
The Inverse Matrix and An Introduction to the Determinant

Throughout this assignment, we consider linear operators L : Rm → R
m , i.e. L(x) ≡ Ax

where A is a square m × m real matrix. Please note however that while not discussed

directly here, all definitions and facts given below routinely extend to problems in which

R
m is replaced by C

m and the square matrices associated to L are complex valued.

The m×m identity matrix, denoted by I , is given by

Ii,j =
{

1 if i = j
0 otherwise.

⇒ I =











1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1











.

Often, the entries of the identity matrix are denoted by Ii,j = δi,j where δi,j is called the

Kronecker delta. You should verify the following is true. For any m × m matrix A , we

have

AI = IA = A.

This’s why I is called the identity matrix. Also notice the columns of I are composed of

the standard basis vectors for R
m = span{e1, e2, . . . , em} .

Next, for any m×m matrix A , I’ll derive the following result.

If the m columns of A are linearly independent, there is an m × m matrix A−1 which

satisfies

AA−1 = A−1A = I.

A−1 is called the inverse matrix of A . When A has an inverse we say A is invertible.

First, let me show you the range of A is all of Rm . Since

Rang(A) = span{a1, . . . ,am},

and by assumption the set {a1, . . . ,am} is independent, conclude that Rang(A) is an m–

dimensional subspace of the m–dimensional vector space R
m . Therefore Rang(A) = R

m .

Next, since the range of A is all of R
m , conclude for any standard basis vector of R

m ,

say ej , there is a (unique) vector, say bj ∈ R
m , such that

Abj = ej for each j = 1, . . . ,m .

Let B be the m×m matrix constructed with columns b1, . . . ,bm . This matrix B is the

sought for right inverse of A , i.e. AB = I . (Remember the m×m identity I has columns

e1, . . . , em .) I still need to show B is also the left inverse of A , i.e. BA = I . I claim the
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columns of B must be independent. To see this, observe that for any scalars β1, . . . , βm

such that

β1b1 + · · ·+ βmbm = 0 ⇒ 0 = A (β1b1 + · · ·+ βmbm) = β1e1 + · · ·+ βmem.

But the standard basis vectors are clearly independent which says β1 = · · · = βn = 0.

Therefore, the columns of B are independent. Now that we know this fact, exactly the

same argument as given above allows us to conclude there is a matrix C ∈ R
m×m such

that BC = I . Putting these together gives

AB = I

BC = I
⇒ A(BC) = A(I) ⇒ (AB)C = A ⇒ C = A.

Finally, define A−1 ≡ B , and observe that we have shown AA−1 = A−1A = I .

You’ll prove in an exercise below that when the columns of A ∈ R
m×m are dependent then

A can not have an inverse matrix. Specifically, you’ll be asked to show:

A’s columns are not independent. ⇒ There is no B satisfying AB = I.

This statement is logically equivalent to:

There is a B satisfying AB = I. ⇒ A’s columns are independent.

Now, how do we compute A−1 ? By elimination of course. Let me show you by example.

Consider the 4× 4 matrix

A =







1 1 1 1
1 2 2 2
1 1 1 2
1 1 2 3






.

Let’s find A−1 if it exists. Write the augmented matrix attaching the 4×4 identity matrix.

Eliminate the left side to upper triangular form if possible.

R2 → R2 −R1

R3 → R3 −R1

R4 → R4 −R1







1 1 1 1
1 2 2 2
1 1 1 2
1 1 2 3

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






∼







1 1 1 1
0 1 1 1
0 0 0 1
0 0 1 2

1 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1






.

Swap row 3 and row 4 to get

∼







1 1 1 1
0 1 1 1
0 0 1 2
0 0 0 1

1 0 0 0
−1 1 0 0
−1 0 0 1
−1 0 1 0






.

This completes forward elimination. The left side of the augmented matrix is upper tri-

angular with all pivots (the diagonal entries) nonzero. This tells us that A ’s columns are
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linearly independent. Therefore, the given matrix is invertible. To finish computing the

actual inverse, use backward elimination starting with column 4

R1 → R1 −R4

R2 → R2 −R4

R3 → R3 − 2R4







1 1 1 1
0 1 1 1
0 0 1 2
0 0 0 1

1 0 0 0
−1 1 0 0
−1 0 0 1
−1 0 1 0






∼







1 1 1 0
0 1 1 0
0 0 1 0
0 0 0 1

2 0 −1 0
0 1 −1 0
1 0 −2 1

−1 0 1 0






.

