The Inverse Matrix and An Introduction to the Determinant

Throughout this assignment, we consider linear operators £ : R"™ — R™ ie. L(x) = Ax
where A is a square m x m real matrix. Please note however that while not discussed
directly here, all definitions and facts given below routinely extend to problems in which

R™ is replaced by C™ and the square matrices associated to £ are complex valued.

The m x m identity matriz, denoted by I, is given by

1 0 0
I--:{l ifi=y . I= 0 1
e 0 otherwise. : 0
0o --- 0 1

Often, the entries of the identity matrix are denoted by I; ; = d; ; where 9; ; is called the
Kronecker delta. You should verify the following is true. For any m x m matrix A, we
have

Al =TA=A.

This’s why I is called the identity matrix. Also notice the columns of I are composed of
the standard basis vectors for R™ = span{ej,es,...,en}.
Next, for any m x m matrix A, I’ll derive the following result.
If the m columns of A are linearly independent, there is an m x m matrix A~! which
satisfies
AAT ' =ATTA=1

A~1 is called the inverse matriz of A. When A has an inverse we say A is invertible.
First, let me show you the range of A is all of R™. Since

Rang(A) = span{ai,...,an},

and by assumption the set {a;,...,a,,} is independent, conclude that Rang(A) is an m—

dimensional subspace of the m—dimensional vector space R™. Therefore Rang(A) = R™.

Next, since the range of A is all of R™, conclude for any standard basis vector of R™,

say e;, there is a (unique) vector, say b; € R™, such that
Ab; =e; foreach j=1,...,m.

Let B be the m x m matrix constructed with columns bq,...,b,,. This matrix B is the
sought for right inverse of A,ie. AB = 1. (Remember the m x m identity I has columns
e1,...,€en.) Istill need to show B is also the left inverse of A, i.e. BA=1. 1 claim the
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columns of B must be independent. To see this, observe that for any scalars f1,...,mn
such that

Blb1++5mbm:0 = 02A(ﬁ1b1++mem)zﬁlel++ﬁmem

But the standard basis vectors are clearly independent which says g = --- = 3, = 0.
Therefore, the columns of B are independent. Now that we know this fact, exactly the
same argument as given above allows us to conclude there is a matrix C' € R™*™ such

that BC' = I. Putting these together gives
AB=1
= ABC)=A(I) = (AB)(C=A = (C=A.
BC =1
Finally, define A~! = B, and observe that we have shown AA~! = A"1A=1.

You’ll prove in an exercise below that when the columns of A € R”*™ are dependent then

A can not have an inverse matrix. Specifically, you’ll be asked to show:

A’s columns are not independent. =-  There is no B satisfying AB = I.

This statement is logically equivalent to:

There is a B satisfying AB=1. =  A’s columns are independent.

Now, how do we compute A~!? By elimination of course. Let me show you by example.

Consider the 4 x 4 matrix

—
—_ =N
N = DN
W NN =

Let’s find A1 if it exists. Write the augmented matrix attaching the 4 x 4 identity matrix.

Eliminate the left side to upper triangular form if possible.

111 1]1 0 0 O 1 1 1 1 1 0 00
Ry,—-Ry—R;y |1 2 2 210 1 0 0 011 1]-1 100
Ry—R3;—R; |1 11 2/0010| ~ |00071|-10T10
Ry—+R,—R; L1 1 2 3|0 0 0 1 0 01 2|-10 01
Swap row 3 and row 4 to get
11 1 1 1 0 00
011 1-1100
T o0 1 2[-1001
000 1]-1010

This completes forward elimination. The left side of the augmented matrix is upper tri-

angular with all pivots (the diagonal entries) nonzero. This tells us that A’s columns are
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linearly independent. Therefore, the given matrix is invertible. To finish computing the

actual inverse, use backward elimination starting with column 4

Ri—-R —R, 1 11 1 1 00 0 1110 20 -10
Ry —Ry—R, |0 1 1 1]-110 0 01 10| 01 -1 0
Ry R3—2R, |0 01 2] -1 00 1| |00 1 0 1 0 -2 1

