
How to Easily Solve Certain Second Order Linear ODEs

The Method of Guessing and Duhamel’s Principle

Here we consider finding the general solution to

L(u) = f(x)

where L(u) is a linear second order differential operator. The solution u can be decom-

posed into two parts

u = uh + up where L(uh) = 0, and L(up) = f(x).

uh is called the homogeneous solution and up is called a particular solution. Clearly uh+up

solves the inhomogeneous ODE since

L(u) = L(uh + up) = L(uh) + L(up) = 0 + f(x) = f(x).

For the moment let’s take

L(u) ≡ d2u

dx2
+ a

du

dx
+ b u

where a and b are constants, i.e. the so-called constant coefficient problem.

The general solution to homogeneous problem

d2u

dx2
+ a

du

dx
+ b u = 0

can easily be found by looking for a solution having the special form u(x) = erx ,

0 =
d2u

dx2
+ a

du

dx
+ b u = (r2 + a r + b) erx ⇒ r2 + a r + b = 0.

The polynomial on the right is called the characteristic polynomial for the constant coef-

ficient problem. Its roots can be found by using the quadratic formula

r2 + a r + b = 0 ⇒ r = 1

2

(

−a±
√

a2 − 4b
)

.

There are three cases you must be ready for. They are:

(1) The roots are real and distinct; a2 − 4b > 0.

(2) The roots are distinct but complex; a2 − 4b < 0.

(3) The characteristic polynomial has only one root; a2 − 4b = 0.

I’ll illustrate these three cases by considering the following three examples.

The first case:

(1)
d2u

dx2
+ 2

du

dx
− u = 0 ⇒ r2 + 2r − 1 = 0 ⇒ r = −1±

√
2.
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This yields two solutions: u(x) = e−x e
√
2x and u(x) = e−x e−

√
2x . Therefore, the general

solution to example (1) is

u(x) = e−x
(

c1e
√
2x + c2e

−
√
2x
)

.

As I stressed to you in class, I suggest you note that by redefining constants as follows

c̃1 + c̃2
2

≡ c1,
c̃1 − c̃2

2
≡ c2,

the solution above can be written in the alternate form

u(x) = e−x
(

c̃1 cosh(
√
2x) + c̃2 sinh(

√
2x)

)

.

The second case:

(2)
d2u

dx2
+ 2

du

dx
+ 2u = 0 ⇒ r2 + 2r + 2 = 0 ⇒ r = −1±

√
−1 = −1± i.

This yields two solutions: u(x) = e−x eix and u(x) = e−x e−ix . Therefore, the general

solution is

u(x) = e−x
(

c1e
ix + c2e

−ix
)

.

But by again redefining constants

c̃1 − ic̃2
2

≡ c1,
c̃1 + ic̃2

2
≡ c2,

together with Euler’s formula, we can rewrite the general solution to example (2) as

u(x) = e−x (c̃1 cos(x) + c̃2 sin(x)) .

The third case:

(3)
d2u

dx2
+ 2

du

dx
+ u = 0 ⇒ r2 + 2r + 1 = 0 ⇒ r = −1±

√
0 = −1.

This yields only one solution: u(x) = e−x . However, as you saw on your previous home-

work, in this double root case a second solution is found by multiplying the first solution

by x . That is u(x) = xe−x is a second solution. Therefore, the general solution to

example (3) is

u(x) = e−x (c1 + c2x) .

Please memorize how to solve the constant coefficient, homogeneous, second order problem

by finding the root(s) of its characteristic polynomial and then identifying which case above

the roots fall into, i.e. case (1) two real and distinct roots, case (2) two distinct complex

roots and case (3) a single double root.

We’ll now focus on techniques for finding up , the particular solution for the inhomogeneous

problem.
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For the constant coefficient ODE, the method of undetermined coefficients, or what I call

the method of guessing, is a fast and probably the easiest way to find a particular solution.

Here we’ll solve
d2u

dx2
+ a

du

dx
+ b u = f(x) (a and b are constants)

for certain right hand sides:

(1) f(x) = xn (n = 0, 1, 2, . . .), (2) f(x) = ehx, (3) f(x) = sin(hx) or cos(hx).

(See https://wikipedia.org/wiki/Method of undetermined coefficients for others.)

The key to employing this technique is to guess the correct form for up .

(1) Given f(x) = xn , try

up(x) = xs
(

αnx
n + αn−1x

n−1 + · · ·+ α0

)

(typically s = 0 but you might need s = 1 or 2).

