
The Cofactor Expansion, Cramer’s Rule and Eigenvalues

The cofactor expansion, sometimes called the Laplace expansion named after Pierre-Simon

Laplace, is one way to view and compute the determinant. Here’s how it works. Let

A be an m × m matrix and from it define its i, j th minor matrix, say Mi,j , as the

(m− 1)× (m− 1) matrix formed by removing A ’s ith row and j th column. For example

A =





1 2 3
4 5 6
7 8 9



 ⇒ M1,2 =

(

4 6
7 9

)

, M2,3 =

(

1 2
7 8

)

.

Now, for any row, say i∗ , the cofactor expansion says

det(A) =

m
∑

j=1

ai∗,j (−1)i∗+j det(Mi∗,j).

FYI: The number ci,j ≡ (−1)i+j det(Mi,j) is called the i, j th cofactor of A .

Using the first row in the example above, we find

det





1 2 3
4 5 6
7 8 9





= 1 (−1)1+1 det

(

5 6
8 9

)

+ 2 (−1)1+2 det

(

4 6
7 9

)

+ 3 (−1)1+3 det

(

4 5
7 8

)

= +1 (45− 48)− 2 (36− 42) + 3 (32− 35) = 0.

Since det(A) = det(AT ) , we can also use a cofactor expansion along any column j∗

det(A) =
m
∑

i=1

ai,j∗ (−1)i+j∗ det(Mi,j∗).

Using the second column in the example above, we find

det





1 2 3
4 5 6
7 8 9





= 2 (−1)1+2 det

(

4 6
7 9

)

+ 5 (−1)2+2 det

(

1 3
7 9

)

+ 8 (−1)3+2 det

(

1 3
4 6

)

= −2 (36− 42) + 5 (9− 21)− 8 (6− 12) = 0.

When compared to Leibniz’s formula for the determinant, these cofactor expansions offer

an easy to remember formula you can use to compute det(A) when A is 4× 4 or larger.

To reduce your work, pick the row or column that has the greatest number of zeros in it.
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Here’s a 4× 4 example. Let

A =







1 1 0 2
0 1 1 2
1 1 2 3
2 1 0 1






,

and cofactor along the third column

det(A) = 0 (−1)1+3 det





0 1 2
1 1 3
2 1 1



+ 1 (−1)2+3 det





1 1 2
1 1 3
2 1 1





+ 2 (−1)3+3 det





1 1 2
0 1 2
2 1 1



+ 0 (−1)4+3 det





1 1 2
0 1 2
1 1 3



 .

There’s no need to compute the first and fourth 3×3 determinants on the right since they

are both multiplied by zero. So

det(A) = 1 (−1)2+3 det





1 1 2
1 1 3
2 1 1



+ 2 (−1)3+3 det





1 1 2
0 1 2
2 1 1





= −1 (1 + 6 + 2− 4− 3− 1) + 2 (1 + 4− 4− 2) = −3.

I’m now going to derive Laplace’s cofactor formulae, but I’ll need to first establish a

preliminary basic fact. Suppose an n× n matrix A takes the particular ”block” form

A =

(

(M ) ( a )
( 0 ) 1

)

,

where (M ) denotes an (n− 1)× (n− 1) block, ( a ) denotes a (n− 1)× 1 column block,

( 0 ) denotes a 1× (n−1) row block which contains all zeros and 1 denotes the scalar one.

Then

det(A) = det(M).

To see this is true, recall Leibniz’s definition of the determinant

det(A) =
∑

j∈Pn

sgn(j) (A1,j1 · · ·An,jn) ,

and observe for the rightmost term in the product above

An,jn =

{

0 if jn < n
1 if jn = n.

So it’s easy to see

det(A) =
∑

j∈{Pn
:jn=n}

sgn(j)
(

A1,j1 · · ·An−1,jn−1

)

.
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However, for j ∈ {Pn : jn = n} , check that Ai,ji = Mi,ji for every 1 ≤ i ≤ n− 1 and also

sgn(j) = sgn(j1, . . . , jn−1, n) = sgn(j1, . . . , jn−1) ≡ sgn(j′) where j′ ∈ Pn−1 . Therefore

det(A) =
∑

j′∈Pn−1

sgn(j′)
(

M1,j′1
· · ·Mn−1,j′

n−1

)

= det(M).

Next, I’ll use this basic fact together with certain properties of the determinant from your

previous homework to derive Laplace’s ”row” expansions. To this end, let A now denote

a general n× n matrix and i∗ any row index between 1 and n . Write A by rows, i.e.

A =

















( a1 )
...

( ai∗ )
...

( an )

















,

where ( ai ) ≡ ( ai,1 · · · ai,n ) denotes the ith row of A . As done earlier for R
n ’s

standard basis, observe here we can write

( ai∗ ) =
n
∑

k=1

ai∗,k ( ek ) ,

where ( ek ) ≡ ( 0 · · · 0 1 0 · · · 0 ); the 1 is in the k th column of ( ek ) . With this notation,

det(A) = det

















( a1 )
...

( ai∗ )
...

