ be an open, non-empty, convex set and M a non-empty affine subspace with $A \cap M = \emptyset$. Then, there exists a closed affine hyperplane H with $M \subset H$ and $A \cap H = \emptyset$.

Corollary 5.6 (Separation of convex sets)

(i) Let $A \subset V$ be an open, non-empty, convex set and $B \subset V$ a non-empty, convex set with $A \cap B = \emptyset$. Then, there exists a closed affine hyperplane H which separates A and B.

(ii) Let $A \subset V$ be a compact, non-empty convex set and $B \subset V$ a closed, non-empty, convex set with $A \cap B = \emptyset$. Then, there exists a closed affine hyperplane H which strictly separates A and B.

A consequence of Corollary 5.6 (i) is:

Corollary 5.7 (Boundary of convex sets)

Let $A \subset V$ be a convex set with non-empty interior. Then, any boundary point of A is a supporting point of A.

As a consequence of Corollary 5.6 (ii) we obtain:
Corollary 5.8 (Characterization of closed convex sets)
Any closed convex set $A \subset V$ is the intersection of the closed half-spaces which contain A.
In particular, every closed convex set is weakly closed.

The converse of Corollary 5.8 is known as Mazur’s lemma:

Lemma 5.9 (Mazur’s Lemma)
Let $\{u_k\}_N, u_k \in V, k \in \mathbb{N}$, and $u \in V$ such that w-lim $u_k = u$. Then, there is a sequence $\{v_k\}_N$ of convex combinations

$$v_k = \sum_{i=k}^{K} \lambda_i u_i, \quad \sum_{i=k}^{K} \lambda_i = 1, \quad \lambda_i \geq 0, \quad k \leq i \leq K,$$

such that s-lim $v_k = u$.

The combination of Corollary 5.8 and Lemma 5.9 gives:

Corollary 5.10 (Properties of convex sets)
A convex set $A \subset V$ is closed if and only if it is weakly closed.

Definition 5.11 (Convex function, strictly convex function, effective domain)
Let $A \subset V$ be a convex set and $f : A \to \mathbb{R} := [-\infty, +\infty]$. Then, f is said to be convex if for any $u, v \in A$ there holds

$$f(\lambda u + (1 - \lambda)v) \leq \lambda f(u) + (1 - \lambda)f(v), \quad \lambda \in [0, 1].$$

A function $f : A \to \mathbb{R}$ is called strictly convex if

$$f(\lambda u + (1 - \lambda)v) < \lambda f(u) + (1 - \lambda)f(v), \quad \lambda \in (0, 1).$$

A function $f : A \to \mathbb{R}$ is called proper convex if $f(u) > -\infty, u \in A$, and $f \not\equiv +\infty$.

If $f : A \to \mathbb{R}$ is convex, the convex set

$$\text{dom } f := \{u \in A \mid f(u) < +\infty\}$$

is called the effective domain of f.

Definition 5.12 (Indicator function)
If $A \subset V$, the indicator function χ_A of A is defined by means of

$$\chi_A(u) := \begin{cases} 0, & u \in V \\ +\infty, & u \notin V \end{cases}.$$

The indicator function of a convex set A is a convex function.
Definition 5.13 (Epigraph of a function)
Let \(f : V \to \mathbb{R} \) be a function. The set
\[
epi f := \{ (u, a) \in V \times \mathbb{R} \mid f(u) \leq a \}
\]
is called the epigraph of \(f \). The projection of \(\text{epi} f \) onto \(V \) is the effective domain \(\text{dom} f \).

Theorem 5.14 (Characterization of convex functions)
A function \(f : V \to \mathbb{R} \) is convex if and only if its epigraph is convex.

