
Introduction

An operator L(u) from one function space to another is said to be linear if for all functions

u1 and u2 in its domain and all constants c1 and c2 we have

L(c1u1 + c2u2) = c1L(u1) + c2L(u2).

It’s often convenient to separate this into two conditions

(L) L(u1 + u2) = L(u1) + L(u2) and L(cu) = cL(u)

which both must be satisfied for linear L .

A differential operator D(u) is some function of u and derivatives of u . Two examples of

differential operators are

(i) D(u) ≡ ex
du

dx
+

d3u

dx3
, (ii) D(u) ≡ u

du

dx
+ sin(x)

d2u

dx2
.

The order of D is the order of the highest derivative in D . (i) above is a third order

differential operator, whereas (ii) is second order.

Recall from calculus that the derivative operator is linear, i.e.

d

dx
(u1 + u2) =

du1

dx
+

du2

dx
and

d

dx
(cu) = c

du

dx
.

Clearly, so is the derivative of any order n

dn

dxn
(u1 + u2) =

dnu1

dxn
+

dnu2

dxn
and

dn

dxn
(cu) = c

dnu

dxn
.

Use these to see that D defined in (i) above is linear:

D(u1 + u2) = ex
d(u1 + u2)

dx
+

d3(u1 + u2)

dx3
= ex

(

du1

dx
+

du2

dx

)

+

(

d3u1

dx3
+

d3u2

dx3

)

= ex
du1

dx
+

d3u1

dx3
+ ex

du2

dx
+

d3u2

dx3
= D(u1) +D(u2)

and

D(cu) = ex
d(cu)

dx
+

d3(cu)

dx3
= exc

du

dx
+ c

d3u

dx3
= c

(

ex
du

dx
+

d3u

dx3

)

= cD(u).

On the other hand, D defined in (ii) is not linear. This is true if either condition in (L)

is invalid. For example, since in general

D(cu) = (cu)
d(cu)

dx
+ sin(x)

d2(cu)

dx2
= c2u

du

dx
+ c sin(x)

d2u

dx2
6= cD(u),

you can conclude that this differential operator is not linear.

A differential equation can be written as D(u) = 0. When this can be written in the

particular form

L(u) = f(x)
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where f(x) is a given function of x and L(u) is a linear differential operator, we call this

a linear differential equation. When f(x) ≡ 0 we say the differential equation is linear and

homogeneous.

For example, consider the differential equation

d3u

dx3
+ ex

du

dx
+ x = 0 =⇒

d3u

dx3
+ ex

du

dx
= −x,

which can be written as

L(u) = −x where L(u) =
d3u

dx3
+ ex

du

dx
.

Since L is linear as shown above, the given differential equation is linear but in this case

not homogeneous.

1. Determine which of the following differential operators D(y) (the dependent variable

here is y ) are linear and which are not. Also, state D ’s order.

(a) D(y) ≡ y
dy

dx
(c) D(y) ≡ x2

d2y

dx2
+

dy

dx

(b) D(y) ≡ y +
dy

dx
(d) D(y) ≡

dy

dx
+ y2

2. Which are linear and homogeneous differential equations? Which are linear but not

homogeneous? Which are nonlinear differential equations? State the order of each.

(a)
d2y

dx2
+ y

dy

dx
+ y = 0 (c) ex

d3y

dx3
= y

(b) xy +
dy

dx
+ sinx = 0 (d)

d2y

dx2
= x2y +

dy

dx

Consider the following first order differential equation

2x2
du

dx
− u2 = x2.

Somehow I was able to figure out that

u(x) = x

(

1−
2

log |x|

)

is a solution. This fact can be verified by plugging u and its derivative back into the

differential equation to find

u2 + x2 = 2x2

[

2

(log |x|)2
−

2

log |x|
+ 1

]

2x2
du

dx
= 2x2

[

1−
2

log |x|
+

2

(log |x|)2

]

⇒ 2x2
du

dx
= u2 + x2.
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In general, a first order differential equation will have a one-parameter family of solutions.

A second order differential equation will have a two-parameter family of solutions, etc.

The so-called general solution to the previous example is in fact given by

u(x) = x

(

1−
2

log |x|+ c

)

,

where c can be any constant. See exercise 7 below.

3. Verify that the given function is a solution to the corresponding differential equation.

(Just plug it in and see what you get.)

(a) u(x) = e−x solves
du

dx
+ u = 0

(b) u(x) = −
x

log x
solves x2

du

dx
= u2 + xu

(c) u(x) = 2 arctan(ex) solves
du

dx
= sinu

4. Verify that the given function is a solution to the corresponding differential equation.

(a) u(x) = xex solves
d2u

dx2
− 2

du

dx
+ u = 0

(b) u(x) = ee
x

solves u
d2u

dx2
−

(

du

dx

)2

− u2 log u = 0

(c) u(x) = ex/2 solves u
d2u

dx2
+

(

du

dx

)2

−
1

2
u2 = 0

If a differential equation is linear and homogeneous, that is L(u) = 0 where L is a linear

differential operator, then any linear combination of solutions is also a solution. That is,

given that

L(u1) = 0 and L(u2) = 0 ⇒ ug = c1u1 + c2u2 also solves L(ug) = 0.

