
Constant Coefficient Systems

1. Determine all eigenvalues for each of the following matrices.

(a)

(

0 −1
2 3

)

(b)

(

0 2
−1 3

)

(c)

(

1 2
−1 4

)

(d)

(

−2 −2
6 5

)

My answers: (a) λ = 1, 2. (b) λ = 1, 2. (c) λ = 2, 3. (d) λ = 1, 2.

2. Determine all eigenvalues for each of the following matrices.

(a)

(

1 2
2 2

)

(b)

(

1 1
−1 1

)

(c)





0 −1 −1
2 3 0
0 0 3



 (d)





1 0 1
0 1 −2
2 2 4





My answers: (a) λ = (3±
√
17)/2. (b) λ = 1± i . (c) λ = 1, 2, 3. (d) λ = 1, 2, 3.

3. Compute the eigenvectors for the matrices in exercises 1(a), 1(c) and 1(d), Let A denote

the given matrix for each part. (1) Form the matrix R whose columns are made of the

eigenvectors you just computed, (2) determine the inverse R−1 and finally (3) verify that

R−1AR = Λ where Λ is the diagonal matrix composed of A ’s eigenvalues.

4. Do the same as in the previous exercise, this time however for the matrices given in

2(b), 2(c) and 2(d).

You learned about what are called real analytic functions in calculus; see power series in

general and in particular see Taylor’s theorem. For example, recall

(1− at)−1 =
∞
∑

n=0

(at)n has radius of convergence given by |t| < 1/|a| ,

and

eat =

∞
∑

n=0

1

n!
(at)n has radius of convergence given by |t| < ∞ .

Two other important Taylor expansions you should all recall are

sin(at) =
∞
∑

n=0

(−1)n

(2n+ 1)!
(at)2n+1 and cos(at) =

∞
∑

n=0

(−1)n

(2n)!
(at)2n,

where both of these have an infinite radius of convergence.

Analytic functions can be defined for square matrices. For example, given a square matrix

A , we can define

(I −At)−1 =
∞
∑

n=0

(At)n which converges for any t satisfying |||A||| |t| < 1 ,
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and

eAt =

∞
∑

n=0

1

n!
(At)n which converges for any t .

Note that above and throughout we define A0 ≡ I , the identity matrix.

See that the infinite series representation for (I −At)−1 makes sense by calculating

(I −At)(I −At)−1 = (I −At)

∞
∑

n=0

(At)n

= I

∞
∑

n=0

(At)n −At

∞
∑

n=0

(At)n =

∞
∑

n=0

(At)n −
∞
∑

n=0

(At)n+1

=

∞
∑

n=0

(At)n −
∞
∑

n=1

(At)n = (At)0 ≡ I.

That is, for sufficiently small |t| , the infinite series ∑∞

n=0(At)
n really is the inverse matrix

of (I −At) .

You should also carefully verify the following.

d

dt
eAt = AeAt = eAtA.

Let’s check that this is true by first calculating

d

dt
eAt =

d

dt

∞
∑

n=0

1

n!
(At)n =

∞
∑

n=1

1

n!
An

d

dt
tn =

∞
∑

n=1

1

n!
Anntn−1.

(The lower limit in the sum was changed to n = 1 since the n = 0 term is constant.) This

is a valid calculation because a power series can always be differentiated term-by-term

inside its radius of convergence. Clearly n/n! = 1/(n− 1)! , so we have shown

d

dt
eAt =

∞
∑

n=1

1

(n− 1)!
Antn−1 = A

(

∞
∑

n=1

1

(n− 1)!
An−1tn−1

)

or =

(

∞
∑

n=1

1

(n− 1)!
An−1tn−1

)

A.

Reindex in the bracketed terms above, i.e. let n− 1 → n , to see they are equal to eAt .

What this shows is well worth remembering, (especially for the next midterm exam and

final). The constant coefficient, linear and homogeneous system

d

dt
u = Au, u(0) = u0 is solved by u(t) = eAt

u0.

You will use this to solve several IVPs in the exercises below.