Proof: Let \(f \) be convex and assume \((u, a), (v, b) \in \text{epi} f\). Then, for all \(\lambda \in [0, 1]\)
\[
f(\lambda u + (1 - \lambda)v) \leq \lambda f(u) + (1 - \lambda)f(v) \leq \lambda a + (1 - \lambda)b ,
\]
and hence, \(\lambda(u, a) + (1 - \lambda)(v, b) \in \text{epi} f \).
Conversely, assume that \(\text{epi} f \) is convex. It suffices to verify the convexity of \(f \) on its effective domain. For that purpose, let \(u, v \in \text{dom} f \) such that \(a \geq f(u) \) and \(b \geq f(v) \). Since \(\lambda(u, a) + (1 - \lambda)(v, b) \in \text{epi} f \) for every \(\lambda \in [0, 1] \) it follows that
\[
f(\lambda u + (1 - \lambda)v) \leq \lambda a + (1 - \lambda)b .
\]
If both \(f(u) \) and \(f(v) \) are finite, we choose \(a = f(u) \) and \(b = f(v) \). If \(f(u) = -\infty \) or \(f(v) = -\infty \), it suffices to allow \(a \to -\infty \) resp. \(b \to -\infty \).

Definition 5.15 (Lower and upper semi-continuous functions)
A function \(f : V \to \mathbb{R} \) is called lower semi-continuous on \(V \) if there holds
\[
\{ u \in V \mid f(u) \leq a \} \text{ is closed for any } a \in \mathbb{R} ,
\]
\[
f(u) \leq \lim_{v \to u} \inf f(v) \text{ for any } u \in V .
\]
A function \(f : V \to \mathbb{R} \) is called weakly lower semi-continuous on \(V \) if there holds
\[
\{ u \in V \mid f(u) \leq a \} \text{ is weakly closed for any } a \in \mathbb{R} ,
\]
\[
f(u) \leq w - \lim_{v \to u} \inf f(v) \text{ for any } u \in V .
\]
A function \(f : V \to \mathbb{R} \) is called upper semi-continuous (weakly upper semi-continuous) on \(V \) if \(-f \) is lower semi-continuous (weakly lower semi-continuous) on \(V \).

Examples: (Lower/upper semi-continuous functions)
(i) Let \(V := \mathbb{R} \) and
\[
J(v) := \begin{cases} +1 & , v < 0 \\ -1 & , v \geq 0 \end{cases} .
\]
Then \(J \) is lower semi-continuous on \(\mathbb{R} \).

(ii) The weighted duality mapping \(J_h : V \to 2^{V^*} \) is upper semi-continuous from \(V \) endowed with the strong topology onto \(V^* \) equipped with the weak-star topology (even for \(V^* \) equipped with the bounded weak-star topology).

(iii) The indicator function \(\chi_A \) of a subset \(A \subset V \) is lower semi-continuous (upper semi-continuous) if and only if \(A \) is closed (open).

Theorem 5.16 (Characterization of lower semi-continuous functions)

A function \(f : V \to \mathbb{R} \) is lower semi-continuous if and only if its epi-graph \(\text{epi} \ f \) is closed.

Proof: Define \(\Phi : V \times \mathbb{R} \to \mathbb{R} \) by

\[
\Phi(u, a) := f(u) - a , \quad (u, a) \in V \times \mathbb{R} .
\]

Then, the lower semi-continuity of \(f \) and \(\Phi \) are equivalent.

For every \(r \in \mathbb{R} \), the section \(\Phi(V \times [-\infty, r)) \) is the set obtained from \(\text{epi} \ f \) by a simple translation. It is therefore closed, if and only if \(\text{epi} \ f \) is closed.

Corollary 5.17 (Lower semi-continuity of convex functions)

Every lower semi-continuous function \(f : V \to \mathbb{R} \) is weakly lower semi-continuous.

Proof: By Theorem 5.16, the epi-graph \(\text{epi} \ f \) is a closed convex set and hence, it is weakly closed by Corollary 5.10.

Definition 5.18 (Lower semi-continuous regularization)

Let \(f : V \to \mathbb{R} \). The largest lower semi-continuous minorant \(\bar{f} \) of \(f \) is said to be the lower semi-continuous regularization of \(f \).

