Constant Coefficient Systems

1. Determine all eigenvalues for each of the following matrices.

W) o(d:) ©(ai) o(E )

My answers: (a) A=1,2. (b) A=1,2. (¢) A=2,3. (d) A=1,2.

2. Determine all eigenvalues for each of the following matrices.
0 -1 -1 1 0 1
(a) (; g) (b) (_1 1) © |2 3 o0 @ [0 1 —2
0O 0 3 2 2 4
My answers: (a) A= (3+£+/17)/2. (b) A=1=+i. (¢) A=1,2,3. (d) A=1,2,3.

3. Compute the eigenvectors for the matrices in exercises 1(a), 1(c) and 1(d), Let A denote
the given matrix for each part. (1) Form the matrix R whose columns are made of the
eigenvectors you just computed, (2) determine the inverse R~! and finally (3) verify that

R71AR = A where A is the diagonal matrix composed of A’s eigenvalues.

4. Do the same as in the previous exercise, this time however for the matrices given in

2(b), 2(c) and 2(d).

You learned about what are called real analytic functions in calculus; see power series in

general and in particular see Taylor’s theorem. For example, recall

oo
(1—at)™ ! = Z(at)” has radius of convergence given by |t| < 1/]al,
n=0
and
o
e = Z ] (at)™ has radius of convergence given by |t| < oo.
n=0 "

Two other important Taylor expansions you should all recall are

sin(at) = Z (Q(n_——li—)?;)' (at)®™' and cos(at) = Z (_1)7‘1 (at)?",
n=0

where both of these have an infinite radius of convergence.

n=0

Analytic functions can be defined for square matrices. For example, given a square matrix

A, we can define

(I—At)™' = Z(At)" which converges for any ¢ satisfying |||A||||t| < 1,

n=0



and
oo

1
et = Z o (At)™ which converges for any t.

n=0

Note that above and throughout we define A% = I, the identity matrix.

See that the infinite series representation for (I — At)~! makes sense by calculating

(I — A1 — At)~L = (I — At) i
n=0
=1 Z(At)n — Z Z Z (At)"H!
n=0 n=0 n=0
—ZAt Z 6" = (At)° =

n=1
That is, for sufﬁClently small ||, the infinite series Y > (At)™ really is the inverse matrix
of (I — At).
You should also carefully verify the following.

d
eAt A eAt eAtA.

dt
Let’s check that this is true by first calculating

d d & 1 1 . d, ~=1 . .
! “— nl

dt dt
(The lower limit in the sum was changed to n = 1 since the n = 0 term is constant.) This

oo

n=1

is a valid calculation because a power series can always be differentiated term-by-term

inside its radius of convergence. Clearly n/n! =1/(n — 1)!, so we have shown

d At - 1 -1 - 1 —1in-1
— A" = A — A"
=3 o (S0t
_ - 1 n—1;n—1
or = <2_1 (n—l)!A t > A.

Reindex in the bracketed terms above, i.e. let n — 1 — n, to see they are equal to e

What this shows is well worth remembering, (especially for the next midterm exam and

final). The constant coefficient, linear and homogeneous system

%u = Au, u(0) =ug issolved by wu(t) = eu.

You will use this to solve several IVPs in the exercises below.

In general eAtB £ e4eB . However, it is true that

when AB = BA we do have 418 = ¢4eB,



You can prove this (I won’t here) by employing the binomial theorem for matrices:
_ n __ - n n—k nk
If AB= BA, then (A+ B) —];)<k>A B".
It therefore follows that since A and —A commute

[ = A=A AT Z A=A o (pA) T — oA

When A can be diagonalized, and f is real analytic, there is a particularly simple way to
evaluate the matrix f(A) in closed form, that is without infinite series. Suppose we can

write

R'AR=A = A=RAR,
where A is a diagonal matrix composed of A’s eigenvalues. Then f(A) is given by
f(A) = Rf(MR™" where f(A) = diag(f(A1),. .., f(An)).
I’ll derive the formula after giving a couple of examples. Consider
A= (i ;) and compute A = (é g), R= (_} 1), R :%<1 _1)
From these, you can easily determine cos(A) in closed form.

(2 (= 2V

1 (cos(l) + cos(3) Cosg) —cos(l))‘

2 \ cos(3) — cos(1) cos

a1 1\ e 0N1/1 -1\ _
© =\=1 1/\lo et)3\1 1)7

Let me now derive the closed form expression for f(A) when A is diagonalizable. Suppose

Similarly,

f(z) is given by the power series

f@)=> ya* = fA)=) wuAk
k=0 k=0
where v, € R is f’s kth Taylor coefficient. Since A = RAR™!, see that
A¥ = (RAR™Y)" = (RAR™Y) .- (RAR™Y) = RA*R ™.
Therefore

f(A)=R <Z W\’f) R7L
k=0

Finally, since A is diagonal, A* = diag()\F,...,\*), which shows

f(A)=R (diag(z A Z%A’;)> R = R(diag(f()\l), - f()\n))>R_1.
k=0

k=0

3



I will briefly deal with how to evaluate f(A) in closed form for non-diagonalizable A on

the next homework. The non-diagonalizable case it considerably more involved.

5. Compute e for the matrices A given in exercises 1(c), 2(b) and 2(d). Answer for 2(b):
pAt _ ot C.OSt sint '
—sint cost

6. Use the results from the previous exercise to solve the following initial value problems.

( d d
@ S < ORE
Y Y
[ 7y = 2 +4y, y(0) o = ¢ty yO)
(d
d—f:x—i—z, z(0) =1,
dy
© Moy 2 yo)=2
dz
E:2x+2y+4z, 2(0) = 3.

Answer for (b):
z(t)\ 4 cost sint 2\ _ [€'(2cost +sint)
y@®) ) ~ ¢ \—sint cost )\ 1) \et(cost—2sint) )

cosht sinht
sinht cosht /)~

0 1

7. For A:(l 0

) , determine that e4t = (

8. Suppose A is a constant square matrix and consider the inhomogeneous IVP
d

S + Au=f£(t), u(0) = ue.

(a) Show that the IVP is solved by

t
u(t) = e Aty +/ eA(T_t)f(T) dr.
0

(b) Use part (a) and your result from exercise 7 to find the closed form solution to the

coupled inhomogeneous system

dx

_ — t —
dt y ) x(o) 07
2:'; - - etu y(O) = 0




