
Some Proofs About Eigenvalues and Eigenvectors

Consider a linear operator L : V → V where V is a finite dimensional complex vector

space. An eigenvector vector for L is a vector r ∈ V satisfying

r 6= 0 such that L(r) = λr for some scalar λ ∈ C .

I’ll first show every such linear operator has at least one eigenvalue/eigenvector pair, λ/r .

Given dim(V) = n , let {b1, . . . ,bn} denote a basis set for V . As done on an earlier

homework, write a vector x ∈ V in terms of this basis to see

x = x1b1 + · · ·+ xnbn =⇒ L(x) = x1L(b1) + · · ·+ xnL(bn)

where x1, . . . , xn are n complex valued scalars. Also, because L(bk) ∈ V for every index

1 ≤ k ≤ n , there are n complex scalars l1,k, . . . , ln,k such that

L(bk) = l1,kb1 + · · ·+ ln,kbn =⇒ L(x) = y ≡ y1b1 + · · ·+ ynbn.

where the scalars y1, . . . , yn are determined via matrix multiplication

~y = L~x with ~y =







y1
...
yn






∈ C

n, L =







l1,1 · · · l1,n
...

. . .
...

ln,1 · · · ln,n






∈ C

n×n, ~x =





x1

...
xn



 ∈ C
n.

That is, once a basis for the vector space V is fixed, the linear operator L is uniquely

identified by a matrix L ∈ C
n×n .

For the n× n matrix L above, let’s see if we can show there is a nonzero vector ~r ∈ C
n

with an associated scalar λ ∈ C such that

L~r = λ~r ⇐⇒ (L− λI)~r = ~0.

Call Lλ ≡ L− λI and recall from page 7 on Homework 6 we’ve shown

Lλ has independent columns ⇐⇒ det(Lλ) 6= 0,

which is equivalent to saying

Lλ has dependent columns ⇐⇒ det(Lλ) = 0.

On the top of page 6 on Homework 7 we’ve also shown

det(Lλ) = p(λ),

where p(λ) is a degree n ”monic” polynomial, the so-called characteristic polynomial. The

fundamental theorem of algebra says this has l ≥ 1 distinct (possibly complex) roots and

can be factored as follows

p(λ) = (−1)n(λ− λ1)
m1 · · · (λ− λl)

ml where m1 + · · ·+ml = n,
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and where the m ’s are all positive integers called the multiplicity of the associated char-

acteristic root. For example, suppose

p(λ) = λ4 − 9λ2 + 4λ+ 12 =⇒ p(λ) = (λ+ 1)1(λ− 2)2(λ+ 3)1.

The root λ = −1 has multiplicity 1, λ = 2 has multiplicity 2 and λ = −3 has multiplic-

ity 1. Note that the sum of the multiplicities here equals 4 which must be equal to the

degree of p(λ) .

For λ equal to any one of the characteristic roots, say λ∗ , we have det(Lλ∗
) = 0 which as

stated above implies the columns of Lλ∗
must be linearly dependent. This says there are

n (also possibly complex) scalars r1, . . . , rn which are not all zero such that Lλ∗
~r∗ = ~0

where ~r∗ = (r1 · · · rn)
T 6= ~0. That is, for any n × n matrix L , there is a vector ~r∗ ∈ C

n

and a scalar λ∗ ∈ C such that

~r∗ 6= ~0 and satisfying L~r∗ = λ∗~r∗.

Returning to the linear operator introduced earlier, i.e. L : V → V , set

r∗ ≡ r1b1 + · · · rnbn 6= 0

and note that

L(r∗) = (L~r∗)1b1 + · · ·+ (L~r∗)nbn

= (λ∗r1)b1 + · · ·+ (λ∗rn)bn = λ∗r∗,

which shows r∗ ∈ V is an eigenvector for L .

Here’s an illustrative example. Consider the vector space V ≡ span{1, cos(x), sin(x)}

and a linear operator L(f) ≡ d2f/dx2 + df/dx . Check that L : V → V and that

{1, cos(x), sin(x)} is in fact a basis for V . Let’s determine L ’s matrix L with respect

to this basis.

f = α0 1 + α1 cos(x) + α2 sin(x) =⇒ L(f) = (−α1 + α2) cos(x) + (−α1 − α2) sin(x)

and from this see

L(f) = β01 + β1 cos(x) + β2 sin(x) where





β0

β1

β2



 =





0 0 0
0 −1 1
0 −1 −1









α0

α1

α2



 .

