Gronwall and First Order Systems

Suppose w(t) is a real valued and continuous function on an open interval —§ < t—ty < 4.
Also, let wg and L denote nonnegative constants. One form of the celebrated Gronwall

inequality can be stated as follows.

max(t,to)

Given that for all such ¢t w(t) < wg + L/ w(r)dr = w(t) < eFlttolyy.
min(t,to)

Before showing you applications of Gronwall, let’s first derive it. Clearly the result is

obvious when L = 0, so let’s work on the case when L > 0. Also, let’s assume for now
that 0 <t —ty < . Define

f d d
o(t) = / wr)dr = @ =wl) = P <w+ Lo
; at it

Just as we did the first week of class, see that

dv mwd 7
%—ngwo = e t% (e7 " (1)) < wo
t d t
= / — (e Fv(7)) dr S/ e LTwydr
to dr to

= e Hy(t) — e Floy(ty) < 7

1
= v(t) < T (eL(t_tO) — 1> wo.

(e*Lt o e*LtO) wo

Notice above I used v(tp) = 0. Therefore, for 0 <t —1ty < J, we have

t

1

w(t) < wy+ L/ w(r)dr = w(t) <wy+L (f (eL(t_tO) - 1) w0> = el (t=t0) .
to

Next, when t is in the range —d < t — ¢y < 0, a similar argument as given above will

also show w(t) < eX(to=tqy,. So, for any —§ <t —ty < §, we've established the fact that

w(t) < ellt=tolyy which is what the Gronwall inequality says.

As you know, solutions to IVPs can blow-up in finite time. For example, consider the first

order scalar IVP
du

dt

Solve this simple separable equation to get u(t) = 1/(1 — t). However, observe that as ¢

=u? with u(0) = 1.

approaches t = 1 from below, the solution blows-up, i.e. lim; u(t) = co. On the other

hand, the solution to
du

dt

is u(t) = €', and it remains well defined for any ¢.

=u with «(0) =1
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Here’s a little theorem about global existence of solutions to IVPs. Consider
du

= f(u,t) with u(0) = uo,

where f(u,t) is a continuous function for all u and ¢. Suppose in addition f satisfies the

growth condition
max | f(u, t)| < a(T)|u| 4 b(T)

[t|I<T
for any finite 7". Then the IVP’s solution, u(t), exits for all ¢, i.e. u(t) does not blow-up
in finite time. First, let me state without proof the following local existence result. The
continuity assumption concerning f implies there is an open interval —§ < t < § on
which the IVP has a continuously differentiable solution w(t). Moreover, this interval can
be extended to all ¢ provided |u(t)| remains bounded on any finite t interval. Let’s use

Gronwall together with the given growth condition to show this is true.

Integrate the differential equation from 0 to ¢ with |¢| < T and use the triangle inequality

to see

u(t) — u(0) = /Ot 2—2 dr = /Ot F(u(r), 7) dr
max(t,0)

= Ju(®)] < Juol + / Flu(r), 7)| dr.

min(t,0)
The growth condition gives
max(t,0)

u(®)] < fuol +/ (@(T)|u(r)| +b(T)) dr

min(t,0)
max(t,0)

< (juo| + B(T) T) + a(T) / ju(r)] dr,

min(¢,0)
and with this, Gronwall yields

lu(t)| < (Jug| + b(T) T) e* =0 whenever |t| < T.

Therefore, we conclude that |u(t)| remains bounded on any finite ¢ interval.

Conclude the solution to each of the following scalar first order IVPs remains bounded on

any finite ¢ interval. Don’t try to solve.

d ' d
du ) 5 . B du  wd+t* _
3. - = log(t“u® + 1), with u(0) = 3. 4. PR RS with u(0) = 4.

Hints: You are free to use the following estimates in order to apply the “growth condition”

given above.



usin(u) 1 2 1 1/
< - 2. ’t De | < t|——e1/2 4+ 1.
1 ud + 3
3. |log(t?u?® +1)| < = (|t 1 4. < t[3.
|0g(u+)\_e(\l|U\+) 2 < [ul + [¢]

Second order IVPs can be written as first order systems. Let me demonstrate. Consider

the general second order linear problem

P d
E?; + a(t)d—z b = f(t)

U(to) = Ug, ut(to) = Ui.

