
Proof of the Rank Theorem

The rank theorem was stated in your earlier ”Linear Operators” homework assignment.

It reads as follows. Let Vx and Vy denote two vector spaces which share scalars, suppose

Vx is finite dimensional and L : Vx → Vy is linear. Then

dim(Null(L)) + dim(Rang(L)) = dim(Vx).

Before giving a proof of the rank theorem, let me give a definition and some related facts.

Suppose M and N are subspaces of a vector space V which only have the zero vector

in common, i.e. M∩N = {0} . The direct sum of M and N , denoted by M⊕N , is a

subspace of V whose vectors are given by

M⊕N ≡ {x+ y : x ∈ M, y ∈ N}.

Please note, the direct sum notation, ⊕ in M⊕N , tacitly implies M∩N = {0} . Here’s

what you want to think of when faced with the direct sum of finite dimensional vector

spaces. Given basis sets for M and N

{m1, . . . ,mdm
} and {n1, . . . ,ndn

} ⇒ {m1, . . . ,mdm
, n1, . . . ,ndn

}

is a basis for M⊕N . Clearly the set on the right is a spanning set for M⊕N . Moreover,

since M∩N = {0} , the set on the right is easily seen to be an independent spanning set.

Now, conclude that

dim(M⊕N ) = dim(M) + dim(N ),

and observe we have the unique decomposition

∀ z ∈ M⊕N ⇒ ∃ ! m ∈ M, n ∈ N such that z = m+ n.

The symbols ∀ reads ”for all” and ∃ ! reads ”there exists unique”.

We’ll need one more small preliminary result. Given a finite dimensional vector space

V and a subspace N ⊆ V , there is a subspace M ⊆ V such that V = N ⊕ M . M

can be constructed by an algorithm essentially identical to the one given near the top of

your ”Dimension of a Vector Space” notes used there to construct a basis for any finite

dimensional vector space. I’m going to omit the details here.

Here’s a proof of the rank theorem. Decompose Vx as

Vx = Null(L)⊕M where from above M has a basis M = {m1, . . . ,mdm
}.

Since dim(Vx) = dim(Null(L))+dim(M) we see dm = dim(M) = dim(Vx)−dim(Null(L)) .

Now consider the set of vectors each coming from Rang(L) ⊆ Vy

L = {L(m1), . . . ,L(mdm
)}.
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Clearly spanL ⊆ Rang(L) . Moreover, for arbitrary x ∈ Vx we can decompose x = n+m

where n ∈ Null(L) and m ∈ M , and from this conclude

L(x) = L(n) + L(m) = 0+ L(m) ∈ spanL ⇒ Rang(L) ⊆ spanL.

Therefore, spanL = Rang(L) . Finally, let’s check that L is independent. Suppose

0 = α1L(m1) + · · ·+ αdm
L(mdm

) = L(α1m1 + · · ·+ αdm
mdm

)

⇒ α1m1 + · · ·+ αdm
mdm

∈ Null(L)

⇒ α1m1 + · · ·+ αdm
mdm

= 0 because Null(L) ∩M = {0}

⇒ α1 = · · · = αdm
= 0 because M is a basis for M,

and so L is an independent spanning set of Rang(L) . Count vectors in L to get

dim(Rang(L)) = dim(spanL) = dm = dim(Vx)− dim(Null(L))

⇒ dim(Null(L)) + dim(Rang(L)) = dim(Vx)

which is the result of the rank theorem.
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