The Determinant of a Product and Transpose

Recall the Leibniz formula for the determinant. Given an $m \times m$ matrix A, we have

$$\det(A) \equiv \sum_{\mathbf{j} \in \mathbf{P}_m} \operatorname{sgn}(\mathbf{j}) \, a_{1,j_1} a_{2,j_2} \cdots a_{m,j_m},$$

where $\mathbf{j} = j_1, j_2, \dots, j_m$ represents one of the m! permutations of $1, 2, \dots, m$, P_m is the set of all such permutations, and $\operatorname{sgn}(\mathbf{j})$ equals +1 or -1 depending on whether the given permutation \mathbf{j} is even or odd.

Here, I'll first derive the well-known formula for the determinant of a matrix product. Given $m \times m$ matrices A and B, we'll show

$$\det(AB) = \det(A)\det(B).$$

To see this, recall how matrix multiplication is defined

$$(AB)_{i,j} = \sum_{k=1}^{m} a_{i,k} b_{k,j}.$$

Therefore

$$\det(AB) = \sum_{\mathbf{j} \in P_m} \operatorname{sgn}(\mathbf{j}) (AB)_{1,j_1} (AB)_{2,j_2} \cdots (AB)_{m,j_m}$$

$$= \sum_{\mathbf{j} \in P_m} \operatorname{sgn}(\mathbf{j}) \left(\sum_{k_1=1}^m a_{1,k_1} b_{k_1,j_1} \right) \left(\sum_{k_2=1}^m a_{2,k_2} b_{k_2,j_2} \right) \cdots \left(\sum_{k_m=1}^m a_{m,k_m} b_{k_m,j_m} \right).$$

Distribute this out to get

$$\det(AB) = \left(\sum_{k_1=1}^{m} \cdots \sum_{k_m=1}^{m}\right) \left(\sum_{\mathbf{j} \in P_m} \operatorname{sgn}(\mathbf{j}) a_{1,k_1} b_{k_1,j_1} a_{2,k_2} b_{k_2,j_2} \cdots a_{m,k_m} b_{k_m,j_m}\right)$$

$$= \left(\sum_{k_1=1}^{m} \cdots \sum_{k_m=1}^{m}\right) \left((a_{1,k_1} a_{2,k_2} \cdots a_{m,k_m}) \sum_{\mathbf{j} \in P_m} \operatorname{sgn}(\mathbf{j}) b_{k_1,j_1} b_{k_2,j_2} \cdots b_{k_m,j_m}\right).$$

Now, here's what makes things work. Notice that for any sequence $k_1, k_2 \dots, k_m \notin P_m$ we must have

$$\sum_{\mathbf{j}\in \mathbf{P}_m} \operatorname{sgn}(\mathbf{j}) b_{k_1,j_1} b_{k_2,j_2} \cdots b_{k_m,j_m} = 0.$$

This is true because in this case the sum above represents the determinant of a matrix that has at least two identical rows. Furthermore, when $k_1, k_2 \dots, k_m \equiv \mathbf{k} \in P_m$ we have

$$\sum_{\mathbf{j}\in \mathbf{P}_m}\operatorname{sgn}(\mathbf{j})\,b_{k_1,j_1}b_{k_2,j_2}\cdots b_{k_m,j_m} = \operatorname{sgn}(\mathbf{k})\sum_{\mathbf{j}\in \mathbf{P}_m}\operatorname{sgn}(\mathbf{j})\,b_{1,j_1}b_{2,j_2}\cdots b_{m,j_m}.$$

This is true because here the sum above represents the determinant of a matrix that's formed from B by interchanging rows either an odd number to times, $\operatorname{sgn}(\mathbf{k}) = -1$, or an even number of times, $\operatorname{sgn}(\mathbf{k}) = +1$. Taking these two facts into account, we've shown

$$\det(AB) = \sum_{\mathbf{k} \in P_m} \left((a_{1,k_1} a_{2,k_2} \cdots a_{m,k_m}) \operatorname{sgn}(\mathbf{k}) \sum_{\mathbf{j} \in P_m} \operatorname{sgn}(\mathbf{j}) b_{1,j_1} b_{2,j_2} \cdots b_{m,j_m} \right)$$

$$= \sum_{\mathbf{k} \in P_m} \operatorname{sgn}(\mathbf{k}) a_{1,k_1} a_{2,k_2} \cdots a_{m,k_m} \sum_{\mathbf{j} \in P_m} \operatorname{sgn}(\mathbf{j}) b_{1,j_1} b_{2,j_2} \cdots b_{m,j_m}$$

$$= \det(A) \det(B).$$

Now I'll derive the fact that

$$\det(A^T) = \det(A).$$

Recall how the transpose is defined

$$(A^T)_{i,j} = a_{j,i}.$$

Plug this into the Leibniz determinant formula to get

$$\det(A^T) = \sum_{\mathbf{j} \in P_m} \operatorname{sgn}(\mathbf{j}) (A^T)_{1,j_1} (A^T)_{2,j_2} \cdots (A^T)_{m,j_m} = \sum_{\mathbf{j} \in P_m} \operatorname{sgn}(\mathbf{j}) a_{j_1,1} a_{j_2,2} \cdots a_{j_m,m}.$$

For each product term within the sum on the right, rearrange the order of multiplication so that

$$a_{j_1,1}a_{j_2,2}\cdots a_{j_m,m}=a_{1,j_1'}a_{2,j_2'}\cdots a_{m,j_m'}.$$

For example (m=3)

$$\mathbf{j} = 3, 1, 2 \Rightarrow a_{3,1}a_{1,2}a_{2,3} = a_{1,2}a_{2,3}a_{3,1} \Rightarrow \mathbf{j}' = 2, 3, 1.$$

In other words, find $\mathbf{j}' = j'_1, j'_2, \dots, j'_m \in P_m$ such that for each $i = 1, 2, \dots, m$ we have $j_{j'_i} = i$. One can show that \mathbf{j}' can be obtained from \mathbf{j} by an even number of interchanges. Therefore, $\operatorname{sgn}(\mathbf{j}) = \operatorname{sgn}(\mathbf{j}')$, and so we conclude

$$\det(A^T) = \sum_{\mathbf{j} \in P_m} \operatorname{sgn}(\mathbf{j}) \, a_{j_1, 1} a_{j_2, 2} \cdots a_{j_m, m} = \sum_{\mathbf{j}' \in P_m} \operatorname{sgn}(\mathbf{j}') \, a_{1, j_1'} a_{2, j_2'} \cdots a_{m, j_m'} = \det(A).$$