Corollary 5.19 (Properties of the lower semi-continuous regularization)

If \(f : V \to \mathbb{R} \) and \(\bar{f} \) is its lower semi-continuous regularization, there holds

\[
\text{epi} \ \bar{f} = \overline{\text{epi} \ f} , \quad \bar{f}(u) = \liminf_{v \to u} f(v) .
\]

Definition 5.20 (Pointwise supremum of continuous affine functions)

Let \(\ell \in V^* \) and \(\alpha \in \mathbb{R} \). A function \(g : V \to \mathbb{R} \) of the form \(g(v) = \ell(v) + \alpha \) is called an affine continuous function. We denote by \(\Gamma(V) \)
the set of functions $f : V \to \mathbb{R}$ which are the pointwise supremum of a family of continuous affine functions and by $\Gamma_0(V)$ the subset $\Gamma_0(V) := \{ f \in \Gamma(V) | f \not\equiv -\infty, f \not\equiv +\infty \}$.

Theorem 5.21 (Characterization of function in $\Gamma(V)$)

For a function $f : V \to \mathbb{R}$ there holds $f \in \Gamma(V)$, if and only if f is a lower semi-continuous convex function, and if f attains the value $-\infty$, then $f \equiv -\infty$.

Proof: The necessity follows from the fact that the pointwise supremum of an empty family is $-\infty$. Therefore, if the family under consideration is non-empty, f can not take the value $-\infty$.

Conversely, assume that f is a lower semi-continuous convex function with $f \not\equiv -\infty$. If $f \equiv +\infty$, it obviously is the pointwise supremum of all continuous affine functions. Hence, we consider the case when $f \not\equiv +\infty$.

We show that for every $\bar{u} \in V$ and every $\bar{a} \in \mathbb{R}$ such that $\bar{u} < f(\bar{u})$ there exists a continuous affine function g with $\bar{u} \leq g(\bar{u}) \leq f(\bar{u})$.

Since $\text{epi} f$ is a closed convex set with $(\bar{u}, \bar{a}) \not\in \text{epi} f$, there exist $\ell \in V^*$ and $\alpha, \beta \in \mathbb{R}$ such that the closed affine hyperplane

$$
\mathcal{H} := \{ (u, a) \in V \times \mathbb{R} | \ell(u) + \alpha a = \beta \}
$$

separates (\bar{u}, \bar{a}) and $\text{epi} f$, i.e.,

\begin{align*}
(*) & \quad \ell(\bar{u}) + \alpha \bar{a} < \beta, \\
(**) & \quad \ell u + \alpha a > \beta, \quad (u, a) \in \text{epi} f.
\end{align*}

Case I: $f(\bar{u}) < +\infty$

In this case, we may choose $u = \bar{u}$ and $a = f(\bar{u})$. Then $(*)$ and $(**)$ imply

$$\alpha (f(\bar{u}) - \bar{a}) > 0,$$

whence $\alpha > 0$. Dividing $(*)$ and $(**)$ by α yields

$$\bar{a} < \frac{\beta}{\alpha} - \frac{1}{\alpha} \ell(\bar{u}) < f(\bar{u}).$$

Hence, the continuous affine function

$$g(\cdot) := \frac{\beta}{\alpha} - \frac{1}{\alpha} \ell(\cdot)$$

does the job.

Case II: $f(\bar{u}) = +\infty$

If $\alpha \neq 0$, we may argue as in Case I. If $\alpha = 0$, we set $g(\cdot) := \beta - \ell(\cdot)$.

