
Second Order Linear Equations (Part I)

A second order linear ODE, written here in standard form, looks like

d2u

dx2
+ a(x)

du

dx
+ b(x)u = f(x),

where a(x) , b(x) and f(x) are given functions of x . I’ll call this equation homogeneous

when f(x) ≡ 0. I’ll call this equation constant coefficient when a(x) and b(x) are con-

stants.

Suppose, somehow, I could factor the standard form differential operator as follows,

d2u

dx2
+ a(x)

du

dx
+ b(x)u =

(

d

dx
− p(x)I

)(

d

dx
− q(x)I

)

u.(F1)

(The notation I above denotes the identity operator.) Carry out the indicated operations

on the right to get
(

d

dx
− p(x)I

)(

d

dx
− q(x)I

)

u

=
d

dx

(

du

dx
− q(x)u

)

− p(x)

(

du

dx
− q(x)u

)

=
d2u

dx2
− (p(x) + q(x))

du

dx
+ (p(x)q(x)− q′(x))u.

Therefore, to obtain the factorization (F1), we must determine p(x) and q(x) so that

(F2) −(p(x) + q(x)) ≡ a(x) and (p(x)q(x)− q′(x)) ≡ b(x).

Solving for p and q is an almost impossible task to do generally except in certain special

(but very important) cases. I’ll discuss these later.

Given that a second order linear equation is already factored, solving it simply reduces to

solving two first order linear ODEs. Here’s an example. Consider

d2u

dx2
− u =

(

d

dx
− I

)(

d

dx
+ I

)

u = x.

Call v = (d/dx+ I)u and solve

dv

dx
− v = x ⇒ ex

d

dx

(

e−xv
)

= x ⇒ v = c1e
x − (x+ 1).

Finally, use v just computed to solve for u

du

dx
+ u = v ⇒ e−x d

dx
(exu) = c1e

x − (x+ 1) ⇒ u = c2e
−x + 1

2
c1e

x − x.

Redefine constant c1 to see

u = c1e
x + c2e

−x − x is the general solution to
d2u

dx2
− u = x.
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Notice that the second order equation’s general solution involves two free parameters, c1

and c2 .

Here’s a more interesting variable coefficient example. Let’s start with the factored equa-

tion, and from it work backwards to determine the standard form equation.
(

d

dx
− 1

x
I

)(

d

dx
+

1

x
I

)

u =
d2u

dx2
+

d

dx

(

1

x
u

)

− 1

x

du

dx
− 1

x2
u =

d2u

dx2
− 2

x2
u.

So, to solve the second order variable coefficient problem

d2u

dx2
− 2

x2
u = 0,

first let v = (d/dx+ 1/x I)u and solve for v

dv

dx
− 1

x
v = 0 ⇒ x

d

dx

(

1

x
v

)

= 0 ⇒ v = c1x,

then solve for u

du

dx
+

1

x
u = v ⇒ 1

x

d

dx
(xu) = c1x ⇒ u = 1

3
c1x

2 + c2x
−1.

Of course I’ve cheated on this example by starting with the factored equation.

1. Verify that I’ve correctly factored the given standard form differential operator, then

determine the general solution to the linear and homogeneous ODE.

(a)

(

d

dx
+ I

)(

d

dx
+ 2I

)

u =
d2u

dx2
+ 3

du

dx
+ 2u = 0

(b)

(

d

dx
+ I

)(

d

dx
+ I

)

u =
d2u

dx2
+ 2

du

dx
+ u = 0

(c)

(

d

dx

)(

d

dx
− 1

x
I

)

u =
d2u

dx2
− 1

x

du

dx
+

1

x2
u = 0

(d)

(

d

dx
+ 2xI

)(

d

dx

)

u =
d2u

dx2
+ 2x

du

dx
= 0

On part (d) use
∫

e−x2

dx =
√
π

2
erf(x) .

See e.g. https://en.wikipedia.org/wiki/Error function.

2. Use the factorizations given in the previous exercise to find the general solutions to the

following linear but this time inhomogeneous ODEs.

(a)
d2u

dx2
+ 3

du

dx
+ 2u = x (c)

d2u

dx2
− 1

x

du

dx
+

1

x2
u = 1

(b)
d2u

dx2
+ 2

du

dx
+ u = e−x (d)

d2u

dx2
+ 2x

du

dx
= x
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Now, let me show you how to perform factorization (F1) in two special cases. In both

cases I’ll use requirement (F2), but here I’ll decouple the two equations for p(x) and q(x)

and write them as follows.

(F2*) q′(x) = −(q2(x) + a(x)q(x) + b(x)) and p(x) = −(q(x) + a(x)).

Note, once q(x) is determined from the left equation, p(x) follows from the right.

The constant coefficient equation:

First, suppose the coefficients a(x) and b(x) are constant, i.e.

a(x) ≡ a, b(x) ≡ b.

In this case we can solve (F2*) by assuming q is constant.

q ≡ r = const

q′ = −(q2 + aq + b) ⇒ 0 = −(r2 + ar + b) ⇒ q = r = 1

2

(

−a±
√

a2 − 4b
)

,

p = −(q + a) ⇒ p = −(r + a) ⇒ p = 1

2

(

−a∓
√

a2 − 4b
)

.