Next, eliminate up column 3 and then column 2 to get






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2 −1 0 0
−1 1 1 −1
1 0 −2 1

−1 0 1 0






.

The left side of the augmented matrix is now the identity, and so we’re done. The right

side is A−1 ,

A−1 =







2 −1 0 0
−1 1 1 −1
1 0 −2 1

−1 0 1 0






.

Here’s a second example, but this time the matrix is not invertible. Let

A =







1 1 1 1
1 2 2 2
1 1 1 2
1 1 1 3






,

write the augmented matrix attaching the identity and perform forward elimination

R2 → R2 −R1

R3 → R3 −R1

R4 → R4 −R1







1 1 1 1
1 2 2 2
1 1 1 2
1 1 1 3

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






∼







1 1 1 1
0 1 1 1
0 0 0 1
0 0 0 2

1 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1






.

At this stage however, see that x3 (the third column in the right augmented matrix) is a

free variable. This tells us that A ’s columns are not linearly independent. Therefore, this

matrix is not invertible.

Here are two other important facts you should know.

First, suppose A ∈ R
m×m , B ∈ R

m×m are both invertible. Then the product AB is also

invertible, and in particular

(AB)−1 = B−1A−1.

To see this, observe

(AB)(B−1A−1) = A(BB−1)A−1 = AI A−1 = AA−1 = I, and

(B−1A−1)(AB) = B−1(A−1A)B = B−1 I B = B−1B = I.
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Second, let A ∈ R
m×n . Note that this matrix need not be square. The transpose of A ,

denoted by AT , is an n × m matrix obtained by switching A ’s rows with its columns.

That is,

(AT )i,j = Aj,i for each 1 ≤ i ≤ n , 1 ≤ j ≤ m .

For example,
(

1 2 3
4 5 6

)T

=





1 4
2 5
3 6



 .

Every student who’s completed linear algebra knows the following. If the matrix product

AB is defined, then

(AB)T = BTAT .

To see this is true, take A ∈ R
mA×nA and B ∈ R

mB×nB with nA = mB ≡ l , and observe

(AB)i,j =

l
∑

k=1

Ai,kBk,j ⇒ ((AB)T )i,j = (AB)j,i =

l
∑

k=1

Aj,kBk,i =

l
∑

k=1

BT
i,kA

T
k,j .

The sum on the right represents the i, j th element of the product BTAT .

Here’s an interesting fact concerning square matrices which can be deduced from the

transpose product formula just given. A square matrix A has linearly independent columns

if and only if its rows are linearly independent. You should be able to see this by using

the transpose formula to verify (A−1)T = (AT )−1 . Of course, this fact is also implied by

the fact that the row rank of a matrix is equal to its column rank.

1. Suppose A ∈ R
m×m and there is another matrix B ∈ R

m×m such that AB = I . In

this exercise you’ll prove this implies the column vectors making up A must be linearly

independent.

(a) Show the columns of B must be linearly independent.

(b) Conclude B is invertible.

(c) Show that given Ax = 0 we must have x = 0.

(d) Observe part (c) says the columns of A are independent.

Hints: (a) Do as I did on page 2: 0 = β1b1 + · · ·+ βmbm implies 0 = β1e1 + · · ·+ βmem .

(b) I proved independent columns implies invertibility. (c) For any x there is a y such

that x = By . Use this and the given to conclude y = 0 .
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2. Determine the inverse if it exists.

(a)

(

1 2
2 1

)

(b)

(

1 2
3 1

)

(c)

(

1 2
2 4

)

(d)

(

4 3
2 1

)

3. Determine the inverse if it exists.

(a)





1 1 1
3 4 1
2 4 1



 (b)





1 2 3
−2 −2 −5
2 2 8





4. Determine the inverse if it exists.

(a)







1 1 1 1
1 2 1 1
1 2 1 1
1 2 2 3






(b)







1 1 1 1
1 2 1 1
1 2 1 2
1 2 2 3







The determinant of an m×m matrix A is given by the formula

det(A) ≡
∑

j∈Pm

sgn(j) a1,j1a2,j2 · · · am,jm .

Pm above denotes the set containing all m! permutations of the sequence (1, 2, . . . ,m) .

For example, P3 = {(1, 2, 3), (2, 3, 1), (3, 1, 2), (1, 3, 2), (2, 1, 3), (3, 2, 1)} . The symbol

j = (j1, j2, . . . , jm) denotes one of these permutations. The sign of permutation j , denoted

by sgn(j) , has value +1 if j is obtained by an even number of interchanges of (1, 2, . . . ,m)

and has value −1 if by an odd number. For example, when m = 3,

j interchanges sgn(j)

(1, 2, 3) 0 +1
(2, 3, 1) 2 +1
(3, 1, 2) 2 +1
(1, 3, 2) 1 −1
(2, 1, 3) 1 −1
(3, 2, 1) 1 −1

It’s interesting to note that no matter how you perform interchanges to cast a given

permutation j to (1, 2, . . . ,m) , the value of sgn(j) remains invariant.

