Eigenvalues and Eigenvectors

The eigenvalues of an \(m \times m \) square matrix \(A \) are the roots of its degree \(m \) characteristic polynomial, \(p(\lambda) \equiv \det(A - \lambda I) \). Eigenvalues may be real numbers but they can in general be complex numbers.

A few of these exercises are also on your previous homework.

1. Determine the characteristic polynomial and then compute the eigenvalues for the following matrices.

 \[
 \begin{matrix}
 (a) & \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} & (b) & \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} & (c) & \begin{pmatrix} -1 & 6 \\ -1 & 4 \end{pmatrix} & (d) & \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}
 \end{matrix}
 \]

 Answers: (a) \(\lambda_1 = -1, \lambda_2 = 3 \), (b) \(\lambda_1 = \lambda_2 = 1 \) (this eigenvalue has multiplicity 2), (c) \(\lambda_1 = 1, \lambda_2 = 2 \), (d) \(\lambda_1 = 1 - i, \lambda_2 = 1 + i \).

2. Do the same as in the previous exercise for the following.

 \[
 \begin{matrix}
 (a) & \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix} & (b) & \begin{pmatrix} 3 & -1 & 1 \\ -2 & 4 & 2 \\ -1 & 1 & 5 \end{pmatrix}
 \end{matrix}
 \]

 Answers: (a) \(\lambda_1 = -1, \lambda_2 = \lambda_3 = 3 \), (b) \(\lambda_1 = 2, \lambda_2 = 4, \lambda_3 = 6 \).

3. Do the same for these.

 \[
 \begin{matrix}
 (a) & \begin{pmatrix} 3 & 0 & -1 & 1 \\ 1 & 8 & 2 & 3 \\ -2 & 0 & 4 & 2 \\ -1 & 0 & 1 & 5 \end{pmatrix} & (b) & \begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{pmatrix}
 \end{matrix}
 \]

 Answers: (a) \(\lambda_1 = 2, \lambda_2 = 4, \lambda_3 = 6, \lambda_4 = 8 \), (b) \(\lambda_1 = \lambda_2 = -1, \lambda_3 = \lambda_4 = 3 \).

Each distinct eigenvalue, say \(\lambda_i \), has associated to it at least one eigenvector, say \(r_{\lambda_i} \). An eigenvector is a nonzero vector satisfying

\[
Ar_{\lambda_i} = \lambda_i r_{\lambda_i}.
\]

Once the eigenvalues are determined by factoring the characteristic polynomial, the eigenvectors associated to each distinct eigenvalue \(\lambda_i \) are determined by finding a basis for

\[
E_{\lambda_i} = \text{Null}(A - \lambda_i I).
\]

This eigenspace \(E_{\lambda_i} \) is always at least one dimensional. However, if \(\lambda_i \) has multiplicity greater than one it is possible for \(\dim E_{\lambda_i} > 1 \). In general, it can be shown that

\[
1 \leq \dim E_{\lambda_i} \leq m_{\lambda_i},
\]

where \(m_{\lambda_i} \) is the algebraic multiplicity of the characteristic root (eigenvalue) \(\lambda_i \).
Here’s an important result you should all know. Suppose a matrix A has distinct eigenvalues $\lambda_1, \ldots, \lambda_n$, i.e. $\lambda_i \neq \lambda_j$ for all $i \neq j$, and suppose r_1, \ldots, r_n denotes their associated eigenvectors, i.e. $Ar_i = \lambda_i r_i$ with $r_i \neq 0$ for all i. Because the eigenvalues are distinct, it follows that $\{r_1, \ldots, r_n\}$ is necessarily a linearly independent set. I’ll use induction to show this fact is true.

Clearly the set $\{r_1\}$ with one nonzero vector is linearly independent. For the purpose of induction, assume for arbitrary $1 \leq k < n$ the set $\{r_1, \ldots, r_k\}$ is independent. Now I need to show this assumption implies the set $\{r_1, \ldots, r_k, r_{k+1}\}$ is also independent. With this goal in mind, suppose there are scalars such that
\[
\alpha_1 r_1 + \cdots + \alpha_k r_k + \alpha_{k+1} r_{k+1} = 0.
\]
Multiply by λ_{k+1} and then apply the matrix A to the sum above to get
\[
\alpha_1 \lambda_{k+1} r_1 + \cdots + \alpha_k \lambda_{k+1} r_k + \alpha_{k+1} \lambda_{k+1} r_{k+1} = 0,
\]
\[
\alpha_1 \lambda_1 r_1 + \cdots + \alpha_k \lambda_k r_k + \alpha_{k+1} \lambda_{k+1} r_{k+1} = 0.
\]
Subtract the second from the first
\[
\alpha_1 (\lambda_{k+1} - \lambda_1) r_1 + \cdots + \alpha_k (\lambda_{k+1} - \lambda_k) r_k = 0.
\]
But the assumption that $\{r_1, \ldots, r_k\}$ is independent implies for each $1 \leq i \leq k$ we must have $\alpha_i (\lambda_{k+1} - \lambda_i) = 0$, and $\lambda_{k+1} - \lambda_i \neq 0$ implies $\alpha_i = 0$. The scalar α_{k+1} must also be zero because the eigenvector $r_{k+1} \neq 0$. Therefore we have shown $\{r_1, \ldots, r_k, r_{k+1}\}$ is an independent set. Induction now allows us to conclude this is true for any $1 \leq k < n$.

4. Determine all eigenvectors for the matrices given in exercise 1.

5. Determine all eigenvectors for the matrices given in exercise 2.

6. Determine all eigenvectors for the matrices given in exercise 3.

Answers for exercises 4–6.

Matrices from 1.

(a) $\lambda = -1$, $r = (1, -1)^T$, $\lambda = 3$, $r = (1, 1)^T$.

(b) $\lambda = 1$, $r = (1, 0)^T$.

(c) $\lambda = 1$, $r = (3, 1)^T$, $\lambda = 2$, $r = (2, 1)^T$.

(d) $\lambda = 1 - i$, $r = (1, i)^T$, $\lambda = 1 + i$, $r = (1, -i)^T$.

2
Matrices from 2.

(a) \(\lambda = -1, \ r = (1, -1, 0)^T, \ \lambda = 3, \ r = (1, 1, 0)^T. \)

(b) \(\lambda = 2, \ r = (1, 1, 0)^T, \ \lambda = 4, \ r = (1, 0, 1)^T, \ \lambda = 6, \ r = (0, 1, 1)^T. \)

Matrices from 3.

(a) \(\lambda = 2, \ r = (2, -1, 2, 0)^T, \ \lambda = 4, \ r = (1, -1, 0, 1)^T, \)
\(\lambda = 6, \ r = (0, -5, 2, 2)^T, \ \lambda = 8, \ r = (0, 1, 0, 0)^T. \)

(b) \(\lambda = -1, \ r = (1, -1, 0, 0)^T, \ (0, 0, 1, -1)^T, \ \lambda = 3, \ r = (1, 1, 0, 0)^T, \ (0, 0, 1, 1)^T. \)