The constant coefficient factorization is therefore

d2u

dx2
+ a

du

dx
+ b u =

(

d

dx
− r1I

)(

d

dx
− r2I

)

u,

where r1 and r2 are the two roots of this ODE’s characteristic polynomial,

(CC) r2 + ar + b = 0.

Many applications involve second order constant coefficient ODEs. You’ll see them over

and over in this course, and you’ll also see them in many upper level engineering courses.

I advise you give this constant coefficient factorization formula careful thought.

The Cauchy-Euler differential equation:

A variable coefficient equation whose standard form coefficients take the form

a(x) ≡ a

x
, b(x) ≡ b

x2
(a and b are constants)

is called a Cauchy-Euler equation. This equation arises when solving the Laplace par-

tial differential equation in two dimensional circular symmetry by separation of variables;

(you’ll use it in Math 3363). In this case (F2*) can be solved by taking q(x) = r/x and

determining the constant r .

q(x) = r/x, q′ = −(q2 + (a/x)q + (b/x2)) ⇒ −r = −(r2 + ar + b)

⇒ r = 1

2

(

−(a− 1)±
√

(a− 1)2 − 4b
)

.
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From this, solve for p(x)

p(x) = −(q(x) + a/x) ⇒ p(x) =
− 1

2

(

−(a− 1)±
√

(a− 1)2 − 4b+ 2a
)

x

=

1

2

(

−(a− 1)∓
√

(a− 1)2 − 4b
)

− 1

x
.

The Cauchy-Euler factorization can also be written in a fairly compact form.

d2u

dx2
+

a

x

du

dx
+

b

x2
u =

(

d

dx
− (r1 − 1)

x
I

)(

d

dx
− r2

x
I

)

u,

where r1 and r2 are the two roots of the C-E characteristic polynomial,

(CE) r(r − 1) + ar + b = 0.

3. Factor the following differential operators. Check your work.

(a)
d2u

dx2
− 2

du

dx
+ u (d)

d2u

dx2
− 1

x

du

dx
+

1

x2
u

(b)
d2u

dx2
− 3

du

dx
+ 2u (e)

d2u

dx2
− 2

x

du

dx
+

2

x2
u

(c)
d2u

dx2
− 2

du

dx
+ 2u (f)

d2u

dx2
− 1

x

du

dx
+

2

x2
u

Factorization of both the constant coefficient and Cauchy-Euler equations require deter-

mining the roots of a quadratic characteristic polynomial; see (CC) and (CE) above. Three

cases must be considered.

(Case 1) There are two real and distinct roots.

(Case 2) There is only one root.

(Case 3) The two roots are complex.

We’re going to focus on the homogeneous problem here, the inhomogeneous problem will

be dealt with on the next homework assignment.

The constant coefficient equation:

We’ll find the general solution to

d2u

dx2
+ a

du

dx
+ b u = 0, (a , b are constant)

whose characteristic polynomial, see (CC) above, has roots

r2 + ar + b = 0 ⇒ r± = 1

2

(

−a±
√

a2 − 4b
)

.
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Factor and solve as done earlier to conclude
(

d

dx
− r1I

)(

d

dx
− r2I

)

u = 0 ⇒ u =
c1

r1 − r2
er1x + c2e

r2x.

In case 1 and case 3 r1 6= r2 , so the given solution is valid. Furthermore, the constant c1

can be redefined c1/(r1 − r2) → c1 . The solution above is however not valid in case 2,

r1 = r2 , since division by zero is never allowed. It will be treated last.

The roots are real and distinct when a2 − 4b > 0. Write r1 = α + β and r2 = α − β by

taking α ≡ −a/2 and β ≡
√
a2 − 4b/2. So we can write our solution as

u = eαx
(

c1e
βx + c2e

−βx
)

.

Redefine constants again, c1 → (c̃1+ c̃2)/2 and c2 → (c̃1− c̃2)/2, to see this can be further

written as

(case 1) u = eαx (c̃1 cosh(βx) + c̃2 sinh(βx)) .

The roots are complex when a2 − 4b < 0. In this case, write β ≡
√
4b− a2/2 (what’s

inside the square root is positive) so r1 = α+ iβ and r2 = α− iβ . The solution becomes

u = eαx
(

c1e
iβx + c2e

−iβx
)

.

Redefine constants again, this time c1 → (c̃1− ic̃2)/2 and c2 → (c̃1+ ic̃2)/2, together with

Euler’s formula

cos(θ) =
eiθ + e−iθ

2
, sin(θ) =

eiθ − e−iθ

2i
,

to get

(case 3) u = eαx (c̃1 cos(βx) + c̃2 sin(βx)) .

There is only one root when a2 − 4b = 0 in which case r1 = r2 = −a/2 ≡ α . In this

special case,

d2u

dx2
+ a

du

dx
+ (a/2)2u =

(

d

dx
− αI

)(

d

dx
− αI

)

u = 0,

and as before set v = du/dx− αu , solve for v , then solve for u

dv

dx
− αv = 0 ⇒ v = c1e

αx ⇒ du

dx
− αu = v = c1e

αx ⇒ u = (c1x+ c2)e
αx.