The determinant was first introduced and studied by Gottfried Leibniz, 1646–1716. The

formula given above is often called the Leibniz determinant formula.

When m = 2, P2 = {(1, 2), (2, 1)} , sgn(1, 2) = 1, sgn(2, 1) = −1, and so

det(A) = a1,1 a2,2 − a1,2 a2,1.

When m = 3, use the table above to arrive at

det(A) = (a1,1 a2,2 a3,3 + a1,2 a2,3 a3,1 + a1,3 a2,1 a3,2)

− (a1,1 a2,3 a3,2 + a1,2 a2,1 a3,3 + a1,3 a2,2 a3,1) .
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You should memorize these two explicit formulae. I’ll show you a trick in class to help.

Here are several important properties about the determinant you should know. These are

all easily deduced from the Leibniz formula.

• If A has a zero row, i.e. ai∗,j = 0 for every j , then det(A) = 0. This is true because

for every j ∈ Pm the product a1,j1a2,j2 · · · am,jm = a1,j1 · · · ai∗,ji∗ · · · am,jm = 0.

• If U is upper triangular, i.e. ui,j = 0 for every i > j , then

det(U) = u1,1u2,2 · · ·um,m.

This is true because for every permutation j except j = (1, 2, . . . ,m) , there’s at least one

index i∗ such that i∗ > ji∗ . Since for all such permutations ui∗,ji∗
= 0, and this says

u1,j1u2,j2 · · ·um,jm = 0, the determinant sum collapses to a single term.

• If matrix A′ is obtained from A by switching rows i1 6= i2 , then det(A′) = − det(A) . To

see this, let j′ be given by switching component i1 with i2 in j . Clearly, sgn(j′) = −sgn(j) .

Also, observe that the product a′
1,j1

a′
2,j2

a′m,jm
= a1,j′

1
a2,j′

2
· · · am,j′

m
. Therefore,

det(A′) =
∑

j∈Pm

sgn(j) a′
1,j1

a′
2,j2

· · · a′m,jm

=
∑

j′∈Pm

−sgn(j′) a1,j′
1
a2,j′

2
· · · am,j′

m
= − det(A).

• If A has two identical rows, then det(A) = 0. To see this, interchange the two identical

rows and use the previous bulleted item, i.e. A′ = A ⇒ det(A) = det(A′) = − det(A) .

The next item is very important. In fact, it states the property about the determinant

that likely led Leibniz to consider his particular formula in the first place.

• Suppose m ×m matrices A , B and C are identical except in the i∗ th row. Suppose

the i∗ th row of A is given by ai∗,j = β bi∗,j + γ ci∗,j for each j = 1, . . . ,m . Then

det(A) = β det(B) + γ det(C).

The derivation is very simple.

det(A) =
∑

j∈Pm

sgn(j) a1,j1 · · ·
(

β bi∗,ji∗ + γ ci∗,ji∗
)

· · · am,jm

= β
∑

j∈Pm

sgn(j) a1,j1 · · · bi∗,ji∗ · · · am,jm + γ
∑

j∈Pm

sgn(j) a1,j1 · · · ci∗,ji∗ · · · am,jm

= β
∑

j∈Pm

sgn(j) b1,j1 · · · bi∗,ji∗ · · · bm,jm + γ
∑

j∈Pm

sgn(j) c1,j1 · · · ci∗,ji∗ · · · cm,jm

= β det(B) + γ det(C).

This fact says the determinant is what’s called a multilinear function of its rows.
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Two immediate consequences of this are the following.

• Suppose A′ is obtained from A by multiplying one of its rows by a scalar α . Then

det(A′) = α det(A).

• Suppose A′ is obtained from A by adding any multiple of row i2 to a different row i1 .

Then

det(A′) = det(A).

To see this, let B be a matrix identical to A except in its i1 th row take bi1,j = ai2,j . Use

multilinearity, i.e.

a′i1,j = ai1,j + β bi1,j (= ai1,j + β ai2,j ), ⇒ det(A′) = det(A) + β det(B).

However, det(B) = 0 because its i1 and i2 rows are identical.

