
Variational Calculus and the Brachistochrone Problem

Johann Bernoulli posed the problem of the brachistochrone to the readers of Acta Erudi-

torum in June, 1696. The problem statement reads as follows. What curve joining points

A and B in the plane does a frictionless particle follow, initially at rest and influenced

only by gravity, so as to minimizes the time of traversal? See the top of [1] for an

excellent animation depicting the Brachistochrone Problem as well as for related historical

facts and other details.

First some preliminaries. Set up coordinates so the vertical y -axis points downwards and

the horizontal x -axis points to the right. Let ex and ey denote the unit vectors pointing

in the x and y directions respectively. Take the point A at the origin and suppose B is

to its right and below. Let (x, y(x)) be a continuous path joining A to B . That is

A = (0, 0), B = (xB , yB) with xB > 0 and yB > 0,

y(0) = 0, y(xB) = yB .

Visualize the path as an immovable wire joining A to B and the particle as a threaded

bead allowed to slip along the wire frictionlessly. According to Newton’s second law, the

particle (i.e. bead) with position (x(t), y(t)) satisfies

x ≡
(

x
y

)

, m
d2x

dt2
= mg ey + f⊥,

where m is the mass of the bead, g is the gravitational acceleration constant, and f⊥ is

the normal force exerted by the wire on the bead to balance its weight and centripetal

force due to curving motion. Conservation of energy is found by dotting the equation of

motion by the particle’s velocity vector

m
d2x

dt2
· dx
dt

= (mg ey + f⊥) ·
dx

dt
= mg ey ·

dx

dt

=⇒ d

dt

(

1
2v

2
)

=
d

dt
(gy) =⇒ 1

2v
2 = gy + const,

where the particle’s speed is v = ||dx/dt|| . Initially v = 0 when y = 0, so we get

v =
√

2gy.

The time it takes the bead moving with speed v to slide down an infinitesimal segment of

wire with length ds is given by

dt =
ds

v
=

√

1 + y2x dx√
2gy

.

[1] https://wikipedia.org/wiki/Brachistochrone curve
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Let’s define

H(y, yx) ≡
√

1 + y2x√
2gy

.

Therefore, for a given smooth path (x, y(x)) joining (0, 0) to (xB , yB) , the total traversal

time can be written as

T (y) ≡
∫ xB

0

H(y, yx) dx.

FYI: T (y) is called a functional. Its argument isn’t a point but actually a function, y(x) ,

coming from a certain class of functions, and for a given y , T returns a real number.

The solution of the Brachistochrone Problem is found by determining the function y∗

which minimizes T (y) . That is, our goal is to find the function y∗(x) with y∗(0) = 0,

y∗(xB) = yB such that

T (y∗) ≤ T (y) over all functions y(x) satisfying y(0) = 0, y(xB) = yB .

We’ll show below that y∗ solves a certain second order ODE with boundary conditions

y∗(0) = 0, y∗(xB) = yB , and finally we’ll solve the resulting BVP.

A technique known as the Calculus of Variations will be employed to determine the afore-

mentioned BVP. To this end, let δ > 0 and consider a smooth function φ(x) which is

required to satisfy φ(0) = φ(xR) = 0 but arbitrary otherwise. Let y = y∗ + δφ and

observe that such functions will define allowable paths joining points A to B . Therefore,

since y∗ is a minimizer of T (y)

0 ≤ 1

δ
(T (y∗ + δφ)− T (y∗)) =

1

δ

(

∫ δ

0

d

dǫ
T (y∗ + ǫφ) dǫ

)

,

where the rightmost identity is found by applying the Fundamental Theorem of Calculus

from Calculus 1. Next, calculate

d

dǫ
T (y∗ + ǫφ) =

d

dǫ

∫ xB

0

H(y∗ + ǫφ, y∗x + ǫφx) dx =

∫ xB

0

d

dǫ
H(y∗ + ǫφ, y∗x + ǫφx) dx

=

∫ xB

0

(

Hy(y
∗ + ǫφ, y∗x + ǫφx)φ+Hyx

(y∗ + ǫφ, y∗x + ǫφx)φx

)

dx,

where in the last identity I used the chain rule from Calculus 3. Specifically, given a

function of two variables, H(y, yx) above, the chain rule states

d

dǫ
H(a, b) = Hy(a, b)

da

dǫ
+Hyx

(a, b)
db

dǫ
,

where it’s common to use the notation

Hy(y, yx) =
∂

∂y
H(y, yx) and Hyx

(y, yx) =
∂

∂yx
H(y, yx).
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Let δ → 0, and use the fact that 1
δ

∫ δ

0
f(ǫ) dǫ → f(0) for any continuous f , to find

0 ≤
∫ xB

0

(

Hy(y
∗, y∗x)φ+Hyx

(y∗, y∗x)φx

)

dx.

