Here we will set-up and solve the famous Bernoulli "what is the shape of a hanging chain" problem.

Let \(y(x) \geq 0 \) denote the height of the chain above the horizontal \(x \)-axis. For convenience, set coordinates so that \(y(0) = 0 \) and \(y'(0) = 0 \). The chain’s unit length tangent vector (pointing in the positive \(x \) direction) is given by

\[
t(x) = \frac{1}{\sqrt{1 + (y'(x))^2}} \begin{pmatrix} 1 \\ y'(x) \end{pmatrix}.
\]

There are two types of forces acting on chain elements: the internal tension force which acts tangentially to the chain, and the downward body force which is due to gravity. Consider a typical element from the point \((x_l, y(x_l))\) to the point \((x_r, y(x_r))\). The body force on this element is given by

\[
f_b = \rho \int_{x_l}^{x_r} \sqrt{1 + (y'(&0))^2} \, d\xi \left(0 \right)
\]

where \(\rho \) denotes the mass per unit length of the chain, the integral is the length of the chain element, and \(g \) is the acceleration due to gravity. The internal tension force, which acts at the two ends of the element, is given by

\[
f_i = \kappa(x_r) \, t(x_r) - \kappa(x_l) \, t(x_l),
\]

where the scalar \(\kappa(x) \) denotes the magnitude of the tension force as a function of \(x \). We assume the chain is not in motion, therefore the sum of the forces on each element must balance out

\[
f_i + f_b = 0 \quad \Rightarrow \quad \kappa(x_r) - \kappa(x_l) = 0
\]

\[
\kappa(x_r) y'(x_r) - \kappa(x_l) y'(x_l) - \rho g \int_{x_l}^{x_r} \sqrt{1 + (y'(&0))^2} \, d\xi = 0,
\]

where we used the notation \(\kappa(x) \equiv \kappa(x)/\sqrt{1 + (y'(0))^2} \) to save space. Since \(\kappa(x_r) - \kappa(x_l) = 0 \) for arbitrary \(x_l \) and \(x_r \), we conclude \(\kappa(x) = \kappa(0) \) for every \(x \) along the chain. Also, since \(y'(0) = 0 \), we can write the constant \(\kappa(0) = \kappa(0) \equiv \kappa_0 \). In the second equation displayed on the right hand side above, set \(x_l = x \) and \(x_r = x + \Delta x \) to see

\[
\frac{\kappa_0}{\Delta x} \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left(\kappa(x + \Delta x) y'(x + \Delta x) - \kappa(x) y'(x) \right)
\]

\[
= \rho g \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_x^{x + \Delta x} \sqrt{1 + (y'(&0))^2} \, d\xi = \rho g \sqrt{1 + y'^2}.
\]

Finally, use this result, set \(z(x) = y'(x) \), and recall again that \(z(0) = y'(0) = 0 \), to get the separable IVP

\[
\frac{dz}{dx} = \gamma \sqrt{1 + z^2}, \quad z(0) = 0,
\]

where the constant \(\gamma = \rho g / \kappa_0 \).
Now let’s solve the IVP for $y(x)$.

$$\int \frac{dz}{\sqrt{1 + z^2}} = \int \gamma \, dx = \gamma (x + c).$$

But since $\cosh^2 \theta - \sinh^2 \theta = 1$, we use the substitution $z = \sinh \theta$, $dz = \cosh \theta \, d\theta$ to evaluate the left hand side integral

$$\int \frac{dz}{\sqrt{1 + z^2}} = \int \frac{\cosh \theta \, d\theta}{\sqrt{1 + \sinh^2 \theta}} = \int d\theta = \theta.$$

So

$$\theta = \gamma (x + c) \implies z = \sinh(\theta) = \sinh(\gamma (x + c)).$$

The initial condition $z(0) = 0$ shows $c = 0$. Therefore

$$z(x) = \sinh(\gamma x).$$

Finally, since $z = dy/dx$, integrate again

$$y(x) = \int \sinh(\gamma x) \, dx = \frac{1}{\gamma} (\cosh(\gamma x) + c),$$

and use $y(0) = 0$ to conclude that $c = -1$. Therefore

$$y(x) = \frac{1}{\gamma} (\cosh(\gamma x) - 1).$$

Can you figure out a way to determine the constant γ knowing the the length of the chain and the distance between its attachment points? We’ll do this next.

Let $2L$ denote the length of the chain and $2R$ the distance between attachment points. Assume the chain is hanging symmetrically about the origin where it has length L from the point $(0, y(0)) = (0, 0)$ to the point $(R, y(R))$. Using the arclength formula we find

$$L = \int_0^R \sqrt{1 + (y'(\xi))^2} \, d\xi = \int_0^R \frac{\cosh(\gamma \xi) \, d\xi}{\sqrt{1 + \sinh^2 \gamma \xi}} = \int_0^R \frac{\cosh(\gamma \xi) \, d\xi}{\gamma} = \frac{\sinh(\gamma R)}{\gamma}.$$

The function $\sinh(\theta)/\theta$ is a continuous one to one mapping from the interval $(0, \infty)$ onto $(1, \infty)$. Therefore, for a given $L/R > 1$, there is a unique positive number θ_* so that

$$\frac{L}{R} = \frac{\sinh(\theta_*)}{\theta_*} \implies \gamma R = \theta_*.$$

This relation gives the sought for constant γ which yields

$$y(x) = \frac{R}{\theta_*} (\cosh(\theta_* x/R) - 1).$$

It is interesting to note that since θ_* depends only on the ratio L/R, the hanging chain’s shape function, $y(x)$, depends only on the parameters R and L/R. That is, the shape of a hanging chain does not depend on its density or the acceleration of gravity.