In view of $(*)$ and $(**)$ we have

\begin{align*}
(\diamond) & \quad g(\bar{u}) > 0, \quad g(u) < 0, \quad u \in \text{dom} f.
\end{align*}
Therefore, there exist \(m \in V^\ast \) and \(\gamma \in \mathbb{R} \) such that for \(\tilde{g}(\cdot) := \gamma - m(\cdot) \) there holds
\[
\tilde{g}(u) < f(u) , \ u \in V .
\]
Due to (\(\diamond \)), for every \(\kappa > 0 \)
\[
\bar{g}_\kappa(u) := \tilde{g}(u) + \kappa \left(\beta - \ell(u) \right) < f(u) , \ u \in V .
\]
Finally, we choose \(\kappa > 0 \) so large that
\[
\bar{g}_\kappa(\bar{u}) > \bar{a} ,
\]
which shows that the corresponding \(\bar{g}_\kappa \) does the job. \(\square \)

Definition 5.22 (\(\Gamma \) regularization)
The largest minorant \(G \in \Gamma(V) \) of \(f : V \to \mathbb{R} \) in \(\Gamma(V) \) is called the \(\Gamma \) regularization of \(f \).

Theorem 5.23 (Properties of the \(\Gamma \) regularization)
Let \(G \in \Gamma(V) \) be the \(\Gamma \) regularization of \(f : V \to \mathbb{R} \). If there exists a continuous affine function \(\Phi : V \to \mathbb{R} \) such that \(\Phi(u) < f(u), u \in V \), there holds
\[
\text{epi } G = \overline{\text{co epi } f} .
\]

Example: Let \(A \subset V \) and \(\chi_A \) be its indicator function. Then, the \(\Gamma \) regularization of \(\chi_A \) is the indicator function of its closed convex envelope.

Corollary 5.24 (Lower semi-continuous and \(\Gamma \) regularization)
For \(f : V \to \overline{\mathbb{R}} \) let \(\bar{f} \) and \(G \) be its lower semi-continuous and \(\Gamma \) regularization, respectively. Then, there holds
\[
G(u) \leq \bar{f}(u) \leq f(u) , \ u \in V .
\]
If \(f \) is convex and admits a continuous affine minorant, then
\[
G = \bar{f} .
\]

Definition 5.25 (Polar functions)
If \(f : V \to \mathbb{R} \), then the function \(f^* : V^\ast \to \overline{\mathbb{R}} \) defined by
\[
f^*(u^*) := \sup_{u \in V} \left(\langle u^*, u \rangle - f(u) \right)
\]
is called the polar or conjugate function of \(f \).
Example: Let $A \subset V$ and let χ_A be the indicator function of A. Then, its polar χ^*_A is given by

$$
\chi^*_A(u^*) = \sup_{u \in V} \left(\langle u^*, u \rangle - \chi_A(u) \right) = \sup_{u \in A} \langle u^*, u \rangle .
$$

It is a lower semi-continuous convex function which is called the support function of A.

Definition 5.26 (Gateaux-differentiability, Gateaux derivative)

A function $f : V \to \overline{\mathbb{R}}$ is called Gateaux-differentiable in $u \in V$, if

$$
f'(u; v) = \lim_{\lambda \to 0_+} \frac{f(u + \lambda v) - f(u)}{\lambda}
$$
exists for all $v \in V$. $f'(u; v)$ is said to be the Gateaux-variation of f in $u \in V$ with respect to $v \in V$.

Moreover, if there exists $f'(u) \in V^*$ such that

$$
f'(u; v) = f'(u)(v) = \langle f'(u), v \rangle ,
$$

then $f'(u)$ is called the Gateaux-derivative of f in $u \in V$.

There are of course functions which are not Gateaux-differentiable. An easy example is given by

$$
f(x) := |x| ,
$$
which obviously is not differentiable in $x = 0$.