Replace φ with −φ in this inequality to see we have actually shown

0 =

∫ xB

0

(

Hy(y
∗, y∗x)φ+Hyx

(y∗, y∗x)φx

)

dx.

Since φ(0) = φ(xB) = 0, integration by parts applied to the second integral term gives

0 =

∫ xB

0

(

Hy(y
∗, y∗x)−

d

dx
Hyx

(y∗, y∗x)
)

φdx,

and from this and the fact that φ is otherwise arbitrary implies pointwise for 0 < x < xB

Hy(y
∗, y∗x)−

d

dx
Hyx

(y∗, y∗x) = 0(EL-2nd)

subject to y∗(0) = 0 and y∗(xB) = yB .

This is the celebrated Euler-Lagrange second order differential equation central to the the-

ory of Variational Calculus; see [2]. H(y, yx) is called the Lagrangian and characterizes

the given extrema problem. Before continuing on to our particular brachistochrone appli-

cation, I want to show you how the second order Euler-Lagrange ODE above (where H

does not depend explicitly on x) can be integrated once to a first order ODE via what is

known as the Beltrami identity; see [3]. The Beltrami identity follows from a very clever

application of the Calculus 3 chain rule and the usual product rule. Consider H(y, yx)

where y is a smooth function of x , and use the chain rule to see that

d

dx
H = Hy

dy

dx
+Hyx

d2y

dx2
,

and use the product rule to see that

d

dx

(

Hyx

dy

dx

)

= Hyx

d2y

dx2
+

d

dx
Hyx

dy

dx
.

Subtract the second from the first to get

d

dx

(

H −Hyx

dy

dx

)

=

(

Hy −
d

dx
Hyx

)

dy

dx
.

Therefore, given that y∗ is a smooth minimizer of T (y) , (EL-2nd) and Beltrami above

combine to show
d

dx

(

H(y∗, y∗x)−Hyx
(y∗, y∗x)

dy∗

dx

)

= 0

=⇒ H(y∗, y∗x)−Hyx
(y∗, y∗x)

dy∗

dx
= const(EL-1st)

subject to y∗(0) = 0 and y∗(xB) = yB .

[2] https://wikipedia.org/wiki/Euler-Lagrange equation

[3] https://wikipedia.org/wiki/Beltrami identity
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Let’s finish up by solving for the particular path, (x, y∗(x)) , that solves the Brachistochrone

Problem. From now on, I’m going to drop the ∗ superscript from the minimizer, y∗ , to

help simplify notation. Recall that

H(y, yx) =

√

1 + y2x√
2gy

=⇒ ∂

∂yx
H(y, yx) =

yx/
√

1 + y2x√
2gy

.

Insert these into the first order Euler-Lagrange ODE in (EL-1st) to find
√

1 + y2x√
2gy

− y2x/
√

1 + y2x√
2gy

= c1 =⇒ ((1 + y2x)− y2x) = c1
√

1 + y2x
√

2gy.

Redefine constant c1 so that c1
√
2g → c1 and do a little bit more algebra

yx = ±
√

1/c21 − y

y
= ±

√

c1 − y

y
,

where I’ve again redefined 1/c21 → c1 > 0. These separate

±
√

y

c1 − y
dy = dx.