Use s = 0 unless u = 1 solves the homogeneous ODE. Use s = 1 unless u = x solves the

homogeneous ODE. Use s = 2 if both u = 1 and u = x solve the homogeneous ODE.

Here are two examples.

Find a particular solution to the following.

d2up

dx2
+ up = x2. Try up = α2x

2 + α1x+ α0 .

Here we can take s = 0 since u = 1 does not solve the homogeneous problem. Plug in the

trial and equate powers of x

x2 =
d2up

dx2
+ up = (2α2) + (α2x

2 + α1x+ α0) = α2x
2 + α1x+ α0 + 2α2

⇒ α2 = 1, α1 = 0, 2α2 + α0 = 0 ⇒ α2 = 1, α1 = 0, α0 = −2

So, up = x2 − 2.

Find a particular solution to the following.

d2up

dx2
+

dup

dx
= x2. Try up = x (α2x

2 + α1x+ α0) .

Here we take s = 1 since u = 1 does solve the homogeneous problem but u = x does not.

Plug in and equate powers of x

x2 =
d2up

dx2
+

dup

dx
= (6α2x+ 2α1) + (3α2x

2 + 2α1x+ α0)

⇒ 3α2 = 1, 6α2 + 2α1 = 0, 2α1 + α0 = 0 ⇒ α2 = 1/3, α1 = −1, α0 = 2.

So, up = x3/3− x2 + 2x .

(2) Given f(x) = ehx (h 6= 0), try

up(x) = xsα ehx (typically s = 0 but you might need s = 1 or s = 2).
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Use s = 0 unless u = ehx is a homogeneous solution. Use s = 1 unless u = xehx is a

homogeneous solution. Use s = 2 otherwise.

Here are two examples.

Find a particular solution to the following.

d2up

dx2
+ up = ex. Try up = αex .

Here we take s = 0 since u = ex does not solve the homogeneous problem. Plug in and

equate

ex =
d2up

dx2
+ up = αex + αex = 2αex ⇒ α = 1/2.

So, up = 1

2
ex .

Find a particular solution to the following.

d2up

dx2
− up = ex. Try up = xαex .

Here we take s = 1 since u = ex does solve the homogeneous problem. Plug in and equate

ex =
d2up

dx2
− up = α(xex + 2ex)− αxex = 2αex ⇒ α = 1/2.

So, up = 1

2
x ex .

(3) Given f(x) = sin(hx) or cos(hx) (h 6= 0), try

up(x) = xs (α cos(hx) + β sin(hx)) (typically s = 0 but you might need s = 1).

Use s = 0 unless u = sin(hx) and cos(hx) solve the homogeneous ODE. If they do take

s = 1.

Here are two examples.

Find a particular solution to the following.

d2up

dx2
+

dup

dx
= sin(x). Try up = α cos(x) + β sin(x) .

Here we take s = 0 since u = sin(x) and cos(x) do not solve the homogeneous problem.

Plug in and equate

sin(x) =
d2up

dx2
+

dup

dx
= (−α cos(x)− β sin(x)) + (−α sin(x) + β cos(x))

= (β − α) cos(x) + (−β − α) sin(x). ⇒ α = −1/2, β = −1/2.

So, up = − 1

2
cos(x)− 1

2
sin(x) .

Find a particular solution to the following.

d2up

dx2
+ up = sin(x). Try up = x (α cos(x) + β sin(x)) .
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Here we take s = 1 since u = sin(x) and cos(x) do solve the homogeneous problem. Plug

in the trial and equate

sin(x) =
d2up

dx2
+ up

= (−αx cos(x)− βx sin(x)− 2α sin(x) + 2β cos(x)) + (αx cos(x) + βx sin(x))

= −2α sin(x) + 2β cos(x) ⇒ α = −1/2, β = 0.

So, up = − 1

2
x cos(x) .

The method of guessing works great when it applies, i.e. it only works for constant coef-

ficient problems with certain right hand sides f(x) . Be very careful however to use the

correct form for your trial solution. I suggest you first solve the homogeneous problem and

use its solution to determine how to modify the form of your trial particular solution.

In exercises 1 – 5, use the method of guessing to find the general solution to the given

inhomogeneous, linear and constant coefficient differential equations.

Hint: To solve part (d) use linearity together with your answers from parts (a) – (c).