However, the concept of differentiability can be relaxed by admitting all tangents at the point of non-differentiability which support the epigraph of the function:

Definition 5.27 (Subdifferentiability, subgradient, subdifferential)

A function $f : V \to \overline{\mathbb{R}}$ is said to be subdifferentiable at $u \in V$, if f has a continuous affine minorant ℓ which is exact at u. Obviously, $f(u)$ must be finite, and ℓ has to be of the form

$$
\ell(v) = \langle u^*, v - u \rangle + f(u) = \langle u^*, v \rangle + f(u) - \langle u^*, u \rangle .
$$

The constant term is the greatest possible, whence

$$
f(u) - \langle u, u^* \rangle = -f^*(u^*) .
$$

The slope $u^* \in V^*$ of ℓ is said to be the subgradient of f at u, and the set of all subgradients at u will be denoted by $\partial f(u)$. We have the following characterization

$$
u^* \in \partial f(u) \text{ if and only if } f(u) \text{ is finite and } \langle u^*, v - u \rangle + f(u) \leq f(v) , v \in V .
$$
Example: For the function \(f(x) = |x|, x \in \mathbb{R} \), we have

\[
\partial f(x) = \begin{cases}
-1, & x < 0 \\
[-1, +1], & x = 0 \\
+1, & x > 1
\end{cases}
\]

We see in this example that at points where \(f \) only has one subgradient, it coincides with the Gateaux derivative. This property holds true in general:

Definition 5.28 (Subdifferential and Gateaux derivative)

Let \(f : V \to \mathbb{R} \) be a convex function. If \(f \) is Gateaux differentiable at \(u \in V \) with Gateaux derivative \(f'(u) \), then it is subdifferentiable at \(u \in V \) with \(\partial f(u) = \{f'(u)\} \).

On the other hand, if \(f \) is continuous and finite at \(u \in V \) and only has one subgradient, then \(f \) is Gateaux differentiable at \(u \) with \(\{f'(u)\} = \partial f(u) \).

We have seen that if \(f \) has a subgradient \(u^* \in \partial f(u), u \in V \), then (5.2) holds true. Conversely, if we assume (5.2), the continuous affine function \(\ell \) as given by (5.1) is everywhere less than \(f \) and is exact at \(u \). Hence, we have shown:

Theorem 5.29 (Characterization of subgradients)

Assume \(f : V \to \mathbb{R} \) and denote by \(f^* : V^* \to \mathbb{R} \) its polar. Then, there holds

\[
(5.4) \quad u^* \in \partial f(u) \iff f(u) + f^*(u^*) = \langle u^*, u \rangle.
\]

The previous result immediately leads us to the following characterization of the subdifferential: Hence, we have shown:

Theorem 5.30 (Characterization of subdifferentials)

If \(f : V \to \mathbb{R} \) is subdiffernetiable at \(u \in V \), then the subdifferential \(\partial f(u) \) is convex and weakly* closed in \(V^* \).

Proof: Due to the definition of the polar function there holds

\[
f^*(u^*) - \langle u^*, u \rangle \geq -f(u).
\]

Consequently, in view of (5.4) we have

\[
\partial f(u) = \{u^* \in V^* \mid f^*(u^*) - \langle u^*, u \rangle \leq -f(u)\}.
\]

Now, let \(\{u^*_n\}_N \) be sequence of elements \(u^*_n \in \partial f(u), n \in \mathbb{N} \), such that \(u^*_n \rightharpoonup u^* \) as \(n \to \infty \). Then, \(\langle u^*_n, u \rangle \to \langle u^*, u \rangle \) and \(f^*(u^*_n) \to f^*(u^*) \) as \(n \to \infty \), since \(f^* \in \Gamma(V^*) \). Consequently, \(u^* \in \partial f(u) \). \(\square \)
Theorem 5.31 (Subdifferential calculus)

(i) Let $f : V \to \overline{\mathbb{R}}$ and $\lambda > 0$. Then, there holds

$$\partial(\lambda f)(u) = \lambda \partial f(u), \ u \in V.$$

(ii) Let $f_i : V \to \overline{\mathbb{R}}, 1 \leq i \leq 2$. Then, there holds

$$\partial(f_1 + f_2)(u) \supset \partial f_1(u) + \partial f_2(u), \ u \in V.$$

(iii) Let $f_i \in \Gamma(V) \to \overline{\mathbb{R}}, 1 \leq i \leq 2$. If there exists $\tilde{u} \in \text{dom } f_1 \cap \text{dom } f_2$ where f_1 is continuous, then holds