( an )

















= det

















( a1 )
...

∑m

k=1
ai∗,k ( ek )
...

( an )

















=

n
∑

k=1

ai∗,k det

















( a1 )
...

( ek )
...

( an )

















,

where the identity on the right follows because the determinant is multilinear by rows, see

the 5th bulleted item on your previous homework. Also recall exchanging rows or columns

changes the sign of the determinant, see the 3rd bulleted item, so you can use n− i∗ row

interchanges and n− k column interchanges to conclude

det

















( a1 )
...

( ek )
...

( an )

















= (−1)n−i∗(−1)n−k det

(

(Mi∗,k ) ( a )
( 0 ) 1

)

,

where (Mi∗,k ) is the i∗, k th minor matrix of A , and the column block ( a ) contains

elements of A ’s k th column. Finally, since (−1)n−i∗(−1)n−k = (−1)i∗+k , this together

with the sum displayed on the right side directly above and the preliminary basic fact

combine to yield the sought for cofactor expansion formula for arbitrary row index i∗ .
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The Swiss mathematician Gabriel Cramer was the first to publish the relation between the

solution of a square linear system and associated determinants. His observation has come

to be known as Cramer’s rule.

First let me state Cramer’s rule for finding an inverse matrix. Let C denote the cofactor

matrix for an m×m matrix A . Each element of C is given by

ci,j ≡ (−1)i+j det(Mi,j) for each 1 ≤ i ≤ m , 1 ≤ j ≤ m .

Then, if det(A) 6= 0, Cramer’s rule gives

A−1 =
1

det(A)
CT .

This formula should not in general be regarded as a practical tool for computing inverses

since working out cofactors can be very time consuming. It is handy when A is small

however. For example, consider the 2× 2 matrix A (assume det(A) 6= 0)

A =

(

a1,1 a1,2
a2,1 a2,2

)

⇒ C =

(

a2,2 −a2,1
−a1,2 a1,1

)

⇒ A−1 =
1

det(A)

(

a2,2 −a1,2
−a2,1 a1,1

)

.

Here, CT is found by flipping the diagonal entries of A and then changing the signs of

the off–diagonal terms. Many students will memorize this 2× 2 formula.

The derivation of Cramer’s inverse formula is really pretty easy. Recall how matrix mul-

tiplication and cofactors are defined

(ACT )i,j =

m
∑

k=1

ai,k c
T
k,j =

m
∑

k=1

ai,k cj,k =

m
∑

k=1

ai,k (−1)j+k det(Mj,k).

Now return to the ’row’ cofactor expansion formula for the determinant and notice
m
∑

k=1

ai,k (−1)j+k det(Mj,k) = det(A′),

where the matrix A′ is obtained from A by replacing its j th row by its ith row. Therefore,

since a matrix that has two identical rows has determinant zero, see that when i 6= j we

have det(A′) = 0. When i = j clearly det(A′) = det(A) . In other words

(ACT )i,j =
{

det(A) if i = j
0 otherwise

⇒ ACT = det(A) I,

and from this we easily see that Cramer’s inverse formula is valid.

An alternate formulation of Cramer’s rule gives the solution of Ax = b in terms of deter-

minants.

Ax = b ⇒ x = A−1 b =
1

det(A)
CT b ⇒ xi =

1

det(A)

m
∑

k=1

ck,i bk.
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Notice above that
∑m

k=1
ck,i bk =

∑m

k=1
bk (−1)k+i det(Mk,i) is the cofactor expansion for

the determinant of the matrix formed by replacing A ’s ith column with the column vector

b . That is

Ax = b ⇒ xi =
det(Bi)

det(A)
,

where the matrix Bi is the same as A except its ith column is replaced by vector b . For

example
(

1 2
3 4

)(

x1

x2

)

=

(

5
6

)

⇒ x1 =
1

4− 6
det

(

5 2
6 4

)

=
8

−2
= −4, x2 =

1

4− 6
det

(

1 5
3 6

)

=
−9

−2
= 9/2.

You might also want to consider memorizing this form of Cramer’s rule long term.

1. Use a cofactor expansion to evaluate the determinant of the following.

(a)





2 2 0
2 1 0
1 1 2



 (b)





2 0 1
2 1 0
1 1 2





2. Use a cofactor expansion to evaluate the determinant of the following.

(a)







2 1 0 0
1 2 0 0
0 0 3 1
0 0 1 3






(b)







1 1 0 0
1 1 1 0
0 1 3 1
0 0 0 3






(c)







1 1 2 2
1 0 1 1
2 1 3 1
2 0 1 3







3. Use Cramer’s rule to determine the inverse matrix for the following.

(a)





2 2 0
2 1 0
1 1 2



 (b)





2 0 1
2 1 0
1 1 2





4. Use Cramer’s rule to solve the following for the unknown x .

(a)

(

1 2
1 1

)(

x1

x2

)

=

(

3
4

)

(b)

(

3 1
2 1

)(

x1

x2

)

=

(

1
1

)

5. Use Cramer’s rule to solve the following for the unknown x .

(a)





2 2 0
2 1 0
1 1 2









x1

x2

x3



 =





1
0
1



 (b)





2 1 0
1 2 1
0 1 2









x1

x2

x3



 =





1
0
0





An eigenvalue λ for an m × m matrix A is a specific scalar value (i.e. a number) such

that

det(A− λI) = 0.
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For example

A =

(

0 1
1 0

)

⇒ det(A− λI) = det

(

−λ 1
1 −λ

)

= λ2 − 1 = 0 ⇒ λ = ±1.

