
Eigenvalues and Eigenvectors

The eigenvalues of an m×m square matrix A are the roots of its degree m characteristic

polynomial, p(λ) ≡ det(A−λI) . Eigenvalues may be real numbers but they can in general

be complex numbers.

A few of these exercises are also on your previous homework.

1. Determine the characteristic polynomial and then compute the eigenvalues for the fol-

lowing matrices.

(a)

(

1 2
2 1

)

(b)

(

1 1
0 1

)

(c)

(

−1 6
−1 4

)

(d)

(

1 −1
1 1

)

Answers: (a) λ1 = −1, λ2 = 3, (b) λ1 = λ2 = 1 (this eigenvalue has multiplicity 2),

(c) λ1 = 1, λ2 = 2, (d) λ1 = 1− i, λ2 = 1 + i .

2. Do the same as in the previous exercise for the following.

(a)





1 2 1
2 1 2
0 0 3



 (b)





3 −1 1
−2 4 2
−1 1 5





Answers: (a) λ1 = −1, λ2 = λ3 = 3, (b) λ1 = 2, λ2 = 4, λ3 = 6.

3. Do the same for these.

(a)







3 0 −1 1
1 8 2 3

−2 0 4 2
−1 0 1 5






(b)







1 2 0 0
2 1 0 0
0 0 1 2
0 0 2 1







Answers: (a) λ1 = 2, λ2 = 4, λ3 = 6, λ4 = 8, (b) λ1 = λ2 = −1, λ3 = λ4 = 3.

Each distinct eigenvalue, say λi , has associated to it at least one eigenvector, say rλi
. An

eigenvector is a nonzero vector satisfying

Arλi
= λirλi

.

Once the eigenvalues are determined by factoring the characteristic polynomial, the eigen-

vectors associated to each distinct eigenvalue λi are determined by finding a basis for

Eλi
≡ Null(A− λiI).

This eigenspace Eλi
is always at least one dimensional. However, if λi has multiplicity

greater than one it is possible for dim Eλi
> 1. In general, it can be shown that

1 ≤ dim Eλi
≤ mλi

,

where mλi
is the algebraic multiplicity of the characteristic root (eigenvalue) λi .
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Here’s an important result you should all know. Suppose a matrix A has distinct eigenval-

ues λ1, . . . , λn , i.e. λi 6= λj for all i 6= j , and suppose r1, . . . , rn denotes their associated

eigenvectors, i.e. Ari = λiri with ri 6= 0 for all i . Because the eigenvalues are distinct,

it follows that {r1, . . . , rn} is necessarily a linearly independent set. I’ll use induction to

show this fact is true.

Clearly the set {r1} with one nonzero vector is linearly independent. For the purpose of

induction, assume for arbitrary 1 ≤ k < n the set {r1, . . . , rk} is independent. Now I need

to show this assumption implies the set {r1, . . . , rk, rk+1} is also independent. With this

goal in mind, suppose there are scalars such that

α1r1 + · · ·+ αkrk + αk+1rk+1 = 0.

Multiply by λk+1 and then apply the matrix A to the sum above to get

α1λk+1r1 + · · ·+ αkλk+1rk + αk+1λk+1rk+1 = 0,

α1λ1r1 + · · ·+ αkλkrk + αk+1λk+1rk+1 = 0.

Subtract the second from the first

α1 (λk+1 − λ1) r1 + · · ·+ αk (λk+1 − λk) rk = 0.

But the assumption that {r1, . . . , rk} is independent implies for each 1 ≤ i ≤ k we must

have αi (λk+1 − λi) = 0, and λk+1 − λi 6= 0 implies αi = 0. The scalar αk+1 must also

be zero because the eigenvector rk+1 6= 0 . Therefore we have shown {r1, . . . , rk, rk+1} is

an independent set. Induction now allows us to conclude this is true for any 1 ≤ k < n .

4. Determine all eigenvectors for the matrices given in exercise 1.

5. Determine all eigenvectors for the matrices given in exercise 2.

6. Determine all eigenvectors for the matrices given in exercise 3.

Answers for exercises 4–6.

Matrices from 1.

(a) λ = −1, r = (1,−1)T , λ = 3, r = (1, 1)T .

(b) λ = 1, r = (1, 0)T .

(c) λ = 1, r = (3, 1)T , λ = 2, r = (2, 1)T .

(d) λ = 1− i, r = (1, i)T , λ = 1 + i, r = (1,−i)T .
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Matrices from 2.

(a) λ = −1, r = (1,−1, 0)T , λ = 3, r = (1, 1, 0)T .

(b) λ = 2, r = (1, 1, 0)T , λ = 4, r = (1, 0, 1)T , λ = 6, r = (0, 1, 1)T .

Matrices from 3.

(a) λ = 2, r = (2,−1, 2, 0)T , λ = 4, r = (1,−1, 0, 1)T ,

λ = 6, r = (0,−5, 2, 2)T , λ = 8, r = (0, 1, 0, 0)T .

(b) λ = −1, r = (1,−1, 0, 0)T , (0, 0, 1,−1)T , λ = 3, r = (1, 1, 0, 0)T , (0, 0, 1, 1)T .
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