Let v = du/dt, and so dv/dt = d*u/dt?, to write

%(z>:(—a(t)v—fﬂ1)(t)u+f(t)> with (ZEZ’?):(ZE’)-

This can be symbolically written as
d
—F = £(u,t), uto) = uo,

where here I've used bold face letters to indicate vector quantities.

In fact, any order IVP can be written as a first order system. Here’s a third order nonlinear

example.

d3u . du
w + Sll’l(U)a = O

U(O) = 1, ut(O) = 2, Utt(O) =3.
Let v = du/dt and w = dv/dt and so dw/dt = d>u/dt?

g (v v u(0) 1
o7 = w with v(0) | =1|2
—sin(u)v w(0) 3

Write each of the following scalar IVPs as a first order system.
d?u  2du 1

b ot —|—t—2u:et, u(l) =1, u(1) = 2.

6. % — tQZ—? + ttu 4 cos(t) =0, u(0) =2, us(0) = 3.

7. % — 2% - 32—? —4u =0, u(0)=1, u(0) =2, uu(0)=
8. % = u%, u(5) =1, ug(5) = up(5) = uge(5) = 0.




You all know what a real vector space is. A norm is a nonnegative real valued function
which acts on any vector u in the vector space and is denoted by ||u||. In addition to
|lul| > 0, a norm must satisfy each of the following properties.

(

1)
(2) ||au|| = |a|||u|| for any real scalar «.
3) llu+ vl < [[al[ +[|v]].

You saw the Euclidean norm in calculus. For example, on R?, given a vector

u/| =0 & u=0.

u= (Zl) its Euclidean norm is given by |[u|| = +/(u1)? + (u2)?.
2

However, there are an innumerable number of different norms defined on R™. The one I'll
use here is often called the one-norm. On R”, the one—norm of u is given by

n
[lall = Juil = fua| + -+ + funl.
i=1

You should check that the one-norm does in fact satisfy the properties required of a norm
that I listed above.

Now, consider the first order system
du

- = f(u,t) with u(0) = uy,

where f(u,t) is a continuous function of u and ¢, and suppose f satisfies the vector
analogue of the growth condition given earlier

lrr‘lg%g [|1f(u,t)|| < a(T)||u|| +b(T) for any finite T'.
t|<

Then, in a manner essentially identical to what I did for the scalar problem, one can show
this system’s solution, u(t), exits for all ¢. In particular, the solution satisfies

[u(®)|| < (JJuo|| + b(T) T) e* =01 for any |t| < T where T > 0 is arbitrary.

Let’s apply this result to the third order example

d3u ) du
% + SIH(U)E = O
U(O) = 1, Ut(O) = 2, Utt(O) = 3,

which we wrote earlier as the following first order system

a [ v u(0) 1
2l v]= w with v(0) | =1|2
—sin(u)v w(0) 3
It’s easy to see for this example that
v u
w = |v| + |w| + |sin(u)v| < 2Jv| + |w| <2 v
—sin(u)v w



So, take a(T) = 2 and b(T') = 0 in the growth condition, and conclude |[u(t)|| < ||[uol|e!*l.
Also, since |[u|| = |u| + |[v| + |w| and v = du/dt and w = d?u/dt?, we can write this

inequality as

lu(t)| + + @‘ < 6e2Mt

dt dt?

du(t) ‘

where this solution estimate is valid for any finite ¢.

9. Consider the general second order, linear but variable coefficient, scalar IVP
d*u du

el + a(t)E +b(t)u = f(t)

u(to) = uo, ut(to) = u,
where a(t), b(t) and f(t) are continuous functions of ¢. You may assume there is a
bounded and open t interval, say {t : |t — to] < T} for some fixed 0 < T < oo, on
which the given IVP has a twice continuously differential solution. Show that |u| + |uy| is

bounded on any such interval.