In general eA+B 6= eAeB . However, it is true that

when AB = BA we do have eA+B = eAeB .
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You can prove this (I won’t here) by employing the binomial theorem for matrices:

If AB = BA , then (A+B)n =
n
∑

k=0

(

n
k

)

An−kBk.

It therefore follows that since A and −A commute

I = eA−A = eA+(−A) = eAe−A ⇒ (eA)−1 = e−A.

When A can be diagonalized, and f is real analytic, there is a particularly simple way to

evaluate the matrix f(A) in closed form, that is without infinite series. Suppose we can

write

R−1AR = Λ ⇒ A = RΛR−1,

where Λ is a diagonal matrix composed of A ’s eigenvalues. Then f(A) is given by

f(A) = Rf(Λ)R−1 where f(Λ) = diag(f(λ1), . . . , f(λn)).

I’ll derive the formula after giving a couple of examples. Consider

A =

(

2 1
1 2

)

and compute Λ =

(

1 0
0 3

)

, R =

(

1 1
−1 1

)

, R−1 =
1

2

(

1 −1
1 1

)

.

From these, you can easily determine cos(A) in closed form.

cos(A) =

(

1 1
−1 1

)(

cos(1) 0
0 cos(3)

)

1

2

(

1 −1
1 1

)

=
1

2

(

cos(1) + cos(3) cos(3)− cos(1)
cos(3)− cos(1) cos(1) + cos(3)

)

.

Similarly,

eAt =

(

1 1
−1 1

)(

et 0
0 e3t

)

1

2

(

1 −1
1 1

)

= · · ·

Let me now derive the closed form expression for f(A) when A is diagonalizable. Suppose

f(x) is given by the power series

f(x) =
∞
∑

k=0

γnx
k ⇒ f(A) ≡

∞
∑

k=0

γkA
k

where γk ∈ R is f ’s k th Taylor coefficient. Since A = RΛR−1 , see that

Ak =
(

RΛR−1
)k

=
(

RΛR−1
)

· · ·
(

RΛR−1
)

= RΛkR−1.

Therefore

f(A) = R

(

∞
∑

k=0

γkΛ
k

)

R−1.

Finally, since Λ is diagonal, Λk = diag(λk
1 , . . . , λ

k
n) , which shows

f(A) = R

(

diag(

∞
∑

k=0

γkλ
k

1 , . . . ,

∞
∑

k=0

γkλ
k

n)

)

R−1 = R
(

diag(f(λ1), . . . , f(λn))
)

R−1.
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I will briefly deal with how to evaluate f(A) in closed form for non-diagonalizable A on

the next homework. The non-diagonalizable case it considerably more involved.

5. Compute eAt for the matrices A given in exercises 1(c), 2(b) and 2(d). Answer for 2(b):

eAt = et
(

cos t sin t
− sin t cos t

)

.

6. Use the results from the previous exercise to solve the following initial value problems.

(a)











dx

dt
= x+ 2y, x(0) = 1,

dy

dt
= −x+ 4y, y(0) = 2.

(b)











dx

dt
= x+ y, x(0) = 2,

dy

dt
= −x+ y, y(0) = 1.

(c)































dx

dt
= x+ z, x(0) = 1,

dy

dt
= y − 2z, y(0) = 2,

dz

dt
= 2x+ 2y + 4z, z(0) = 3.

Answer for (b):
(

x(t)
y(t)

)

= et
(

cos t sin t
− sin t cos t

)(

2
1

)

=

(

et(2 cos t+ sin t)
et(cos t− 2 sin t)

)

.

7. For A =

(

0 1
1 0

)

, determine that eAt =

(

cosh t sinh t
sinh t cosh t

)

.

8. Suppose A is a constant square matrix and consider the inhomogeneous IVP

d

dt
u+Au = f(t), u(0) = u0.

(a) Show that the IVP is solved by

u(t) = e−At
u0 +

∫ t

0

eA(τ−t)
f(τ) dτ.

(b) Use part (a) and your result from exercise 7 to find the closed form solution to the

coupled inhomogeneous system










dx

dt
− y = t, x(0) = 0,

dy

dt
− x = et, y(0) = 0.
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