1. Solve the following Cauchy-Euler IVP’s.

(a) \(x^2 \frac{d^2 u}{dx^2} + x \frac{du}{dx} - u = 0 \), \(u(1) = 0 \), \(u'(1) = 1 \).

(b) \(x^2 \frac{d^2 u}{dx^2} + x \frac{du}{dx} + u = 0 \), \(u(1) = 1 \), \(u'(1) = 0 \).

(c) \(\frac{d^2 u}{dx^2} + \frac{3}{x} \frac{du}{dx} + \frac{1}{x^2} u = 0 \), \(u(1) = 1 \), \(u'(1) = 1 \).

(d) \(\frac{d^2 u}{dx^2} - \frac{1}{x} \frac{du}{dx} + \frac{1}{x^2} u = 0 \), \(u(1) = 0 \), \(u'(1) = 1 \).

2. Use Duhamel’s method to solve the following.

(a) \(\frac{d^2 u}{dx^2} + \frac{1}{x} \frac{du}{dx} - \frac{1}{x^2} u = x \), \(u(1) = 0 \), \(u'(1) = 0 \).

(b) \(\frac{d^2 u}{dx^2} + \frac{1}{x} \frac{du}{dx} - \frac{1}{x^2} u = x^2 \), \(u(1) = 0 \), \(u'(1) = 0 \).

Answers: (a) \(u(x) = \frac{x^3 - 2x + x^{-1}}{8} \). (b) \(u(x) = \frac{(2x^4 - 5x + 3x^{-1})}{30} \).

Duhamel’s method can also be used to solve the following first order inhomogeneous system

\[
\frac{dx}{dt} - \lambda x = f(t), \quad x(0) = 0 \quad \Rightarrow \quad x(t) = \int_0^t e^{A(t-\tau)} f(\tau) \, d\tau,
\]

where \(x, f \in \mathbb{R}^d \) and \(A \in \mathbb{R}^{d \times d} \) is a constant matrix.

3. Solve the following inhomogeneous system.

\[
\begin{align*}
\frac{dx}{dt} - y &= t, \quad x(0) = 0, \\
\frac{dy}{dt} - x &= e^t, \quad y(0) = 0.
\end{align*}
\]

Hint: Recall

\[
A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \Rightarrow \quad e^{At} = \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}.
\]

If a 2 \times 2 matrix \(A \) only has one eigenvalue, then it is either already diagonal, or it can’t be diagonalized. There is however, in this latter case, an invertible matrix \(S \) such that

\[
S^{-1} AS = J_\lambda = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}.
\]

\(J_\lambda \) is called the Jordan form for the non-diagonalizable matrix \(A \). As shown in class, once \(S \) is determined we can easily evaluate

\[
e^{At} = Se^{J_\lambda t}S^{-1}, \quad \text{where} \quad e^{J_\lambda t} = e^{\lambda t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.
\]
Here’s a recipe to determine S. First, compute an eigenvector, say r_λ, associated to A’s
eigenvalue λ. Next, determine any vector, say g, which is not parallel to r_λ. That is, g
can be any nonzero vector which is not an eigenvector. Compute the vector $r = (A - \lambda I)g$.
Since $(A - \lambda I)^2 = 0$, note that r will be an eigenvector of A. Finally, let S be the 2×2
matrix whose first column is r and second column is g. This is a similarity transformation S
which will do the trick.
Here’s an example. Let $A = \begin{pmatrix} 1 & 4 \\ -1 & 5 \end{pmatrix}$. This matrix has only one eigenvalue, $\lambda = 3$, and
a one dimensional eigenspace spanned by $r_\lambda = (2, 1)^t$. Let’s pick $g = (1, 0)^t$ since it’s simple and not an eigenvector. Compute
$$
 r = (A - \lambda I)g = \begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \end{pmatrix}.
$$
(Note that r above is an eigenvector.) Form the matrix S with columns r and g
$$
 S = \begin{pmatrix} -2 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow S^{-1}AS = J = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}.
$$
Again let me stress, this construction works only for 2×2 non-diagonalizable matrices.

4. Let $A = \begin{pmatrix} 2 & 4 \\ -1 & 6 \end{pmatrix}$. This matrix is not diagonalizable. Determine the Jordan form J_λ
for A and a similarity transformation S so that $S^{-1}AS = J_\lambda$.
Partial answer: $J_\lambda = \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}$.

5. For the matrix A in the previous exercise, determine e^{At}.
My answer: $e^{At} = e^{4t} \begin{pmatrix} 1 - 2t & 4t \\ -t & 1 + 2t \end{pmatrix}$.

6. Solve the initial value problem
$$
\frac{dx}{dt} = 2x + 4y, \quad x(0) = 1,
$$
$$
\frac{dy}{dt} = -x + 6y, \quad y(0) = 2.
$$