$$\partial(f_1 + f_2)(u) = \partial f_1(u) + \partial f_2(u), \ u \in V.$$

(iv) Let Y be another Banach space with dual Y^* and $A : V \to Y$ be a continuous linear mapping with adjoint $A^* : Y^* \to V^*$ and $f \in \Gamma(Y)$. Assume that there exists $A\tilde{u} \in Y$ where f is continuous and finite. Then, there holds

$$\partial(f \circ A)(u) = A^* \partial f(u), \ u \in V.$$

The notion of subdifferentiability allows us to consider optimization problems for subdifferentiable functions:

$$\inf_{v \in V} f(v).$$

Obviously, a necessary optimality condition for $u \in V$ to be a minimizer of f is

$$0 \in \partial f(u).$$

Another important example is that of a constrained optimization problem for a Gateaux differentiable function f:

$$\inf_{v \in K} f(v),$$

where $K \subset V$ is supposed to be a closed convex set. Then, we can restate the constrained as an unconstrained problem by means of the indicator function I_K of K:

$$\inf_{v \in V} \left(f(v) + I_K(v) \right)$$

and get the necessary optimality condition

$$0 \in f'(u) + \partial I_K(u).$$

The subdifferential $\partial f(\cdot)$ is a particular example of a multivalued mapping from V into 2^{V^*}. Earlier, we have come across the weighted duality mapping J_h (with weight h) as a further example. Actually, the duality mapping also represents a subdifferential:
Lemma 5.32 (Duality mapping as subdifferential)
Let $J_h : V \to 2^{V^*}$ be the duality mapping with weight h. Define $H(t) := \int_0^t h(s)ds$. and $j_h = H \circ \| \cdot \|$. Then, $J_h = \partial j_h$.

Proof: The result follows from Theorem 5.31 (iv).

Definition 5.33 (Generalized Moreau-Yosida approximation)
Let $M : V \to 2^{V^*}$ be a multivalued mapping. Then, its generalized Moreau-Yosida approximation $M_\lambda, \lambda > 0$, is given by

$$(5.9) \quad M_\lambda := \left(M^{-1} + \lambda J_h^{-1} \right)^{-1}.$$

M is said to be regularizable, if for any $\lambda > 0$ the multivalued map $M^{-1} + \lambda J_h^{-1}$ is surjective, i.e.,

$$(M^{-1} + \lambda J_h^{-1})(V^*) = V.$$

In this case, dom $M_\lambda = V$.

The generalized Moreau-Yosida approximation can be computed by means of the Moreau-Yosida resolvent:

Definition 5.34 (Moreau-Yosida resolvent)
Let $M : V \to 2^{V^*}$ be a multivalued mapping and $\lambda > 0$. The Moreau-Yosida resolvent (Moreau-Yosida proximal map) $P_M^\lambda : V \to V$ is given by

$$(5.10) \quad P_M^\lambda(w) = \{ v \in V \mid 0 \in J_h(\frac{v - w}{\lambda}) + M(v) \}, \ w \in V.$$

Example: If $K \subset V$ is a closed convex set and I_K its indicator function, then $P_M^\lambda(I_K)(w), w \in V,$ is the metric projection of w onto K.

For a lower semi-continuous proper convex function f with subdifferential ∂f, we have the following characterization of the Moreau-Yosida resolvent:

Theorem 5.35 (Moreau-Yosida resolvent of a subdifferentiable function)
Let $f : V \to \overline{\mathbb{R}}$ be a lower semi-continuous proper convex function with subdifferential ∂f. Then, for $w \in V$, the Moreau-Yosida resolvent $P_M^\lambda(w)$ is the set of minimizers of

$$\inf_{v \in V} f(v) + \lambda j_h(\frac{v - w}{\lambda}).$$

Proof: The function $j_{w,\lambda} : V \to \overline{\mathbb{R}}$ as given by

$$j_{w,\lambda}(v) := \lambda j_h(\frac{v - w}{\lambda}), \ v \in V,$$
is finite, convex and continuous. Then, Theorem 5.31 implies
\[0 \in \partial(f + j_{w,\lambda})(v) = \partial f(v) + \partial j_{w,\lambda}(v) = \partial f(v) + J_h\left(\frac{v - w}{\lambda}\right). \]

\[\square \]