So when the characteristic polynomial has only one root, r = −a/2 ≡ α , the ODE’s

general solution is

(case 2) u = (c1x+ c2)e
αx.
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Here are two examples.

The constant coefficient homogeneous equation has characteristic polynomial

d2u

dx2
+ 2

du

dx
+ 3u = 0, r2 + 2r + 3 = 0.

The roots are found by the quadratic formula

r± =
−2±

√
22 − 4 · 3
2

= −1±
√
1− 3 = −1±

√
2 i.

(This is case 3.) Therefore, its general solution is

u = e−x
(

c1 cos(
√
2x) + c2 sin(

√
2x)

)

.

The constant coefficient homogeneous equation has characteristic polynomial

d2u

dx2
+ 2

du

dx
+ u = 0, r2 + 2r + 1 = 0.

Here, the quadratic formula gives

r± =
−2±

√
22 − 4 · 1
2

= −1± 0.

(This is case 2.) Therefore, its general solution is

u = e−x (c1x+ c2) .

The Cauchy-Euler differential equation:

We’ll now find the general solution to

d2u

dx2
+

a

x

du

dx
+

b

x2
u = 0, (a , b are constant)

whose characteristic polynomial, see (CE) above, has roots

r(r − 1) + ar + b = 0 ⇒ r± = 1

2

(

−(a− 1)±
√

(a− 1)2 − 4b
)

.

Take r1 as either root and r2 the other, and then factor
(

d

dx
− (r1 − 1)

x
I

)(

d

dx
− r2

x
I

)

u = 0.

Solve as usual, set v = du/dx− (r2/x)u , solve for v , then solve for u

dv

dx
− (r1 − 1)

x
v = 0 ⇒ v = c1x

r1−1

du

dx
− r2

x
u = v = c1x

r1−1 ⇒ u =
c1

r1 − r2
xr1 + c2 x

r2 .

As we saw earlier, this is not valid when r1 = r2 . So, given r2 = r1 , what changes is

du

dx
− r1

x
u = v = c1x

r1−1 ⇒ xr1
d

dx

(

x−r1 u
)

= c1x
r1−1 ⇒ u = (c1 log(x) + c2)x

r1 .
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To summarize, when the Cauchy-Euler characteristic polynomial has two distinct real

roots, say r1 and r2 , the general solution to the homogeneous problem is

u = c1x
r1 + c2x

r2 .

When there is only one root, say r2 = r1 , the general solution is

u = (c1 log(x) + c2)x
r1 .

I know of no real applications of Cauchy-Euler whose characteristic polynomial has complex

roots. Therefore, I won’t treat this case here. (It’s not hard to do however. Give it a try

if you’ve got some spare time.)

Here’s an example of Cauchy-Euler you’ll see, Math 3363 or other PDE courses, when

doing separation of variables applied to the Laplacian in circular symmetry. Solve

d2u

dx2
+

1

x

du

dx
− n2

x2
u = 0,

where n = 0, 1, 2, . . . . Its characteristic polynomial and roots are

r(r − 1) + r − n2 = 0 ⇒ r± = 0± n.

There is only one distinct root when n = 0, so in this case

u = c1 log(x) + c2.

There are two distinct real roots when n 6= 0, so in this case

u = c1x
−n + c2x

n.

4. Determine the general solution to the following constant coefficient and homogeneous

equations.

(a)
d2u

dx2
− u = 0 (d)

d2u

dx2
+ u = 0

(b)
d2u

dx2
− du

dx
− 2u = 0 (e)

d2u

dx2
− 2

du

dx
+ 2u = 0

(c)
d2u

dx2
= 0 (f)

d2u

dx2
+ 2

du

dx
+ u = 0

5. Solve the following IVPs.

(a)
d2u

dx2
= 0 with u(0) = 1, u′(0) = 2

(b)
d2u

dx2
− du

dx
+ 2u = 0 with u(0) = 1, u′(0) = 2
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6. Solve the following boundary value problems, (BVPs).

Dirichlet (a)
d2u

dx2
− u = 0 with u(0) = 1, u(1) = 2

Neumann (b)
d2u

dx2
− u = 0 with u′(0) = 1, u′(1) = 2

7. Here are a couple of Cauchy-Euler problems. Find the general solution.

(a)
d2u

dx2
− 3

x

du

dx
+

3

x2
u = 0 (b)

d2u

dx2
− 3

x

du

dx
+

4

x2
u = 0

8. When solving Laplace’s PDE on an annular region, the following Dirichlet–type BVPs

must be solved. Please solve.

(a)
d2u

dx2
+

1

x

du

dx
= 0 with u(1) = a0, u(2) = b0

(b)
d2u

dx2
+

1

x

du

dx
− n2

x2
= 0 with u(1) = an, u(2) = bn (n = 1, 2, . . .)

FYI: an , bn are constants, specifically Fourier coefficients.
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