L is the 3× 3 matrix on the right above. Compute the determinant of L− λI and factor

det(L− λI) = −λ
(

(λ+ 1)2 + 1
)

= −λ(λ+ 1 + i)(λ+ 1− i).

Read off L ’s eigenvalues: λ = 0, λ = −1 − i and λ = −1 + i . Next, compute that the

eigenvalue λ = 0 has eigenvector ~r = (1 0 0)T , the eigenvalue λ = −1− i has eigenvector

~r = (0 + i 1)T and the eigenvalue λ = −1 + i has eigenvector ~r = (0 − i 1)T . Use the
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eigenvectors for the matrix L just computed to find the eigenvectors for the original linear

operator L ,
λ = 0 =⇒ f(x) = 1,
λ = −1− i =⇒ f(x) = +i cos(x) + sin(x),
λ = −1 + i =⇒ f(x) = −i cos(x) + sin(x).

An important question I want to answer now is the following. Suppose L : V → V is a

given linear operator. If L has a matrix representation

L ∈ C
n×n with respect to a basis with V = span{b1, . . . ,bn},

and another matrix representation

L′ ∈ C
n×n with respect to a different basis with V = span{b′

1, . . . ,b
′

n},

how are L and L′ related? The answer is the well known change of basis formula

L′ = B−1LB for some invertible B ∈ C
n×n .

A consequence of this fact is

p′(λ) = det(L′ − λI) = det(B−1LB − λI)

= det(B−1(L− λI)B) = det(B−1) det(L− λI) det(B)

=
1

det(B)
det(L− λI) det(B) = det(L− λI) = p(λ).

So we see that L and L′ share the same characteristic polynomial, and therefore they share

the same characteristic roots. This tells us the eigenvalues of the linear operator L : V → V

are independent of any particular basis used to define its matrix representation. Moreover,

if we have

L′~r ′ = λ~r ′ we see that B−1LB ~r ′ = λ~r ′ =⇒ L(B~r ′) = λ(B~r ′).

That is, if ~r ′ is an eigenvector for L′ then B~r ′ is an eigenvector for L .

Now I’m going to derive the change of basis formula stated above. Let {b1, . . . ,bn} and

{b′

1, . . . ,b
′

n} denote two bases of V . An arbitrary x ∈ V can be decomposed in each

x = x1b1 + · · ·+ xnbn,

x = x′

1b
′

1 + · · ·+ x′

nb
′

n.

Since for each 1 ≤ k ≤ n we have b′

k ∈ V , there are scalars b1,k, . . . , bn,k such that

b′

k = b1,kb1 + · · ·+ bn,kbn.

Insert this into the second decomposition

x =

n
∑

k=1

x′

k

(

n
∑

i=1

bi,kbi

)

=

n
∑

i=1

(

n
∑

k=1

bi,k x
′

k

)

bi,
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and equate to the first to find

~x = B~x ′, where ~x =





x1

...
xn



 , ~x ′ =







x′

1

...
x′

n






and B ∈ C

n×n with Bi,j = bi,j .

Next, similar to what I just did, write

L(x) = y1b1 + · · ·+ ynbn,

L(x) = y′1b
′

1 + · · ·+ y′nb
′

n.

and again insert b′

k = b1,kb1 + · · ·+ bn,kbn into the second expression for L(x)

L(x) =

n
∑

k=1

y′k

(

n
∑

i=1

bi,k bi

)

=

n
∑

i=1

(

n
∑

k=1

bi,k y
′

k

)

bi.

Equate this with first expression for L(x) to find

~y = B~y ′ where ~y =







y1
...
yn






, ~y ′ =







y′1
...
y′n






=⇒ ~y ′ = B−1~y.

