
Two Vector Spaces That Are Not R
m

Consider a vector space with the same scalars and vectors as in R
2

scalars: α ∈ R and vectors: x =

(
x1

x2

)
, x1 ∈ R, x2 ∈ R

but with scalar multiplication and vector addition defined differently

αx ≡

(
α(x1 − 1) + 1
α(x2 − 1) + 1

)
and x+ y ≡

(
x1 + y1 − 1
x2 + y2 − 1

)
.

Let’s refer to this strange vector space as S2 . Of course, in order to call S2 a vector space,

it must be verified that structural conditions (a–0) through (d–2) listed in your previous

homework are in fact true. Clearly, (a–0) is true. Moreover, vector addition is associative

and commutative

(x+ y)+z =

(
x1 + y1 − 1
x2 + y2 − 1

)
+

(
z1
z2

)
=

(
x1 + y1 − 1 + z1 − 1
x2 + y2 − 1 + z2 − 1

)
=

(
x1 + y1 + z1 − 2
x2 + y2 + z2 − 2

)
,

x+(y + z) =

(
x1

x2

)
+

(
y1 + z1 − 1
y2 + z2 − 1

)
=

(
x1 + y1 + z1 − 1− 1
x2 + y2 + z2 − 1− 1

)
=

(
x1 + y1 + z1 − 2
x2 + y2 + z2 − 2

)
,

y + x =

(
y1 + x1 − 1
y2 + x2 − 1

)
=

(
x1 + y1 − 1
x2 + y2 − 1

)
= x+ y.

You’ll be asked to verify (a–3) and (a–4) in an exercise below. FYI:

the additive identity 0 =

(
1
1

)
and x ’s additive inverse x′ =

(
2− x1

2− x2

)
.

Continuing with the listed items, (m–0) is clearly true. For (m–1)

α(βx) = α

(
β(x1 − 1) + 1
β(x2 − 1) + 1

)
=

(
α(β(x1 − 1) + 1− 1) + 1
α(β(x2 − 1) + 1− 1) + 1

)

=

(
αβ(x1 − 1) + 1
αβ(x2 − 1) + 1

)
= (αβ)x,

and (m–2)

1x =

(
1(x1 − 1) + 1
1(x2 − 1) + 1

)
=

(
x1

x2

)
= x.

For (d–1)

α(x+ y) = α

(
x1 + y1 − 1
x2 + y2 − 1

)
=

(
α(x1 + y1 − 1− 1) + 1
α(x2 + y2 − 1− 1) + 1

)
,

αx+ αy =

(
α(x1 − 1) + 1
α(x2 − 1) + 1

)
+

(
α(y1 − 1) + 1
α(y2 − 1) + 1

)
=

(
α(x1 − 1) + 1 + α(y1 − 1) + 1− 1
α(x2 − 1) + 1 + α(y2 − 1) + 1− 1

)

=

(
α(x1 + y1 − 1− 1) + 1
α(x2 + y2 − 1− 1) + 1

)
,

and so α(x+y) = αx+αy . You’ll be asked to verify property (d–2) in an exercise below.
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1. Let V be any vector space.

(a) Suppose 0 and 0′ are additive identities for V . Show 0′ = 0 to conclude V ’s additive

identity is unique.

(b) Let 0 denote V ’s scalar field additive identity and let 0 denote V ’s vector additive

identity. For any x ∈ V show that 0x = 0 .

(c) Suppose x ∈ V has additive inverses x′ and x′′ . Show x′′ = x′ to conclude x ’s

additive inverse is unique.

(d) Let −1 denote V ’s scalar field additive inverse of its multiplicative identity 1. For any

x ∈ V show that −1x = x′ where x′ is x ’s additive inverse.

Please justify each step by stating which properties from (a–0) through (d–2) were used.

2. Recall what I called S2 above.

(a) Explicitly calculate the additive identity vector, 0 , and the additive inverse of x , x′ ,

in order to establish that S2 satisfies vector space properties (a–3) and (a–4).

(b) Show S2 satisfies property (d–2).

(c) For S2 confirm by calculating that 0x = 0 and −1x = x′ .

3. Consider the following three vectors in our strange vector space S2 :

0 =

(
1
1

)
, x =

(
2
1

)
, y =

(
4
2

)
.

Recall from the previous exercise that 0 here is S2 ’s additive identity.

(a) Show on S2 that the two vectors {x,y} forms an independent set. Hint: You must

conclude αx+ βy = 0 ⇐⇒ α = β = 0. Remember how scalar multiplication and vector

addition are defined on S2 .

(b) Show that span{x,y} = S2 . Hint: For any z ∈ S2 I computed that

z =

(
z1
z2

)
, αx+ βy = z where α = z1 − 3z2 + 2 and β = z2 − 1.

4. Now consider the following two vectors in S2 :

x =

(
2
1

)
, y =

(
3
1

)
.

(a) Show that {x,y} forms a dependent set on S2 . Hint: I used 2x = y .