Theorem 5.36 (Moreau-Yosida approximation and Moreau-Yosida resolvent, Part I)

For any \(\lambda > 0 \) there holds
\[(5.11) \quad \text{dom } M_{\lambda} = \text{dom } P^M_{\lambda}, \]
and for any \(w \in V \) we have
\[(5.12) \quad M_{\lambda}(w) = \bigcup_{v \in P^M_{\lambda}(w)} \left(J_h\left(\frac{w - v}{\lambda}\right) \cap M(v) \right). \]

Note that \(J_h(-v) = -J_h(v), v \in V. \)

Proof: For \(w \in \text{dom } P^M_{\lambda} \) and \(v \in P^M_{\lambda}(w) \) there exists
\[v^* \in J_h\left(\frac{w - v}{\lambda}\right) \cap M(v), \]
and hence,
\[v \in M^{-1}(v^*) \quad , \quad \lambda^{-1}(w - v) \in J^{-1}_h(v^*). \]

It follows that
\[w \in \left(M^{-1} + \lambda J^{-1}_h \right)(v^*) \iff v^* \in \left(M^{-1} + \lambda J^{-1}_h \right)^{-1}(w), \]
which proves \(v^* \in M_{\lambda}(w). \)

On the other hand, if \(v^* \in M_{\lambda}(w) \), there exist \(v \in M^{-1}(v^*) \) and \(z \in J^{-1}_h(v^*) \) such that \(w = v + \lambda z \). We deduce
\[v^* \in J_h\left(\lambda^{-1}(w - v)\right) \cap M(v), \]
whence \(v \in P^M_{\lambda}(w). \)

\[\square \]

Corollary 5.37 (Moreau-Yosida approximation and Moreau-Yosida resolvent, Part II)

If \(J_h \) is single-valued, then for \(\lambda > 0 \) and \(w \in V \) there holds
\[(5.13) \quad M_{\lambda}(w) = J_h\left(\lambda^{-1}w - \lambda^{-1}P^M_{\lambda}(w)\right). \]

Proof: Since \(M_{\lambda}(w) \subset J_h\left(\lambda^{-1}w - \lambda^{-1}P^M_{\lambda}(w)\right) \) follows from the previous result, we only have to show \(M_{\lambda}(w) \supset J_h\left(\lambda^{-1}w - \lambda^{-1}P^M_{\lambda}(w)\right) \).
For that purpose, let \(w \in \text{dom } P^M_{\lambda} \) and \(v \in P^M_{\lambda}(w) \) such that
\[v^* \in J_h\left(\lambda^{-1}w - \lambda^{-1}v\right). \]
Let $z^* \in J_h(\lambda^{-1}(w - v)) \cap M(v)$. Since $J_h(\lambda^{-1}(w - v))$ consists of a single element, we must have $v^* = z^*$, whence

\[v^* \in J_h(\lambda^{-1}(w - v)) \cap M(v) \subset M_\lambda(w). \]

\[\square \]

Example: We recall the example $f(x) = |x|, x \in \mathbb{R}$, where

\[
\partial f(x) = \begin{cases}
-1, & x < 0 \\
[-1, +1], & x = 0 \\
+1, & x > 1
\end{cases}
\]

Corollary 5.37 allows to compute the Moreau-Yosida approximation $(\partial f)_\lambda$. In case of the duality mapping J_h with weight $h(t) = t^{p-1}, 1 < p < +\infty$, we obtain

\[
(\partial f)_\lambda(w) = \begin{cases} -1, & w < -\lambda \\
\left\{ \frac{|w|^p - 2 \frac{w}{\lambda}}{\lambda} \right\}, & w \in [-\lambda, +\lambda] \\
+1, & w > \lambda
\end{cases}
\]

5.2 Convex Optimization Problems

We assume that $(\mathcal{V}, \|\cdot\|)$ is a reflexive Banach space.

