Math 3335 Supplemental Notes and Homework 1

A vector space is composed of a set of vectors, say \mathcal{V} , and an associated scalar field, say \mathcal{F} . Below, let \mathbf{x} , \mathbf{y} and \mathbf{z} denote arbitrary vectors in \mathcal{V} , and let α and β denote arbitrary scalars from \mathcal{V} 's scalar field \mathcal{F} . Vector addition, $\mathbf{x} + \mathbf{y}$, and scalar multiplication, $\alpha \mathbf{x}$, must be defined for all vectors and scalars, and these operations must adhere to certain requirements.

The result of vector addition, $\mathbf{x} + \mathbf{y}$, is a vector in \mathcal{V} . Moreover:

(1) Vector addition must be associative. That is $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$.

(2) Vector addition must commute. That is $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$.

(3) There is a unique vector $\mathbf{0} \in \mathcal{V}$ such that for every $\mathbf{x} \in \mathcal{V}$ we have $\mathbf{x} + \mathbf{0} = \mathbf{x}$. The vector $\mathbf{0}$ is called the additive identity.

(4) For every $\mathbf{x} \in \mathcal{V}$, there exists a $\tilde{\mathbf{x}} \in \mathcal{V}$ such that $\mathbf{x} + \tilde{\mathbf{x}} = \mathbf{0}$. The vector $\tilde{\mathbf{x}}$ is called the additive inverse for \mathbf{x} and is denoted by $-\mathbf{x}$.

The result of scalar multiplication, $\alpha \mathbf{x}$, is a vector in \mathcal{V} . Moreover:

(5) Scalar multiplication must distribute with respect to vector addition. That is we must have $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$.

(6) Scalar multiplication must distribute with respect to field addition. That is we must have $(\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}$.

(7) Scalar multiplication must be compatible with field multiplication. That is we must have $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$.

(8) If 1 is the scalar field's multiplicative identity, we must have $1\mathbf{x} = \mathbf{x}$.

For those interested, see the additional exercise I give you on page 4.

1. Prove the following. Justify each step by stating which of the above properties was used. (a) $0\mathbf{x} = \mathbf{0}$, that is the scalar field's additive identity 0 times any vector \mathbf{x} is the vector additive identity $\mathbf{0}$. (b) $-1\mathbf{x} = -\mathbf{x}$, that is the additive inverse of the scalar field's multiplicative identity -1 times a vector \mathbf{x} is that vector's additive inverse $-\mathbf{x}$.

2. Suppose the set of vectors is composed of all real column matrices

$$\mathcal{V} = \left\{ \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1 \in \mathbb{R}, x_2 \in \mathbb{R} \right\},$$

and the associated scalar field is \mathbb{R} . Define vector addition and scalar multiplication by

$$\mathbf{x} + \mathbf{y} \equiv \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix}, \quad \alpha \mathbf{x} \equiv \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \end{pmatrix}.$$

Show this defines a vector space.

3. Suppose vectors are of the form above, and scalars, addition and multiplication are as given. However, this time let \mathcal{V} be the following subsets.

(a)
$$\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1 \ge 0 \right\}$$
 (b) $\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1 + x_2 = 0 \right\}$
(c) $\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1 + x_2 = 1 \right\}$ (d) $\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1 = 0 \right\}$

Which defines a vector space?

The vector space \mathbb{R}^n , n = 2 or 3,..., is composed of real column matrices

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

and scalars \mathbb{R} with vector addition and scalar multiplication as defined for matrices. The *standard basis* for \mathbb{R}^n is given by

$$\mathbf{e}_1 = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, \ \mathbf{e}_2 = \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}, \ \dots, \ \mathbf{e}_n = \begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix}.$$

Therefore $\, {\bf x} \,$ can be written as the linear combination

$$\mathbf{x} = x_1 \, \mathbf{e}_1 + x_2 \, \mathbf{e}_2 + \dots + x_n \, \mathbf{e}_n.$$

Vectors, vector addition and scalar multiplication on \mathbb{R}^2 are graphically illustrated below.

