Eigenvalues and Eigenvectors

The eigenvalues of an $m \times m$ square matrix A are the roots of its degree m characteristic polynomial, $p(\lambda) \equiv \det(A - \lambda I)$. Eigenvalues may be real numbers but they can in general be complex numbers.

A few of these exercises are also on your previous homework.

1. Determine the characteristic polynomial and then compute the eigenvalues for the following matrices.

(a)
$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} -1 & 6 \\ -1 & 4 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$

Answers: (a) $\lambda_1 = -1$, $\lambda_2 = 3$, (b) $\lambda_1 = \lambda_2 = 1$ (this eigenvalue has multiplicity 2), (c) $\lambda_1 = 1$, $\lambda_2 = 2$, (d) $\lambda_1 = 1 - i$, $\lambda_2 = 1 + i$.

2. Do the same as in the previous exercise for the following.

	/1	2	1		(3	-1	$1 \setminus$	
(a)	2	1	2	(b)	-2	4	2	
(a)	$\left(0 \right)$	0	3/	(b)	$\sqrt{-1}$	1	5/	
,					- /-			

Answers: (a) $\lambda_1 = -1$, $\lambda_2 = \lambda_3 = 3$, (b) $\lambda_1 = 2$, $\lambda_2 = 4$, $\lambda_3 = 6$.

3. Do the same for these.

(a)
$$\begin{pmatrix} 3 & 0 & -1 & 1 \\ 1 & 8 & 2 & 3 \\ -2 & 0 & 4 & 2 \\ -1 & 0 & 1 & 5 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{pmatrix}$
Answers: (a) $\lambda_1 = 2, \ \lambda_2 = 4, \ \lambda_3 = 6, \ \lambda_4 = 8, \ (b) \ \lambda_1 = \lambda_2 = -1, \ \lambda_3 = \lambda_4 = 3$

Each <u>distinct</u> eigenvalue, say λ_i , has associated to it at least one *eigenvector*, say \mathbf{r}_{λ_i} . An eigenvector is a <u>nonzero</u> vector satisfying

$$A\mathbf{r}_{\lambda_i} = \lambda_i \mathbf{r}_{\lambda_i}.$$

Once the eigenvalues are determined by factoring the characteristic polynomial, the eigenvectors associated to each distinct eigenvalue λ_i are determined by finding a basis for

$$\mathcal{E}_{\lambda_i} \equiv \operatorname{Null}(A - \lambda_i I).$$

This eigenspace \mathcal{E}_{λ_i} is always at least one dimensional. However, if λ_i has multiplicity greater than one it is possible for dim $\mathcal{E}_{\lambda_i} > 1$. In general, it can be shown that

$$1 \le \dim \mathcal{E}_{\lambda_i} \le m_{\lambda_i},$$

where m_{λ_i} is the algebraic multiplicity of the characteristic root (eigenvalue) λ_i .

Here's an important result you should all know. Suppose a matrix A has distinct eigenvalues $\lambda_1, \ldots, \lambda_n$, i.e. $\lambda_i \neq \lambda_j$ for all $i \neq j$, and suppose $\mathbf{r}_1, \ldots, \mathbf{r}_n$ denotes their associated eigenvectors, i.e. $A\mathbf{r}_i = \lambda_i \mathbf{r}_i$ with $\mathbf{r}_i \neq \mathbf{0}$ for all i. Because the eigenvalues are distinct, it follows that $\{\mathbf{r}_1, \ldots, \mathbf{r}_n\}$ is necessarily a linearly independent set. I'll use induction to show this fact is true.

