
Fundamental Set of Solutions

Consider the linear and homogeneous first order system of ODEs

du

dt
= A(t)u, where u ∈ R

n, A(t) ∈ R
n×n,

and throughout assume the entries of A(t) , i.e. ai,j(t) , are everywhere continuous real

valued functions of the independent variable t . Suppose somehow we are able to determine

a set containing n solution vectors,

S ≡ {u1(t), u2(t), . . . ,un(t)}, where for each j = 1, 2, . . . , n we have
duj

dt
= A(t)uj .

Here’s what will be shown below. If S is a linearly independent set of vectors at a single

t = t∗ , it is in fact linearly independent at every t ∈ R . When so, S is called a fundamental

set of solutions. On the other hand, if S is linearly dependent at a single t , it is in fact

linearly dependent at all t .

To see this is true, consider an n×n matrix W (t) constructed so its j th column is uj(t) ,

W (t) =

(

u1(t) u2(t) · · · un(t)

)

, and let w(t) = detW (t).

Often, W (t) is called theWronskian matrix, and w(t) is called theWronskian determinant.

Later I’ll show w(t) solves the scalar ODE

dw

dt
= Tr(A(t))w,

where Tr(A) denotes the trace of the matrix A ; Tr(A) ≡ a1,1 + a2,2 + · · · + an,n . You

know from week two of our class how to explicitly solve this scalar ODE

w(t) = exp(h(t)− h(t∗))w(t∗), where h(t) is the antiderivative of Tr(A(t)) .

We’ve assumed all entries of A(t) are everywhere continuous, which implies h(t) is a

continuously differentiable function at every t , which implies exp(h(t) − h(t∗)) > 0 for

every t . Therefore

w(t) = 0 ⇐⇒ w(t∗) = 0.

But this is exactly what we need in order to conclude the set {u1(t), u2(t), . . . ,un(t)} is

linearly independent/dependent at time t if and only if it is so at some other t = t∗ .

Now, to show w solves the scalar ODE dw/dt = Tr(A)w , I’ll write the Wronskian matrix

in terms of row vectors r1(t), . . . , rn(t) ,

W (t) =







r1(t)
...

rn(t)






, where (ri)j = (uj)i.
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There’s a pretty formula for the derivative of the determinant which was probably discov-

ered by Leibniz. It says

dw

dt
= det









(d/dt) r1
r2

...
rn









+ det









r1

(d/dt) r2
...
rn









+ · · ·+ det









r1

r2

...
(d/dt) rn









.

This formula is sometimes called the determinant product rule and is derived by forming

the difference quotient 1

∆t
(w(t+∆t)−w(t)) and then exploiting the multilinearity of the

determinant. Try to derive this as an exercise. Next, use ui,j = (uj)i and rewrite the n

systems of differential equations (i.e. with j = 1, 2, . . . , n) in a row-wise manner to see

dri
dt

=

n
∑

k=1

ai,k(t) rk where (ri)j = ui,j .

Plug these into the Leibniz product rule formula to get

dw

dt
= det









∑n

k=1
a1,k rk
r2

...
rn









+ det











r1
∑n

k=1
a2,k rk
...
rn











+ · · ·+ det









r1

r2

...
∑n

k=1
an,k rk









.

In the first term on the right hand side above, use row multilinearity of the determinant

to conclude

det









∑n

k=1
a1,k rk
r2

...
rn









=
n
∑

k=1

a1,k det









rk

r2

...
rn









= a1,1 det









r1

r2

...
rn









= a1,1 w,

where above I used the fact that

det









rk

r2

...
rn









= 0 for all k 6= 1.

Similarly

det











r1
∑n

k=1
a2,k rk
...
rn











=

n
∑

k=1

a2,k det









r1

rk

...
rn









= a2,2 det









r1

r2

...
rn









= a2,2 w.
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Continue until i = n to get

det









r1

r2

...
∑n

k=1
an,k rk









= an,n w.

Therefore, putting these altogether, we finally arrive at

dw

dt
= (a1,1 + a2,2 + · · ·+ an,n)w = Tr(A)w,

which is what I said I would show.
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