
Math 3335 Supplemental Notes and Homework 1

A vector space is composed of a set of vectors, say V , and an associated scalar field, say

F . Below, let x , y and z denote arbitrary vectors in V , and let α and β denote arbitrary

scalars from V ’s scalar field F . Vector addition, x + y , and scalar multiplication, αx ,

must be defined for all vectors and scalars, and these operations must adhere to certain

requirements.

The result of vector addition, x+ y , is a vector in V . Moreover:

(1) Vector addition must be associative. That is x+ (y + z) = (x+ y) + z .

(2) Vector addition must commute. That is x+ y = y + x .

(3) There is a unique vector 0 ∈ V such that for every x ∈ V we have x + 0 = x . The

vector 0 is called the additive identity.

(4) For every x ∈ V , there exists a x̃ ∈ V such that x + x̃ = 0 . The vector x̃ is called

the additive inverse for x and is denoted by −x .

The result of scalar multiplication, αx , is a vector in V . Moreover:

(5) Scalar multiplication must distribute with respect to vector addition. That is we must

have α(x+ y) = αx+ αy .

(6) Scalar multiplication must distribute with respect to field addition. That is we must

have (α+ β)x = αx+ βx .

(7) Scalar multiplication must be compatible with field multiplication. That is we must

have α(βx) = (αβ)x .

(8) If 1 is the scalar field’s multiplicative identity, we must have 1x = x .

For those interested, see the additional exercise I give you on page 4.

1. Prove the following. Justify each step by stating which of the above properties was

used. (a) 0x = 0 , that is the scalar field’s additive identity 0 times any vector x is the

vector additive identity 0 . (b) −1x = −x , that is the additive inverse of the scalar field’s

multiplicative identity −1 times a vector x is that vector’s additive inverse −x .

2. Suppose the set of vectors is composed of all real column matrices

V =

{

x =

(

x1

x2

)

: x1 ∈ R, x2 ∈ R

}

,

and the associated scalar field is R . Define vector addition and scalar multiplication by

x+ y ≡

(

x1 + y1
x2 + y2

)

, αx ≡

(

αx1

αx2

)

.

Show this defines a vector space.
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3. Suppose vectors are of the form above, and scalars, addition and multiplication are as

given. However, this time let V be the following subsets.

(a)

{(

x1

x2

)

: x1 ≥ 0

}

(b)

{(

x1

x2

)

: x1 + x2 = 0

}

(c)

{(

x1

x2

)

: x1 + x2 = 1

}

(d)

{(

x1

x2

)

: x1 = 0

}

Which defines a vector space?

The vector space R
n , n = 2 or 3,..., is composed of real column matrices

x =





x1

...
xn





and scalars R with vector addition and scalar multiplication as defined for matrices. The

standard basis for R
n is given by

e1 =









1
0
...
0









, e2 =









0
1
...
0









, . . . , en =









0
0
...
1









.

Therefore x can be written as the linear combination

x = x1 e1 + x2 e2 + · · ·+ xn en.

Vectors, vector addition and scalar multiplication on R
2 are graphically illustrated below.

Vectors x , y and their vector sum x+ y . Scalar multiplication.
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Here are some homework exercises from §1.7 of your text book. You may assume all

described figures are two dimensional; (i.e. planar).

4. Exercise 7, page 23.

5. Exercise 8, page 23.

6. Exercise 9, page 24.

7. Exercise 10, page 24.

A norm on a vector space V , say n(x) , is a well defined mapping from V into the nonneg-

ative reals which satisfies the following properties. For ease of presentation, let’s suppose

V ’s scalar field is R . (The phrase real vector space is used to specify that the scalar field

is the set of real numbers.)

(1) For every x ∈ V , n(x) ≥ 0. Moreover n(x) = 0 if and only if x = 0 .

(2) For every x ∈ V and α ∈ R , n(αx) = |α|n(x) .

(3) For every x ∈ V and y ∈ V , n(x+ y) ≤ n(x) + n(y) .

Item 3 is often called the triangle inequality. The norm of a vector x is often denoted by

||x|| , not n(x) as done above. I’ll use this double bar notation fairly consistently. Your

text book on the other hand uses |x| to denote the norm of a vector x .

There are many different norms defined on the vector space R
n . Here are but a few.

||x||1 ≡ |x1|+ · · ·+ |xn|(1-norm)

||x||2 ≡
√

x2

1
+ · · ·+ x2

n
(2-norm)

||x||∞ ≡ max(|x1|, . . . , |xn|)(∞-norm)

The ∞-norm is often referred to as the max-norm for obvious reasons. The 2-norm is often

referred to as the Euclidean-norm. Throughout this course, if a norm is left unsubscripted,

it will refer to the 2-norm.

8. Prove the two formulae given above for the 1-norm and the ∞-norm both satisfy all

properties required of a norm. You may assume n = 2. (These make very good exam

questions.)

9. Sketch the following regions in R
2 .

(a) {x : ||x||1 ≤ 1} (b) {x : ||x||2 ≤ 1} (c) {x : ||x||∞ ≤ 1}
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10. In class, I will established the fact that the formula for the Euclidean norm given above

is in fact a norm on the vector space R
2 . The hard part will be to verify property (3) –

the triangle inequality. Use what I do in class to generalized this result to R
n .

An Interesting Additional Exercise

1. Suppose we identify vectors x by

(

x1

x2

)

where x1 and x2 are real numbers. Now,

suppose we define a crazy notion of vector addition by

x+ y ≡

(

x1 + y1 − 1
x2 + y2 − 1

)

,

and scalar multiplication by a real number α by

αx ≡

(

α(x1 − 1) + 1
α(x2 − 1) + 1

)

.

Show that the resulting system satisfies properties 1–8 listed on page 1. Explicitly calculate

the additive identity vector, 0 , and the additive inverse of x , −x .
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