1.
d2u

dx2
+ 2

du

dx
− 3u = f(x) where

(a) f(x) = x2 + 1 (b) f(x) = sin(x)

(c) f(x) = ex (d) f(x) = x2 + 1 + 5 ex

2.
d2u

dx2
+ 4u = f(x) where

(a) f(x) = 2x+ 1 (b) f(x) = sin(x)

(c) f(x) = sin(2x) (d) f(x) = 2 sin(x) + 3 sin(2x)

3.
d2u

dx2
− 9u = f(x) where

(a) f(x) = x2 (b) f(x) = sin(3x)

(c) f(x) = e−3x (d) f(x) = 9x2 + 10 e−3x

4.
d2u

dx2
− 2

du

dx
+ u = f(x) where

(a) f(x) = 3x2 + 4 (b) f(x) = ex

(c) f(x) = e2x (d) f(x) = 6x2 + 8 + 5 ex + 6 e2x
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5.
d2u

dx2
= f(x) where

(a) f(x) = 1 (b) f(x) = x

(c) f(x) = x2 (d) f(x) = 6x2 + 2x+ 4

Next I’ll state a method for finding a particular solution to the inhomogeneous, second

order, linear ODE based on a general idea known as Duhamel’s principle; Jean-Marie

Duhamel: https://wikipedia.org/wiki/Duhamel’s principle.

Consider the second order and linear differential operator

L(u) ≡ d2u

dx2
+ a(x)

du

dx
+ b(x)u,

where this time the coefficients a(x) and b(x) do not need to be constant. Solve the

homogeneous initial value problem

L(v) = 0 with initial conditions v(z) = 0, v′(z) = 1.

Note here the initial conditions are specified at x = z . I’ll denote the solution by v(x; z) .

Now, the integral

up(x) =

∫ x

a

v(x; z)f(z) dz

is the solution to the inhomogeneous ODE

L(up) = f(x) where up satisfies up(a) = u′
p(a) = 0.

Note how the integral’s lower limit a appears in the initial conditions for up above.

Here’s a constant coefficient example. It’s easy to compute (you do it) that the solution

to the homogeneous IVP

d2v

dx2
+ v = 0, v(z) = 0, v′(z) = 1, is v(x; z) = sin(x− z).

Therefore, according to Duhamel’s integral formula

up(x) =

∫ x

0

sin(x− z) sin(z) dz solves
d2up

dx2
+ up = sin(x) with up(0) = u′

p(0) = 0.

(I took the lower limit a = 0 for convenience only.) To evaluate the integral, use

sin(a) sin(b) = 1

2
(cos(a− b)− cos(a+ b)) ,

and compute

up(x) =

∫ x

0

sin(x− z) sin(z) dz = 1

2

∫ x

0

(cos(x− 2z)− cos(x)) dz = 1

2
sin(x)− 1

2
x cos(x).

Note that up(0) = u′
p(0) = 0. Compare this to the particular solution found in the method

of guessing example at the top of page five.
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Here’s a variable coefficient example.

d2v

dx2
+

1

x

dv

dx
− 1

x2
v = 0, v(z) = 0, v′(z) = 1, ⇒ v(x; z) =

1

2

(

x− z2

x

)

.

This variable coefficient differential equation comes from a class of variable coefficient prob-

lems known as Cauchy–Euler equations. I’ll show you how to solve these later. Therefore,

up(x) =

∫ x

1

1

2

(

x− z2

x

)√
z dz solves

d2up

dx2
+

1

x

dup

dx
− 1

x2
up =

√
x.

(I took a = 1 to avoid division by zero.) Assume x > 0 and evaluate the integral to get

up(x) =
4

21
x5/2 −

(

x

3
− 1

7x

)

.

Note that up(1) = u′
p(1) = 0.

6. Use Duhamel’s integral formula to find a particular solution to the following inhomoge-

neous problems. (Take your lower limit a = 0.)

(a)
d2u

dx2
+ u = cos(x) (c)

d2u

dx2
= x2

(b)
d2u

dx2
− u = e−x (d)

d2u

dx2
− du

dx
= ex

Answers: (a) u(x) = 1

2
x sin(x) . (b) u(x) = 1

2
sinh(x) − 1

2
xe−x . (c) u(x) = 1

12
x4 .

(d) u(x) = xex − ex + 1.

7. Use Duhamel to find a particular solution and then determine the general solution for

d2u

dx2
− 2

du

dx
+ 2u = sin(x).

Your integral should look like u(x) =
∫ x

a
ex−z sin(x − z) sin(z) dz = . . . The integration

here may take some effort.