Here are some homework exercises from §1.7 of your text book. You may assume all described figures are two dimensional; (i.e. planar).

- 4. Exercise 7, page 23.
- 5. Exercise 8, page 23.
- 6. Exercise 9, page 24.
- 7. Exercise 10, page 24.

A norm on a vector space \mathcal{V} , say $n(\mathbf{x})$, is a well defined mapping from \mathcal{V} into the nonnegative reals which satisfies the following properties. For ease of presentation, let's suppose \mathcal{V} 's scalar field is \mathbb{R} . (The phrase *real vector space* is used to specify that the scalar field is the set of real numbers.)

- (1) For every $\mathbf{x} \in \mathcal{V}$, $n(\mathbf{x}) \ge 0$. Moreover $n(\mathbf{x}) = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- (2) For every $\mathbf{x} \in \mathcal{V}$ and $\alpha \in \mathbb{R}$, $n(\alpha \mathbf{x}) = |\alpha| n(\mathbf{x})$.
- (3) For every $\mathbf{x} \in \mathcal{V}$ and $\mathbf{y} \in \mathcal{V}$, $n(\mathbf{x} + \mathbf{y}) \le n(\mathbf{x}) + n(\mathbf{y})$.

Item 3 is often called the *triangle inequality*. The norm of a vector \mathbf{x} is often denoted by $||\mathbf{x}||$, not $n(\mathbf{x})$ as done above. I'll use this double bar notation fairly consistently. Your text book on the other hand uses $|\mathbf{x}|$ to denote the norm of a vector \mathbf{x} .

There are many different norms defined on the vector space \mathbb{R}^n . Here are but a few.

(1-norm) $||\mathbf{x}||_1 \equiv |x_1| + \dots + |x_n|$

(2-norm)
$$||\mathbf{x}||_2 \equiv \sqrt{x_1^2 + \dots + x_n^2}$$

 $(\infty\text{-norm}) \qquad \qquad ||\mathbf{x}||_{\infty} \equiv \max(|x_1|, \dots, |x_n|)$

The ∞ -norm is often referred to as the max-norm for obvious reasons. The 2-norm is often referred to as the Euclidean-norm. Throughout this course, if a norm is left unsubscripted, it will refer to the 2-norm.

8. Prove the two formulae given above for the 1-norm and the ∞ -norm both satisfy all properties required of a norm. You may assume n = 2. (These make very good exam questions.)

9. Sketch the following regions in \mathbb{R}^2 .

(a)
$$\{\mathbf{x} : ||\mathbf{x}||_1 \le 1\}$$
 (b) $\{\mathbf{x} : ||\mathbf{x}||_2 \le 1\}$ (c) $\{\mathbf{x} : ||\mathbf{x}||_\infty \le 1\}$

10. In class, I will established the fact that the formula for the Euclidean norm given above is in fact a norm on the vector space \mathbb{R}^2 . The hard part will be to verify property (3) – the triangle inequality. Use what I do in class to generalized this result to \mathbb{R}^n .

An Interesting Additional Exercise

1. Suppose we identify vectors \mathbf{x} by $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ where x_1 and x_2 are real numbers. Now, suppose we define a crazy notion of vector addition by

$$\mathbf{x} + \mathbf{y} \equiv \begin{pmatrix} x_1 + y_1 - 1 \\ x_2 + y_2 - 1 \end{pmatrix},$$

and scalar multiplication by a real number $\alpha\,$ by

$$\alpha \mathbf{x} \equiv \begin{pmatrix} \alpha(x_1 - 1) + 1 \\ \alpha(x_2 - 1) + 1 \end{pmatrix}.$$

Show that the resulting system satisfies properties 1–8 listed on page 1. Explicitly calculate the additive identity vector, $\mathbf{0}$, and the additive inverse of \mathbf{x} , $-\mathbf{x}$.