Even for real matrices, its eigenvalues may be complex numbers. For example

A =

(

0 1
−1 0

)

⇒ det(A− λI) = det

(

−λ 1
−1 −λ

)

= λ2 + 1 = 0 ⇒ λ = ±i.

When A is m × m , refer back to the Leibniz formula for the determinant to see that

det(A − λ I) = pm(λ) where pm(λ) is a degree m polynomial in the variable λ . Let me

show you why. Define Aλ ≡ A− λ I and use Leibniz to write

det(Aλ) =
∑

j∈Pm

sgn(j) (Aλ)1,j1 · · · (Aλ)m,jm

= sgn(1, 2, . . . ,m)(Aλ)1,1 · · · (Aλ)m,m +
∑

j∈Pm
j6=(1,2,...,m)

sgn(j) (Aλ)1,j1 · · · (Aλ)m,jm

= (a1,1 − λ) · · · (am,m − λ) +
∑

j∈Pm
j6=(1,2,...,m)

sgn(j) (Aλ)1,j1 · · · (Aλ)m,jm .

For permutations j 6= (1, 2, . . . ,m) we can have ji = i at most m − 2 times. This says

the product in the right hand sum can contain no more than m− 2 diagonal terms of Aλ .

Therefore

det(Aλ) = (a1,1 − λ) · · · (am,m − λ) + qm−2(λ),

where qm−2(λ) is a polynomial which has degree no larger than m− 2. Furthermore, it’s

easy to see

(a1,1 − λ) · · · (am,m − λ) = (−1)m
(

λm − (a1,1 + · · ·+ am,m)λm−1 + · · ·
)

and so insert this into above to conclude

det(A− λ I) ≡ det(Aλ) = ±
(

λm − (a1,1 + · · ·+ am,m)λm−1
)

+ q̃m−2(λ),

where q̃m−2(λ) denotes some other polynomial with degree no larger than m− 2.

det(A− λ I) ≡ pm(λ) is called A ’s characteristic polynomial. To determine A ’s eigenval-

ues, we must therefore find all roots to its degree m characteristic polynomial.

When m = 2, you’ll need to know the quadratic formula. For example

A =

(

1 2
3 4

)

⇒ det(A− λI) = det

(

1− λ 2
3 4− λ

)

= λ2 − 5λ− 2 = 0

⇒ λ =
5±

√
33

2
.

When m ≥ 3, you’ll need to rely on me to give you a problem where you either ”luck–out”

and factor the characteristic polynomial directly or in the ”worst–case” guess some of the

characteristic roots in order to reduce to a quadratic by long division.
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Here’s a 3× 3 example. Suppose

A =





3 −1 1
−2 4 2
−1 1 5



 .

Cofactor A− λ I along, for example, the first row to get

det(A− λ I) = (3− λ)(−1)1+1 det

(

4− λ 2
1 5− λ

)

− 1(−1)1+2 det

(

−2 2
−1 5− λ

)

+ 1(−1)1+3 det

(

−2 4− λ
−1 1

)

= (3− λ)
(

(4− λ)(5− λ)− 2
)

+
(

− 2(5− λ) + 2
)

+
(

− 2 + (4− λ)
)

= (3− λ)
(

(4− λ)(5− λ)− 2
)

+
(

2λ− 8
)

+
(

2− λ
)

= (3− λ)(4− λ)(5− λ) + 3(λ− 4).

Yay! (λ− 4) factors out. So,

det(A− λ I) = −(λ− 4)
(

(λ− 3)(λ− 5)− 3
)

= −(λ− 4)
(

λ2 − 8λ+ 12
)

.

You can tell this is a homework problem because

det(A− λ I) = −(λ− 4)(λ− 2)(λ− 6) = 0 ⇒ λ = 2, 4, 6.

6. Determine all eigenvalues for each of the following matrices.

(a)

(

0 −1
2 3

)

(b)

(

0 2
−1 3

)

(c)

(

1 2
−1 4

)

(d)

(

−2 −2
6 5

)

My answers: (a) λ = 1, 2. (b) λ = 1, 2. (c) λ = 2, 3. (d) λ = 1, 2.

7. Determine all eigenvalues for each of the following matrices.

(a)

(

1 2
2 2

)

(b)

(

1 1
−1 1

)

(c)





0 −1 −1
2 3 0
0 0 3



 (d)





1 0 1
0 1 −2
2 2 4





My answers: (a) λ = (3±
√
17)/2. (b) λ = 1± i . (c) λ = 1, 2, 3. (d) λ = 1, 2, 3.
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