000 1|—-101 0 000 T1|-10 10

and then column 2 to get

0 0 2 -1 0 0
0 0] —1 1 1 -1
1 0
0 1

Next, eliminate up column

1 0 -2 1
-1 0 1 0

The left side of the augmented matrix is now the identity, and so we’re done. The right

side is A~ 1,

3
1 0
0 1
0 0
0 0

2 -1 0 0
-1 1 1 -1
1 0 -2 1
-1 0 1 0

ATl =

Here’s a second example, but this time the matrix is not invertible. Let

1 1 1 1
1 2 2 2
A= 11 1 2/
1 1 1 3
write the augmented matrix attaching the identity and perform forward elimination

111 1,1 0 0 O 1 1 11 1 0 0 0
Ry—+Ry—R;y |1 2 2 210 1 0 0 011 1}]-1 1200
Rs—-R3s—R; |1 1 1 210 0 10 ~ 000 1}-1 0120
Ry—+Ry—R; L1 1 1 3|0 0 0 1 000 2]-1 001

At this stage however, see that x3 (the third column in the right augmented matrix) is a
free variable. This tells us that A’s columns are not linearly independent. Therefore, this

matrix is not invertible.
Here are two other important facts you should know.

First, suppose A € R™*™ B € R™*™ are both invertible. Then the product AB is also

invertible, and in particular

(AB)"'=pB"tA1

To see this, observe
(AB)(BT'A Y)Y = A(BB ™ Y)A '=ATA' =AA' =1, and
(B'AYAB)=B YA 'A)B=B"'IB=B"'B=1.
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Second, let A € R™*™. Note that this matrix need not be square. The transpose of A,
denoted by AT, is an n x m matrix obtained by switching A’s rows with its columns.

That is,
(AT)Z-J =Aj;foreach 1 <i<n, 1<j5<m.

(1 2 3>T B ; ‘51

4 5 6 3 6

Every student who’s completed linear algebra knows the following. If the matrix product
AB is defined, then

For example,

(AB)T = BT AT,
To see this is true, take A € R™AX™4 and B € R™B*"5 with ny = mp = [, and observe
l l !
(AB)Z',]' = ZAi,kBk,j = ((AB)T)Z,] = (AB)]’Z = ZAj,k:Bk,i = ZBZ]CAgJ
k=1 k=1 k=1

The sum on the right represents the 4, jth element of the product BT AT .

Here’s an interesting fact concerning square matrices which can be deduced from the
transpose product formula just given. A square matrix A has linearly independent columns
if and only if its rows are linearly independent. You should be able to see this by using
the transpose formula to verify (A=1)T = (AT)~1. Of course, this fact is also implied by

the fact that the row rank of a matrix is equal to its column rank.

1. Suppose A € R™*™ and there is another matrix B € R™*™ such that AB = I. In
this exercise you’ll prove this implies the column vectors making up A must be linearly
independent.

(a) Show the columns of B must be linearly independent.

(b) Conclude B is invertible.
(¢) Show that given Ax = 0 we must have x = 0.
(d) Observe part (c) says the columns of A are independent.
Hints: (a) Do as I did on page 2: 0 = f1by + -+ by, implies 0 = S1e1 + -+ -+ Bem .
(b) I proved independent columns implies invertibility. (c) For any x there is a y such

that x = By. Use this and the given to conclude y = 0.



2. Determine the inverse if it exists.

@(i) (i) oGl @)

3. Determine the inverse if it exists.

1 1 1 1 2 3
(a) 3 4 1 (b) -2 -2 -5

2 4 1 2 2 8

4. Determine the inverse if it exists.

1 1 1 1 1 1 1 1

1 2 1 1 1 2 1 1
@ 11 5 1 1 M1y 2 1 2

1 2 2 3 1 2 2 3

The determinant of an m x m matrix A is given by the formula

det(A) = Z sgn(j) a1,j,a2.4, -+ - Amj, -

jePn,

P,, above denotes the set containing all m! permutations of the sequence (1,2,...,m).
For example, P35 = {(1,2,3), (2,3,1), (3,1,2), (1,3,2), (2,1,3), (3,2,1)}. The symbol
j= (1,42, --,Jm) denotes one of these permutations. The sign of permutation j, denoted
by sgn(j), has value +1 if j is obtained by an even number of interchanges of (1,2,...,m)
and has value —1 if by an odd number. For example, when m = 3,

j interchanges sgn(j)
(1,2,3) 0 +1
(2,3,1) 2 +1
(3,1,2) p +1
(1,3,2) 1 ~1
(2,1,3) 1 -1
(3,2,1) 1 1