(Convince yourself that B must be invertible. This follows from the fact that it represents

a change of basis matrix.) But ~y ′ = L′~x ′ and ~y = L~x . These and the fact that ~x = B~x ′

established above gives

L′ ~x ′ = B−1L~x = B−1LB ~x ′ =⇒ L′ = B−1LB,

where the matrix form of the change of basis formula on the right hand side above follows

from the left hand identity because the vector ~x ′ is arbitrary.

Homework 8 exercise 3b gives you a 4× 4 matrix






1 2 0 0
2 1 0 0
0 0 1 2
0 0 2 1







which has characteristic polynomial p(λ) = (λ+ 1)2(λ− 3)2

=⇒ λ1 = −1 with multiplicity m1 = 2,

λ2 = 3 with multiplicity m2 = 2.

Here you should have determined that the eigenvalue λ1 has two independent eigenvectors

associated to it, and so does λ2 . Specifically, the two dimensional eigenspaces are

Eλ=−1 = span{(1 −1 0 0)T , (0 0 1 −1)T },

Eλ=3 = span{(1 1 0 0)T , (0 0 1 1)T }.

On the other hand, the 2× 2 matrix
(

−1 4
−1 3

)

has characteristic polynomial p(λ) = (λ− 1)2

=⇒ λ1 = 1 with multiplicity m1 = 2.

But for this example we only have a one dimensional associated eigenspace

Eλ=1 = span{(2 1)T }.
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I’m going to finish these notes by proving the following important result.

If λ∗ is an eigenvalue of L : V → V with multiplicity m∗

then 1 ≤ dim(Eλ∗
) ≤ m∗ .

As illustrated above, for eigenvalues having multiplicity greater than one, the dimension

of the associated eigenspace may or may not be equal to the eigenvalue’s multiplicity. In

the latter case conclude that V will not have a basis of eigenvectors of L .

Let’s prove the result. Suppose L : V → V has an eigenvalue λ∗ with multiplicity m∗ . Let

{r1, . . . , rn∗
} denote a basis for the associated eigenspace Eλ∗

. We’ve shown earlier that

n∗ = dim(Eλ∗
) ≥ 1. In order to show dim(Eλ∗

) ≤ m∗ , determine vectors sn∗+1, . . . , sn so

that

{r1, . . . , rn∗
, sn∗+1, . . . , sn} is a basis for V .

Now let’s figure out L ’s matrix with respect to this basis. For 1 ≤ k ≤ n∗ we have

L(rk) = λ∗rk,

and for n∗ + 1 ≤ k ≤ n , since L(sk) ∈ V , there are scalars l1,k, . . . , ln,k such that

L(sk) = l1,k r1 + · · ·+ ln,k sn.

Let

x = x1 r1 + · · ·+ xn sn =⇒ L(x) = x1L(r1) + · · ·+ xnL(sn),

and use L(rk) and L(sk) given above, together with Σ-notation, to write

L(x) =

n∗
∑

k=1

xkλ∗rk +
n
∑

k=n∗+1

xk

(

n∗
∑

i=1

li,k ri +
n
∑

i=n∗+1

li,k si

)

=

n∗
∑

i=1

(

λ∗xi +
n
∑

k=n∗+1

li,k xk

)

ri +
n
∑

i=n∗+1

(

n
∑

k=n∗+1

li,k xk

)

si.

Equate this to L(x) = y1r1 + · · ·+ ynsn to find

~y = L~x where L can be written in block form L =

(

λ∗I Ltop

0 Lbot

)

,

and where here I’ve used notation I for the n∗×n∗ identity, 0 for the (n−n∗)×n∗ block

of zeros, Ltop for a n∗ × (n − n∗) block and Lbot for a n∗ × n∗ block, both filled with

values li,j . Successively cofactor L− λI along columns 1 through n∗ to find

det(L− λI) = (λ∗ − λ)n∗ det(Lbot − λI) = p(λ),

where the I ’s here are appropriately sized. However, as pointed out earlier, the FTA says

the characteristic polynomial p(λ) can be factored by its l ≥ 1 distinct roots

p(λ) = (−1)n(λ− λ1)
m1 · · · (λ− λl)

ml .
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Therefore, (λ∗ − λ)n∗ must divide (λ− λ1)
m1 · · · (λ− λl)

ml which is only possible when

dim(Eλ∗
) = n∗ ≤ m∗.

That’s it.
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