While the solution to a nonlinear IVP can blow-up in finite time, it does not do so instan-
taneously. In fact, the solution stays close to its initial datum for a measurable amount of

time. To see this, consider the system

du
o =f(u,t), u(ty) =up,

where the right hand side f(u,t) is continuous at ug, to. Recall what continuity says here:

For any € > 0, there are numbers d, > 0 and §; > 0 such that
[|f(u,t) — f(up,to)|| < e whenever |lu—up|| < dy and |t — to| < d¢.
In particular, take ¢ =1 to conclude
|1 (u, )] = [If (o, to)[| < [[f(u,t) — £(uo,to)|| < 1
for all u and ¢ satisfying ||u — ug|| < 0, |t — to| < O¢,
= |[f(u,0)]] <1+ ||f(uo,t0)]]-

(I've used the so-called backward triangle inequality on the first line on the left.) Therefore,

for any t satisfying
|t —to] < 0 =min(dy /(1 + ||f(uo,t0)l]), 0¢),

integrate the differential equation and use continuity to see

u(t)—uoz/ f(u(r),7)dr = |Jut) —uol| < 1+ ||f(uo,t0)]|) |t — to] < du-

to
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That is,

forany to —0 <t<to+6 = ||lu(t)—uol|l < (1+||/f(uog,to)|])|t— tol-

I want to finish by addressing the question of uniqueness. Continuity of f gives (at least
local) existence of solutions to an IVP, but in general we need a bit more to guarantee the

solution is unique. Let’s consider one more example.
du
— = +/|u| with «(0) =0.
= VI (0)

Clearly, one solution to this IVP is u(t) = 0. However, you can separate variables to also

get

/4 ift>0
“(t)_{—t2/4 if t < 0.

In fact, there are actually four continuously differentiable solutions to this IVP. They are:

[0 ift>0 %74 ift>0
“1(t)_{0 if t <0, “2(t)_{—t2/4 if t <0,
/4 ift>0 [0 ift >0
us(t) = {o itr<o, )= {—t2/4 if + < 0.

Now, +/|u| is continuous everywhere and in particular in a neighborhood of the initial

datum, u(0) = 0. However, it fails to satisfy a somewhat stronger condition we’ll need to

guarantee an IVP has a unique solution.

Let me now state the fundamental uniqueness theorem. Consider

du
i f(u,t), u(to) = uy,

where the right hand side f(u,t), beyond being continuous in u and ¢, also satisfies
If(u, ) = £(v, )| < Liju —v]|

for all uw and v in a neighborhood of ug, say B(ug,dy), and all ¢ in a neighborhood
of tg, say B(tg,d:). That is, we assume f(u,t) is what is commonly known as Lipschitz

continuous in a neighborhood of ug, tg. Then (at least locally) the IVP’s solution is unique.

Here’s the proof. Suppose u and v are two solutions of

du dv

E = f(ll; t)? u(tO) = Uy, E - f(V,t)7 V(to) = Up-

Integrate
t

u(t) = ug +/ f(u(r),7)dr, v(t)=ug +/ f(v(r),7)dr,

to to

subtract

u(t) — v(t) = g — ug + / (f(u(r),7) — £(v(7), 7)) dr,

to
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and apply the triangle inequality

max(t,to)

lu(t) = v(®)]] < / |f(a(r),7) = £(v(7), 7)[| d-

min(¢,to)

At the top of the previous page we showed thereis a d > 0 such that for all tg—§ < t < to+9d
[lu(t) —ug|| < bu, ||V(t) —wol| < du, = ult), v(t) € B(up,on).

Therefore, since f(u,t) is assumed to be Lipschitz in this neighborhood,

max(t,to)

max(t,to)
la) =¥l < [ et~ fe@lldr< [ L) = vl
min(¢,to) min(t,to)
or in other words, for any to — 0 <t <tg+ 46
max(t,to)
la@) ~v@l <L [ () - v dr
min(t,to)

From this, Gronwall tells us the following.
For all tg— 6 <t < to+0 we have |[u(t) —v(t)|| < e ttlo =0,
which is equivalent to saying

u(t) = v(t) for every t in the range tc — 0 <t <tg+9.

Solve the given IVPs but only locally in a neighborhood of ¢ = 0. Check whether or not
the right hand side is Lipschitz around the initial point, i.e. u(0), and compare your results

with the statement of the uniqueness theorem.

d
10. Find all solutions of d—?: = /u with the given initial datum.

(a) u(0) = 0. (b) u(0) = 1.
For (a) I got u(t) =0 as well as u(t) = (%t)3/2 for t > 0. For (b) u(t) = (1 + %t)3/2.

d
11. Find all solutions of d_:: = /|1 — u?| with the given initial datum.

(a) w(0)=1.  (b) u(0) = 0.

For (a) I got u(t) =1 as well as u(t) = cos(t) when ¢t < 0 and u(t) = cosh(t) when t > 0.

Use these to get four separate solutions. For (b) wu(t) = sin(t) is the unique solution.