It’s interesting to note that no matter how you perform interchanges to cast a given

permutation j to (1,2,...,m), the value of sgn(j) remains invariant.

The determinant was first introduced and studied by Gottfried Leibniz, 1646-1716. The

formula given above is often called the Leibniz determinant formula.
When m =2, P, ={(1,2), (2,1)}, sgn(1,2) =1, sgn(2,1) = —1, and so
det(A) =a1,1a22 —ar2a2;.
When m = 3, use the table above to arrive at
det(A) = (CL1,1 22033+ a12023031 + Q13021 Cl3,2)

—(a11a230a32+ a1 2021033+ 0a1302203,1).
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You should memorize these two explicit formulae. I’ll show you a trick in class to help.

Here are several important properties about the determinant you should know. These are

all easily deduced from the Leibniz formula.

e If A has a zero row, i.e. a;, j; = 0 for every j, then det(A) = 0. This is true because

for every j € P, the product ay ;,azj, - - am,j,, = a1, - Qi j;,. " Am,j,, = 0.
e If U is upper triangular, i.e. u;; = 0 for every 7 > j, then
det(U) = u1,1u2.2*  * Upn,m-
This is true because for every permutation j except j = (1,2,...,m), there’s at least one

index i, such that i, > j; . Since for all such permutations u;, ;, = 0, and this says

UL j, U2 5, * ** Um,j,, = 0, the determinant sum collapses to a single term.

e If matrix A’ is obtained from A by switching rows i; # is, then det(A’) = —det(A). To
see this, let j’ be given by switching component i; with is in j. Clearly, sgn(j’) = —sgn(j).

/ / / f— - . DRI .
Also, observe that the product aj ; a5 ap, ; = ay jrag i+ am,j, . Therefore,

det(A) = ) sgn(j)ay j,ab 5, - ap
jeP.,

= > —sen(i) aj a0 - amyy, = — det(A).
ji’ePn,

e If A has two identical rows, then det(A) = 0. To see this, interchange the two identical
rows and use the previous bulleted item, i.e. A’ = A = det(A) = det(A’) = —det(A).

The next item is very important. In fact, it states the property about the determinant

that likely led Leibniz to consider his particular formula in the first place.

e Suppose m x m matrices A, B and C' are identical except in the 7,th row. Suppose

the i, th row of A is given by a;, ; = Bb;, j +vci, ; foreach j=1,...,m. Then
det(A) = B det(B) + ydet(C).
The derivation is very simple.

det(A) = Z sen(j) a g, - (Bbi, g, +7¢Ci i) Gmjin

jePn,
=8 Y sgn(i)arg, b, g, +7 Y sen() @ i, e G,
jeP., jeP..
=8 ) sen(i)bijy - bisgi b 7 Y sen() C1gyCi g O
jeP., jeP..

= Bdet(B) + ydet(C).

This fact says the determinant is what’s called a multilinear function of its rows.
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Two immediate consequences of this are the following.

e Suppose A’ is obtained from A by multiplying one of its rows by a scalar «. Then
det(A") = adet(A).

e Suppose A’ is obtained from A by adding any multiple of row i5 to a different row ;.

Then
det(A’) = det(A).

To see this, let B be a matrix identical to A except in its i; th row take b;, ; = a4, ;. Use

multilinearity, i.e.

! Ajq 5 + 6()1'17]' (: Ajq 5 —+ Bai%j), = det(A’) = det(A) + ﬁdet(B)

Giy 5 =
However, det(B) = 0 because its i; and iy rows are identical.