Definition 5.38 (Coercive functionals)

A functional $J : \mathcal{V} \to \mathbb{R}$ is said to be coercive, if

\[J(v) \to +\infty \quad \text{for} \quad \|v\|_\mathcal{V} \to +\infty. \]

Theorem 5.39 Solvability of unconstrained minimization problems

Suppose that $J : \mathcal{V} \to (-\infty, +\infty], J \neq +\infty$, is a weakly semi-continuous, coercive functional. Then, the unconstrained minimization problem

\[(5.14) \quad J(u) = \inf_{v \in \mathcal{V}} J(v) \]

admits a solution $u \in \mathcal{V}$.

Proof: Let $c := \inf_{v \in \mathcal{V}} J(v)$ and assume that $\{v_n\}_{n \in \mathbb{N}}$ is a minimizing sequence, i.e., $J(v_n) \to c$ ($n \to \infty$).

Since $c < +\infty$ and in view of the coercivity of J, the sequence $\{v_n\}_{n \in \mathbb{N}}$ is bounded. Consequently, in view of Theorem 5.1 there exist a subsequence $\mathbb{N}' \subset \mathbb{N}$ and $u \in \mathcal{V}$ such that $v_n \rightharpoonup u$ ($n \in \mathbb{N}'$). The weak
lower semi-continuity of J implies

$$J(u) \leq \inf_{n \in \mathbb{N}} J(v_n) = c,$$

whence $J(u) = c$.

Theorem 5.40 (Existence and uniqueness)

Suppose that $J : V \to \overline{\mathbb{R}}$ is a proper convex, lower semi-continuous, coercive functional. Then, the unconstrained minimization problem (5.14) has a solution $u \in V$.

If J is strictly convex, then the solution is unique.

Proof: The existence follows from Theorem 5.39.

For the proof of the uniqueness let $u_1 \neq u_2$ be two different solutions. Then there holds

$$J\left(\frac{1}{2}(u_1 + u_2)\right) < \frac{1}{2} J(u_1) + \frac{1}{2} J(u_2) = \inf_{v \in V} J(v),$$

which is a contradiction.

We recall that in the finite dimensional case $V = \mathbb{R}^n$, a necessary optimality condition for (5.14) is that $\nabla J(u) = 0$, provided J is continuously differentiable. This can be easily generalized to the infinite dimensional case.

Theorem 5.41 (Necessary optimality condition)

Assume that $J : V \to \overline{\mathbb{R}}$ is Gateaux-differentiable in $u \in V$ with Gateaux-derivative $J'(u) \in V^*$. Then, the variational equation

$$(5.15) \quad \langle J'(u), v \rangle = 0, \quad v \in V$$

is a necessary condition for $u \in V$ to be a minimizer of J.

If J is convex, then this condition is also sufficient.

Proof: Let $u \in V$ be a minimizer of J. Then, there holds

$$J(u \pm \lambda v) \geq J(u), \quad \lambda > 0, \quad v \in V,$$

whence

$$\langle J'(u), \pm v \rangle \geq 0, \quad v \in V,$$

and thus

$$\langle J'(u), v \rangle = 0, \quad v \in V.$$

If J is convex and (5.2) holds true, then

$$J(u + \lambda(v - u)) = J(\lambda v + (1 - \lambda)u) \leq \lambda J(v) + (1 - \lambda)J(u),$$
and hence,

\[
0 = \langle J'(u), v - u \rangle = \lim_{\lambda \to 0^+} \frac{J(u + \lambda(v - u)) - J(u)}{\lambda} \leq J(v) - J(u).
\]