Power Series of Square Matrices

Before I dive into things, let me remind you of what’s known as Euler’s formula. For any
real number 6, Euler’s formula says
' = cos(6) + isin(h).
It’s derived as follows. Recall the Taylor series from calculus
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which has an infinite radius of convergence. Let = = 6 and rearrange the sum into even

and odd terms

(2
‘ . Z 2/<; 2k +1)!
n=0 k=0
Note, n = 2k are the even terms and n = 2k + 1 are the odd terms. Since 2 = —1
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Plug these into the sums above to get
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Finally, recognize the left sum is the Taylor series for cos(f) and the right sum is the

Taylor series for sin(f). There you go.

Let § — —6 in Euler’s formula and use cos(—0) = cos() and sin(—0) = —sin(f) to see
e " = cos(f) — isin(h).

Therefore » i ” i
% = cos(f) and BT = sin(0).
Every mathematics student should know Euler’s formula and the implied complex expo-

nential formulae given above for cos(f) and sin(f).

Now, suppose a given power series
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has positive radius of convergence R, i.e. it converges on the open disk {z : |z| < R} but
diverges (when R < oo) on {z : |z| > R}. 1/R can be obtained by the root test. For

example, from calculus, you should all remember
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each of which has an infinite radius of convergence.

Power series make a natural vehicle to define functions of square matrices, and they often

come up in applications. Notice that if we define
FA) =S foA" = fol + LA+ fA4% + -
n=0

for the given sequence of numbers f,, which define f(x), when A is an m X m matrix, so

is A", and therefore f(A) is an m x m matrix. Now consider
FAD) =3 fulAD™ = foI + fitA+ fo? A% 4 -
n=0

where ¢ is a scalar variable.

Without getting into convergence issues, let’s play around with f(At). I'm going to

differentiate the matrix power series term-by-term.
d oo
—f(At) = nt" LA™,
o (A1) 2 I

Notice the sum starts at n = 1 because the n = 0 term is constant. Rearrange to write

d

(At =4 > nfa(AD)"H = Af'(At)
n=1

where f’(x) is the derivative of f(z), i.e.
f(@) = fo+ fiz+ for® + fsz* + -+ = fl(x)=fi +2fex+3fz2" + .

For example, given f(z) =" = f'(z) = €”, and so we have

d i At
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i e
or given f(x)=sin(z) = f'(x) = cos(x)

% sin(At) = A cos(At).

What I'm really interested in showing you here is how to evaluate such power series in
closed (non infinite series) form. It’s quite easy when A is diagonalizable, and we’ll do
it immediately below. It’s also not too hard, but can be complicated, when A is not
diagonalizable. Perhaps you’ll see these somewhat exceptional cases treated when you

learn about the Jordan canonical form.

Now, suppose for a given m x m matrix A there is an invertible m x m matrix R such
that

R7YAR = A = diag(\1, ..., A\m).
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This is possible if and only if the columns of R are independent eigenvectors of A, and

the diagonal entries of A are the associated eigenvalues. Now
R'AR=A = A=RAR™",
and plug this in
flAt) =) fut" A" = f(AD) =) fut"(RART)".
n=0

n=0

But
(RAR"Y)" =RAR™'-..RAR™' = RA"R™ .

Therefore

f(At) =R (i fnt”A”) R '=Rf(At)R.
n=0

Since A is diagonal, f(At) is particularly easy to evaluate. In fact

f(AL) = diag(f(Aat), ..., f(Amd)),
where f(A;t) is the scalar valued power series function. (When A can not be diagonalized,

this step is slightly more complicated.)
Here're a couple of examples.

First a 2 x 2 example with complex eigenvalues. Compute that

0 1 . 1 . —1
= (00) o ammes (1) amie= (),

and from this
(1 =i (=t 0 _1_1 1 4
R_(l 1)’ A—( 0 i)’ R _2i<—1 z)

From our work above we find

. . —it .
At p At p—1 _ [t —? e 0 i 1 4

and multiply this out and use Euler’s formula to get

1 (z’eft +ieft  —e +e“) B < cos(t) sin(t))

2i \ e —et jemi 4 jeit —sin(t) cos(t)
d
That’s it. Pretty simple. Just for the fun of it, let’s confirm that EeAt = Aeft.

o (ot _costt))

AeAt 0 1 cos(t) sin(t) \ _ ( —sin(?) cos(t)
-1 0 —sin(t) cos(t) —cos(t) —sin(t) )’
which agrees with what was shown in the general case above.
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For the second example, consider

1 1 1 1
(1) s e (D) amae (1)

and from this get
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This time let’s calculate both sin(At) and cos(At).
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Again, let’s confirm the general result that p f(At) '(At) for this example when
d
— sin(At) =

f(z) = sin(x), f'(z) = cos(z).
; )
t
t

I [ 2cos(2t) 2cos(2t)

2 \ 2cos(2t) 2cos(2t)

(1 1\ 1 1 + cos(2 1
Acos(At) = (1 1) 2 (—1 +cos(2t)  1+cos(2t) ) 2
which is the expected result.
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Here are a few exercises. Many of these would make very good exam questions.

1. The following matrix A has the given eigenvalues and corresponding eigenvectors.

-1 6 3 2
(7Y am e () amne (2)

(a) Compute cos(At). (b) Compute sin(At).
(c) Confirm that %sin(At) = Acos(At).

2. Let A be the matrix given in exercise 1.

d
(a) Compute e“t. (b) Confirm that EeAt = At



3. The following matrix A has the given eigenvalues and corresponding eigenvectors.

A:<1 _1), )\:1—2',1':<1.>, A:1+z’,r:< 1.).
1 1 ) —1

d
(a) Compute e“t. (b) Confirm that EeAt = At

4. The following 3 x 3 matrix A has the given eigenvalues and corresponding eigenvectors.

3 —1 1 1 1 0
A= -2 4 21, A=2,r=|1], A=4,r=|0], A=6,r=|1
-1 15 0 1 1

d
(a) Compute et (b) Confirm that ae“‘t = At

5. Recall the Taylor series from calculus: log(l — z) = —> 7, 2™/n has interval of
convergence {x : |x| < 1}. Let A be the 2 X 2 matrix from exercise 1. For ¢ restricted to
|t| < 1/2 do the following.

(a) Compute log(I — At). (b) Confirm that %log(f —At) = —A(I - At)" L,

6. The matrix A has eigenvalues and corresponding eigenvectors.

-5 18 3 2
A= (3B ame= () amaee (3).

2
Determine a matrix, say /A, that satisfies (\/Z) =A.
Hint: Write A = RAR™! = RVAVAR™' = (RVAR™1)2.