Here’s why the determinant is so important. Recall by means of a succession of the three
elementary row operations, see E1, E2 and E3 from page 5 on your homework 5, a matrix
A can always be reduced to row echelon form. When A is square, its echelon form is an

upper triangular square matrix, say U. From what we’ve shown about the determinant
A~U = det(A) =+adet(U) (a#0)
=da (U1 Unm)-

The + corresponds to possible row interchanges during the elimination process, see row
operation E1, and the scale factor « corresponds to possible nonzero row scalings, see row
operation E2. Also recall from earlier that A has independent columns if and only if each

diagonal entry in its row echelon form, U, is nonzero. Therefore,
A has independent columns <= det(A) # 0.
Here are two more important properties about the determinant you should all know. I'm
not going to derive them here but will do so in a subsequent set of notes.
e Suppose AT is the transpose of a square matrix A. Then det(AT) = det(A).

This tells us what was said in the bulleted items above concerning rows also applies to

columns and vice versa. Finally:
e Suppose A and B are square m x m matrices. Then det(AB) = det(A) det(B).
Here are some, hopefully, illuminating examples.

Use the 2 x 2 determinant formula, i.e.

a1 a2
det =a1,1022 —G12021,
az1 Aa22
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to verify multilinearity of the determinant by explicitly calculating both sides of

2:-1+3-2 2-443-5\ _ 1 4 2 5
det( 6 7 )—Qdet(6 7)—}—i’)det(G 7).

On the left side

2.1+3-2 2-44+3-5\ 8 23\ _ -
da( ) i >_da<6 7)_@ 7-23.6=—82.

On the right side

1 4 2 5
2det(6 7>+3det<6 7)—2(7—24)—1—3(14—30)——82.

Given

3 4

What is det(54)? Answer: 5-5(—2) = —50. Notice the scalar—matrix product 54 is
obtained by multiplying both row 1 and row 2 of A by 5.

Az(12) ~ det(A) = (4—6) = —2.

Consider the 3 x 3 matrix

1 2 3
A=14 5 6
7 8 9
Construct the matrix A’ by subtracting row 2 from row 3 in A, and then again subtracting
row 1 from row 2. That is,
1 2 3
A=|(3 3 3
3 3 3

Ask yourself why this implies det(A) = 0. Verify this fact directly via the 3x3 determinant
formula, see the middle of page 6, applied to the original matrix A. (Not for me!)

Here’s one last example. Consider

1 2 3
A=14 5 6
7 8 10
Subtract 4 times row 1 from row 2 and 7 times row 1 from row 3 to get
1 2 3
A=10 -3 -6 |,
0 -6 -—11
and then in A’ subtract 2 times row 2 from row 3
1 2 3
A'=10 -3 -6
0 0 1

Conclude det(A) = —3. Verify by applying the 3 x 3 determinant formula directly to A.
(Again, not for me!)



5. If a matrix A is invertible, conclude det(A™!) = 1/det(A). Hint: AA~! = I and

det(I) = 1. (This would make an easy exam question.)

6. You can conclude that A is invertible if and only if det(A) # 0 by referring back to
my remark “A has independent columns if and only if det(A) # 0” given in the middle

of page 7. Suppose A and B are m x m matrices. Conclude the product C' = AB is
invertible if and only if both det(A) # 0 and det(B) # 0.

7. Compute the determinants of each of the following.
2 1 2 3 8 3 -2 -1
(a) (3 4) (b) (1 4) (c) (4 4) (d) ( 3 4)

8. Compute the determinants of each of the following. State the properties of the deter-

minant you used.

1 2 1 1 2 1 2 0 0
(a) [0 0 0 ) [0 1 0 © [2 1 0
1 1 2 0 0 2 1 1 2
3-1 3-2 3-1 1 2 1 1 2 1
d [3-1 3.1 3.2 e [5-1 5.1 5.2 ® [2+1 241 342
3-1 3-1 3-1 1 1 1 1 1 1
Answers I got: (a) 0, (b) 2, (¢) 4,(d) 32-1=27,(e) 5-1=5, (f) 1+1=2.