8. Do the same as exercise 6. You may assume x > 0 and take your lower limit a = 1.

(a)
d2u

dx2
+

1

x

du

dx
= x (b)

d2u

dx2
− 1

x

du

dx
= x

You may freely use the facts that the general solution to the homogeneous problems are

c1 + c2 log(x) for part (a) and c1 + c2x
2 for part (b).

Answers: (a) u(x) = − 1

3
log(x) + 1

9
(x3 − 1). (b) u(x) = 1

3
x3 − 1

2
x2 + 1

6
.

Here’s a terse verification of the Duhamel formula for the variable coefficient problem.

The Leibniz integral rule is a slight extension of the fundamental theorem of calculus. It

states
d

dx

∫ x

a

f(x, y) dy = f(x, x) +

∫ x

a

∂

∂x
f(x, y) dy.
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The Leibniz rule is pretty easy to derive. See your calc3 text or ask me to derive it in

class.

Apply the Leibniz rule to the Duhamel formula

d

dx
up(x) =

d

dx

∫ x

a

v(x; z) f(z) dz = v(x;x) f(x) +

∫ x

a

∂

∂x
v(x; z) f(z) dz.

Now, the initial condition v(z) = 0 is shorthand for v(x; z)|x=z = 0. Since this is true for

any z , we must have v(x;x) = 0. Therefore

d

dx
up(x) =

∫ x

a

∂

∂x
v(x; z) f(z) dz.

Apply the Leibniz rule to this again

d2

dx2
up(x) =

∂

∂x
v(x;x) f(x) +

∫ x

a

∂2

∂x2
v(x; z) f(z) dz.

The initial condition v′(z) = 1 is shorthand for (d/dx) v(x; z)|x=z = 1. Since this is true

for any z , conclude this time that (∂/∂x) v(x;x) = 1. Therefore

d2

dx2
up(x) = f(x) +

∫ x

a

∂2

∂x2
v(x; z) f(z) dz.

Plug these into the differential equation to get

d2up

dx2
+ a(x)

dup

dx
+ b(x)up

= f(x) +

∫ x

a

(

∂2

∂x2
v(x; z) + a(x)

∂

∂x
v(x; z) + b(x) v(x; z)

)

f(z) dz.

Finally, since v solve the homogeneous equation, the bracketed term in the integral above

is identically zero. Therefore

d2up

dx2
+ a(x)

dup

dx
+ b(x)up = f(x) + 0 = f(x).

How to choose the lower limit a

From the previous paragraph we have shown

up(x) =

∫ x

a

v(x; z) f(z) dz, u′
p(x) =

∫ x

a

∂

∂x
v(x; z) f(z) dz.

As you all know,
∫ a

a
· · · = 0. Therefore, our Duhamel solution will automatically satisfy

up(a) = 0, u′
p(a) = 0.

Here’s an example to show how the choice of lower limit can be exploited to solve the IVP.

Solve the inhomogeneous IVP

d2u

dx2
+

1

x

du

dx
− 1

x2
u =

√
x, with initial condditions u(1) = 2, u′(1) = 3.
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In a previous example, we found

up(x) =

∫ x

1

1

2

(

x− z2

x

)√
z dz =

4

21
x5/2 −

(

x

3
− 1

7x

)

.

Check that as stated above, we must have up(1) = u′
p(1) = 0. Later we’ll see that the

general solution to this homogeneous Cauchy–Euler equation is

uh(x) = c1x+ c2x
−1.

Therefore the general solution to the inhomogeneous problem is

u(x) = c1x+ c2x
−1 +

(

4

21
x5/2 −

(

x

3
− 1

7x

))

.

Now let’s use the initial conditions to determine c1 and c2 .

2 = u(1) = c1 + c2 + 0

3 = u′(1) = c1 − c2 + 0
⇒ c1 = 5/2, c2 = −1/2.

So, the given inhomogeneous IVP’s solution is

u(x) =
5

2
x− 1

2
x−1 +

4

21
x5/2 −

(

x

3
− 1

7x

)

.

9. Use your Duhamel results from exercise 6 to solve the following inhomogeneous IVPs.

(a)
d2u

dx2
+ u = cos(x), u(0) = 1, u′(0) = 2.

(b)
d2u

dx2
− u = e−x, u(0) = 1, u′(0) = 2.

10. Use your Duhamel results from exercise 8 to solve the following inhomogeneous IVPs.

(a)
d2u

dx2
+

1

x

du

dx
= x, u(1) = 1, u′(1) = 2.

(b)
d2u

dx2
− 1

x

du

dx
= x, u(1) = 1, u′(1) = 2.

Recall the homogeneous solutions to part (a) and (b) are given in exercise 8.
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