Recall the y -axis points down and y(0) = 0. For small enough x we expect y(x) > 0 ⇒
yx ≥ 0. So we’ll first take the + sign in ± and march to the right from the left boundary

condition y(0) = 0. Making the substitution y = c1 sin
2(θ) ⇒ dy = 2c1 sin(θ) cos(θ) dθ

for θ in the range 0 ≤ θ ≤ π/2 get

∫ x(θ)

0

dx = 2c1

∫ θ

0

√

c1 sin
2(θ)

c1 − c1 sin
2(θ)

sin(θ) cos(θ) dθ

=⇒ x(θ) = 2c1

∫ θ

0

sin2(θ) dθ = c1(θ − 1
2 sin(2θ)).

Note above that x(π/2) = c1π/2 and y(π/2) = c1 Also notice that yx may change sign

there, so we’ll next take the − sign in ± , and using the same substitution as before, march

right from π/2

∫ x(θ)

x(π/2)

dx = −2c1

∫ θ

π/2

√

c1 sin
2(θ)

c1 − c1 sin
2(θ)

sin(θ) cos(θ) dθ

=⇒ x(θ)− x(π/2) = 2c1

∫ θ

π/2

sin2(θ) dθ = c1(θ − π/2− 1
2 sin(2θ)).

Therefore, for all 0 ≤ θ ≤ π , we found a parameterized path

x(θ) = c1
(

θ − 1
2 sin(2θ)

)

,(C)

y(θ) = c1
(

1
2 − 1

2 cos(2θ)
)

(= c1 sin
2(θ)),

which on changing variables satisfies the ODE in (EL-1st). It also satisfies the left boundary

condition y(0) = 0 when θ = 0. FYI. (C) describes a path known as a cycloid. It is a
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curve traced by a point on a circle as it rolls along a straight line without slipping; [4]. We

still need to address how we’ll get the right boundary condition. That is, how do you find

c1 > 0 and 0 < θB < π such that x(θB) = xB , y(θB) = yB ? See Exercise 1 below.

1. Let r(θ) = x(θ)/y(θ) where x(θ) and y(θ) are given in (C). Also recall the boundary

condition for y(x) : y(xB) = yB where xB > 0 and yB > 0.

(a) Show that lim
θ→0+

r(θ) = 0.

(b) Show that lim
θ→π−

r(θ) = ∞.

(c) Conclude there is a 0 < θB < π such that r(θB) = xB/yB .

(d) Determine the constant c1 so that x(θB) = xB and y(θB) = yB .

2. Let (xA, yA) and (xB , yB) with xA < xB be two points in the plane. Also let (x, y(x))

denote a smooth path joining these. Use the Calculus of Variations to show the path with

minimum arclength is in fact a straight line. Hint: Consider A(y) ≡
∫ xB

xA

√

1 + y2x dx .

3. Find the minimum of E(y) ≡
∫ 1

0
y2x dx over all functions y(x) which satisfy y(0) = 0,

y(1) = 1. Answer: y∗(x) = x ⇒ E(y∗) = 1.

Perhaps a few closing questions and remarks may be of some value to the reader.

We found that the Euler-Lagrange equations are satisfied by a functional minimizer. But

does that mean a solution to Euler-Lagrange is a minimizer? No way. Just like in calculus,

when x∗ minimizes a smooth scalar function f(x) then ∇f(x∗) = 0 but not the other

way around. x∗ could be at a local maximum or saddle or one of several local minima.

Much greater in-depth analysis is required to prove an Euler-Lagrange solution yields a

global minimizer.

Is the Euler-Lagrange BVP always uniquely solvable? Existence and uniqueness for an

IVP is almost always true and pretty easy to establish. Not so for BVPs. They are much

harder to analyze. For example, consider

d2u

dx2
+ u = 0 with u(0) = 0 and u(π) = 0.

[4] https://wikipedia.org/wiki/Cycloid
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Check that any multiple of u = sin(x) is a solution. No uniqeness here. Similarly, it’s easy

to show this example

d2u

dx2
+ u = 0 with u(0) = 0 and u(π) = 1

has no solution at all.

We’ve assumed the minimizer y∗ to T (y) is a smooth function of x in order to deduce the

second order Euler-Lagrange equation. But the functional T (y) is itself well defined even

for functions which are for example continuous and piecewise linear. For such functions the

Euler-Lagrange equation as a second order ODE doesn’t make a whole lot of sense. There

is a notion of weak solutions to Euler-Lagrange which can broaden the class of allowable

minimizers. This topic is, however, way out of the scope of these notes.
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