Here’s why the determinant is so important. Recall by means of a succession of the three

elementary row operations, see E1, E2 and E3 from page 5 on your homework 5, a matrix

A can always be reduced to row echelon form. When A is square, its echelon form is an

upper triangular square matrix, say U . From what we’ve shown about the determinant

A ∼ U ⇒ det(A) = ±α det(U) (α 6= 0)

= ±α (u1,1 · · ·um,m ) .

The ± corresponds to possible row interchanges during the elimination process, see row

operation E1, and the scale factor α corresponds to possible nonzero row scalings, see row

operation E2. Also recall from earlier that A has independent columns if and only if each

diagonal entry in its row echelon form, U , is nonzero. Therefore,

A has independent columns ⇐⇒ det(A) 6= 0.

Here are two more important properties about the determinant you should all know. I’m

not going to derive them here but will do so in a subsequent set of notes.

• Suppose AT is the transpose of a square matrix A . Then det(AT ) = det(A) .

This tells us what was said in the bulleted items above concerning rows also applies to

columns and vice versa. Finally:

• Suppose A and B are square m×m matrices. Then det(AB) = det(A) det(B) .

Here are some, hopefully, illuminating examples.

Use the 2× 2 determinant formula, i.e.

det

(

a1,1 a1,2
a2,1 a2,2

)

= a1,1 a2,2 − a1,2 a2,1,
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to verify multilinearity of the determinant by explicitly calculating both sides of

det

(

2 · 1 + 3 · 2 2 · 4 + 3 · 5
6 7

)

= 2det

(

1 4
6 7

)

+ 3det

(

2 5
6 7

)

.

On the left side

det

(

2 · 1 + 3 · 2 2 · 4 + 3 · 5
6 7

)

= det

(

8 23
6 7

)

= 8 · 7− 23 · 6 = −82.

On the right side

2 det

(

1 4
6 7

)

+ 3 det

(

2 5
6 7

)

= 2 (7− 24) + 3 (14− 30) = −82.

Given

A ≡

(

1 2
3 4

)

⇒ det(A) = (4− 6) = −2.

What is det(5A)? Answer: 5 · 5 (−2) = −50. Notice the scalar–matrix product 5A is

obtained by multiplying both row 1 and row 2 of A by 5.

Consider the 3× 3 matrix

A =





1 2 3
4 5 6
7 8 9



 .

Construct the matrix A′ by subtracting row 2 from row 3 in A , and then again subtracting

row 1 from row 2. That is,

A′ =





1 2 3
3 3 3
3 3 3



 .

Ask yourself why this implies det(A) = 0. Verify this fact directly via the 3×3 determinant

formula, see the middle of page 6, applied to the original matrix A . (Not for me!)

Here’s one last example. Consider

A =





1 2 3
4 5 6
7 8 10



 .

Subtract 4 times row 1 from row 2 and 7 times row 1 from row 3 to get

A′ =





1 2 3
0 −3 −6
0 −6 −11



 ,

and then in A′ subtract 2 times row 2 from row 3

A′′ =





1 2 3
0 −3 −6
0 0 1



 .

Conclude det(A) = −3. Verify by applying the 3× 3 determinant formula directly to A .

(Again, not for me!)
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5. If a matrix A is invertible, conclude det(A−1) = 1/det(A) . Hint: AA−1 = I and

det(I) = 1. (This would make an easy exam question.)

6. You can conclude that A is invertible if and only if det(A) 6= 0 by referring back to

my remark “A has independent columns if and only if det(A) 6= 0” given in the middle

of page 7. Suppose A and B are m × m matrices. Conclude the product C = AB is

invertible if and only if both det(A) 6= 0 and det(B) 6= 0.

7. Compute the determinants of each of the following.

(a)

(

2 1
3 4

)

(b)

(

2 3
1 4

)

(c)

(

8 3
4 4

)

(d)

(

−2 −1
3 4

)

8. Compute the determinants of each of the following. State the properties of the deter-

minant you used.

(a)





1 2 1
0 0 0
1 1 2



 (b)





1 2 1
0 1 0
0 0 2



 (c)





2 0 0
2 1 0
1 1 2





(d)





3 · 1 3 · 2 3 · 1
3 · 1 3 · 1 3 · 2
3 · 1 3 · 1 3 · 1



 (e)





1 2 1
5 · 1 5 · 1 5 · 2
1 1 1



 (f)





1 2 1
2 + 1 2 + 1 3 + 2
1 1 1





Answers I got: (a) 0, (b) 2, (c) 4, (d) 33 · 1 = 27, (e) 5 · 1 = 5, (f) 1 + 1 = 2.
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