Clearly this is true by linearity

L(ug) = L(c1u1 + c2u2) = c1L(u1) + c2L(u2) = c1 0 + c2 0 = 0.

This is often called the principle of superposition. Please note however, this form of

superposition only applies to linear and homogeneous problems.

Superposition can often be exploited to solve certain ordinary differential equations (ab-

breviated ODEs) with various possible side conditions. For example

u1(x) = sinx and u2(x) = cosx both solve
d2u

dx2
+ u = 0.
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Let’s use these to solve what’s called an initial value problem

d2u

dx2
+ u = 0 where u must also satisfy u(0) = 1, ux(0) = 2.

Since the ODE is linear and homogeneous,

u(x) = c1 sinx+ c2 cosx

solves the ODE for arbitrary constants c1 and c2 . Now let’s see if we can determine

explicit values for c1 and c2 in order to satisfy the given initial conditions

1 = u(0) = c1 sin(0) + c2 cos(0) = c2 and 2 = ux(0) = c1 cos(0)− c2 sin(0) = c1

⇒ c2 = 1 and c1 = 2 ⇒ u(x) = 2 sinx+ cosx.

And so there is the sought for solution to our initial value problem.

Next let’s consider a linear but this time an inhomogeneous problem

L(u) = f(x).

Suppose again we can find u1 and u2 which solve the homogeneous linear differential

equation L(u1) = L(u2) = 0. Suppose we can also find what we will later call a particular

solution which solves L(up) = f(x) . Then again by linearity

ug(x) = c1u1(x) + c2u2(x) + up(x) also solves L(ug) = f(x).

Note how we’ve added in the particular solution into ug . As an example, check that

up(x) = x is a particular solution to
d2u

dx2
+ u = x.

Therefore,

u(x) = c1 sinx+ c2 cosx+ x also solves
d2u

dx2
+ u = x

for arbitrary constants c1 and c2 . This can be used to solve e.g. the initial value problem

with conditions u(0) = 1, ux(0) = 2, and we obtain the solution

u(x) = sinx+ cosx+ x.

For a nonlinear ODE, there really isn’t an easy way to piece together the general solution

as done above for the linear problem. Consider

d2u

dx2
−

(

du

dx

)2

= 0 for which somehow I computed u(x) = − log |x− c1|+ c2.

Here’s your two-parameter family of solutions. This can be used to solve the example

initial value problem with u(0) = 1, ux(0) = 2:

1 = u(0) = − log | − c1|+ c2, 2 = ux(0) = 1/c1 ⇒ c1 = 1/2, c2 = 1 + log 1/2,
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and we obtain the initial value problem’s solution

u(x) = − log |x− 1/2|+ 1 + log 1/2.

You might want to note for later consideration that this solution blows up (its value runs

off to infinity) as x approaches 1/2 from below. The solution can not be continued beyond

this point.

5. The second order ODE

d2u

dx2
− u = 0 has two solutions: u1(x) = sinhx and u2(x) = coshx.

Note the equation is linear and homogeneous. Use u1 and u2 to solve the ODE with the

following initial conditions.

(a) u(0) = 1, ux(0) = 2 (b) u(0) = 2, ux(0) = 1

Now use u1 and u2 to solve the ODE with the following boundary conditions.

(c) u(0) = 0, u(1) = 1 (d) u(0) = 1, u(1) = 0 (e) ux(0) = 1, ux(1) = 2

6. The second order linear but inhomogeneous ODE

d2u

dx2
− u = x has a particular solution: up(x) = −x.

Use u1 and u2 from the previous exercise together with this particular solution to solve

the ODE with the following initial conditions.

(a) u(0) = 1, ux(0) = 2 (b) u(0) = 2, ux(0) = 1

Solve the inhomogeneous ODE with the following boundary conditions.

(c) u(0) = 0, u(1) = 1 (d) u(0) = 1, u(1) = 0 (e) ux(0) = 1, ux(1) = 2

7. Recall I claimed the general solution to the first order ODE

2x2
du

dx
− u2 = x2 is u(x) = x

(

1−
2

log |x|+ c

)

.

(a) Plug the solution into the ODE to verify it’s valid.

(b) Solve the initial value problem with u(1) = 0.

(c) Solve the initial value problem with u(1) = 1.

I got: (b) u(x) = x(1− 2/(log x+ 2)) and (c) u(x) = x .
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8. Recall the general solution to

d2u

dx2
−

(

du

dx

)2

= 0 is u(x) = − log |x− c1|+ c2.

(a) Plug the solution into the ODE to verify it’s valid.

(b) Solve the initial value problem with u(0) = 0, ux(0) = 1.

(c) Solve the initial value problem with u(0) = 1, ux(0) = 0.

I got: (b) u(x) = − log(1− x) and (c) u(x) = 1.
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