Clearly the set $\{\mathbf{r}_1\}$ with one nonzero vector is linearly independent. For the purpose of induction, assume for arbitrary $1 \le k < n$ the set $\{\mathbf{r}_1, \ldots, \mathbf{r}_k\}$ is independent. Now I need to show this assumption implies the set $\{\mathbf{r}_1, \ldots, \mathbf{r}_k, \mathbf{r}_{k+1}\}$ is also independent. With this goal in mind, suppose there are scalars such that

$$\alpha_1 \mathbf{r}_1 + \dots + \alpha_k \mathbf{r}_k + \alpha_{k+1} \mathbf{r}_{k+1} = \mathbf{0}$$

Multiply by λ_{k+1} and then apply the matrix A to the sum above to get

$$\alpha_1 \lambda_{k+1} \mathbf{r}_1 + \dots + \alpha_k \lambda_{k+1} \mathbf{r}_k + \alpha_{k+1} \lambda_{k+1} \mathbf{r}_{k+1} = \mathbf{0},$$

$$\alpha_1 \lambda_1 \mathbf{r}_1 + \dots + \alpha_k \lambda_k \mathbf{r}_k + \alpha_{k+1} \lambda_{k+1} \mathbf{r}_{k+1} = \mathbf{0}.$$

Subtract the second from the first

$$\alpha_1 \left(\lambda_{k+1} - \lambda_1 \right) \mathbf{r}_1 + \dots + \alpha_k \left(\lambda_{k+1} - \lambda_k \right) \mathbf{r}_k = \mathbf{0}.$$

But the assumption that $\{\mathbf{r}_1, \ldots, \mathbf{r}_k\}$ is independent implies for each $1 \leq i \leq k$ we must have $\alpha_i (\lambda_{k+1} - \lambda_i) = 0$, and $\lambda_{k+1} - \lambda_i \neq 0$ implies $\alpha_i = 0$. The scalar α_{k+1} must also be zero because the eigenvector $\mathbf{r}_{k+1} \neq \mathbf{0}$. Therefore we have shown $\{\mathbf{r}_1, \ldots, \mathbf{r}_k, \mathbf{r}_{k+1}\}$ is an independent set. Induction now allows us to conclude this is true for any $1 \leq k < n$.

4. Determine all eigenvectors for the matrices given in exercise 1.

- 5. Determine all eigenvectors for the matrices given in exercise 2.
- 6. Determine all eigenvectors for the matrices given in exercise 3.

Answers for exercises 4–6.

Matrices from 1.

(a)
$$\lambda = -1$$
, $\mathbf{r} = (1, -1)^T$, $\lambda = 3$, $\mathbf{r} = (1, 1)^T$.
(b) $\lambda = 1$, $\mathbf{r} = (1, 0)^T$.
(c) $\lambda = 1$, $\mathbf{r} = (3, 1)^T$, $\lambda = 2$, $\mathbf{r} = (2, 1)^T$.
(d) $\lambda = 1 - i$, $\mathbf{r} = (1, i)^T$, $\lambda = 1 + i$, $\mathbf{r} = (1, -i)^T$.

Matrices from 2.

(a)
$$\lambda = -1$$
, $\mathbf{r} = (1, -1, 0)^T$, $\lambda = 3$, $\mathbf{r} = (1, 1, 0)^T$.
(b) $\lambda = 2$, $\mathbf{r} = (1, 1, 0)^T$, $\lambda = 4$, $\mathbf{r} = (1, 0, 1)^T$, $\lambda = 6$, $\mathbf{r} = (0, 1, 1)^T$.

Matrices from 3.

(a)
$$\lambda = 2$$
, $\mathbf{r} = (2, -1, 2, 0)^T$, $\lambda = 4$, $\mathbf{r} = (1, -1, 0, 1)^T$,
 $\lambda = 6$, $\mathbf{r} = (0, -5, 2, 2)^T$, $\lambda = 8$, $\mathbf{r} = (0, 1, 0, 0)^T$.
(b) $\lambda = -1$, $\mathbf{r} = (1, -1, 0, 0)^T$, $(0, 0, 1, -1)^T$, $\lambda = 3$, $\mathbf{r} = (1, 1, 0, 0)^T$, $(0, 0, 1, 1)^T$.