(b) Describe a one parameter family of vectors which gives span{x,y} . Hint: I used the

fact that αx+ βy = αx+ β 2x = (α+ 2β)x = α̃x .
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Let Pn denote the set of real polynomials of degree less than or equal to n ; n ≥ 0. Let

scalars be given by real constants. Define scalar multiplication by pointwise multiplication

of functions by constants

α ∈ R, p ∈ Pn, αp ≡ αp(x),

and vector addition by pointwise addition of functions

p ∈ Pn and q ∈ Pn, p+ q ≡ p(x) + q(x).

The vector additive identity is the zero function. Constant functions including the zero

constant function are taken to be polynomials of degree zero. With this, it’s a routine

exercise to show Pn is a vector space.

Clearly, the set of polynomials {1, x, . . . , xn} is a spanning set of vectors for Pn . That is

p ∈ Pn ⇒ p = p(x) = α01 + α1x+ · · ·+ αnx
n

for certain scalars α0, α1, . . . , αn . You’ll be asked in exercise 5 below to show

α01 + α1x+ · · ·+ αnx
n = 0 for all x ⇐⇒ α0 = α1 = · · · = αn = 0,

which says {1, x, . . . , xn} is an independent set. Therefore, {1, x, . . . , xn} is a basis (and in

some sense the standard basis) for Pn . Moreover, the dimension of Pn is dim(Pn) = n+1.

Here’s another basis for the space P2 . I’m taking n = 2 in order to make the present

example easier to read. Consider

B = {(x− 1)(x− 2), (x− 0)(x− 2), (x− 0)(x− 1)}.

FYI: This is the Lagrange basis for polynomial interpolation at x = 0, 1, 2. One easily sees

spanB is a subspace of P2 . Moreover, B is an independent set. To see this, assume

b(x) = α0 (x− 1)(x− 2) + α1 (x− 0)(x− 2) + α2 (x− 0)(x− 1) = 0 = 0 for all x .

But b(x) = 0 for all x implies in particular b(0) = b(1) = b(2) = 0. However, b(0) = 0

implies 2α0 = 0, and b(1) = 0 implies −α1 = 0, and b(2) = 0 implies 2α2 = 0. Therefore

α0 = α1 = α2 = 0 which says B is independent. Let me again state (but prove later) the

following general vector space result.

If S ⊆ V and dim(S) = dim(V) then S = V .

Returning to our example, since spanB ⊆ P2 and dim(spanB) = 3 = dim(P2) , we can

use the stated result to conclude spanB = P2 . Therefore, B is a basis for P2 .

Here’s one more potential basis for P2 , this one I just made up out of the blue.

B = {x− 1, x+ 1, x2 + 2}.
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This set of polynomial vectors doesn’t have the nice structure of the standard basis or

Lagrange basis we worked with above. Regardless, let’s check what

b(x) = α0 (x− 1) + α1 (x+ 1) + α2 (x
2 + 2) = 0 for all x

implies about the scalars α0 , α1 and α2 . I can rewrite b(x) in terms of the standard basis

b(x) = (−α0 + α1 + 2α2) 1 + (α0 + α1)x+ α2 x
2

and use the fact that {1, x, x2} is independent to conclude

b(x) = 0 for all x ⇐⇒ −α0 + α1 + 2α2 = 0, α0 + α1 = 0, α2 = 0.

Now, use your Gaussian elimination skills to see

−α0 + α1 + 2α2 = 0
α0 + α1 = 0

α2 = 0
=⇒ α2 = 0, α1 = 0, α0 = 0.

Therefore, {(x− 1), (x+ 1), (x2 + 2)} is an independent set.

5. Show α0 1+α1 x+ · · ·+αn x
n = 0 for all x implies α0 = α1 = · · · = αn = 0. This says

{1, x, . . . , xn} is a independent set in Pn . Hint: Differentiate a certain number of times

and then set x = 0.

6. Let x0 , x1 , x2 be three distinct real numbers.

(a) Show that

{(x− x1)(x− x2), (x− x0)(x− x2), (x− x0)(x− x1)}

forms an independent set in P2 .

(b) Write an arbitrary p(x) ∈ P2 in terms of a linear combination of these three vectors.

Answer:

p(x) = p(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ p(x1)

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ p(x2)

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
.

7. Determine whether or not the given sets of vectors from P2 are independent.

(a) {1, (x− 0), (x− 0)(x− 1)} (b) {2x+ 1, x2, (x+ 1)2}

Answers: (a) Independent. (b) Dependent.
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8. Recall the independent set of vectors from P2 I cooked up above:

{x− 1, x+ 1, x2 + 2}.

Write p(x) = α0 (x− 1) + α1 (x+ 1) + α2 (x
2 + 2) by solving for the constant scalars α0 ,

α1 and α2 when

(a) p(x) = 1 (b) p(x) = x (c) p(x) = x2 (d) p(x) = x2 + 3x+ 4

Answers: (a) α0 = −1/2, α1 = 1/2, α2 = 0. (b) α0 = 1/2, α1 = 1/2, α2 = 0.

(c) α0 = 1, α1 = −1, α2 = 1.

;
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