
Math 3335. Integration on Curves, Surfaces and Volumes

1. Determine, if possible, a scalar potential φ so that ∇φ = F for the following.

(a) F(x, y, z) = (y + z) ex + (x+ z) ey + (x+ y) ez

(b) F(x, y, z) =
1

(x2 + z2)2
(

2xy ex − (x2 + z2) ey + 2yz ez
)

(c) F(x, y, z) = (2x+ y) ex + (x+ 2y + z) ey + y ez

(d) F(x, y, z) = (2xy + z2) ex + (x2 + 2yz) ey + (y2 + 2xz + 2z) ez

2. A helix is parameterized by x(t) = cos t ex + sin t ey + t ez . Compute the length of one

of its loops, say from t = 0 to t = 2π . Answer: 2π
√
2.

3. Consider a plane spiral parameterized by x(t) = e−t cos t ex+ e−t sin t ey . Compute the

spiral’s length from x0 = ex (i.e. t = 0) to x1 = 0 (i.e. t = ∞). Answer:
√
2.

4. Reparameterize the curves given in exercises 2 and 3 above in terms of arclength s . Use

s(t) =
∫ t

0
||v(τ)|| dτ to determine the inverse t(s) .

5. Compute the line integral
∫

Γ
F·dx where the vector function F(x, y, z) = x ex+y ey+z ez

and the path Γ is given as follows.

(a) Γ is the helix in exercise 2 above. (b) Γ is the spiral in exercise 3 above.

The vector function given here satisfies F = ∇φ where φ(x, y, z) = 1

2

(

x2 + y2 + z2
)

.

Check the values you got for your integrals by computing φ(x1)−φ(x0) where x0 and x1

are the endpoints of the appropriate path Γ.

6. Consider a 3–d solid region R given by {(x, y, z) : x2 +4y2 ≤ z ≤ 1} . Visualize this as

a parabolic bowl with elliptical cross sections cut off at the top by the plane z = 1. The

boundary of R is composed of two surfaces; Sside = {(x, y, z) : z = x2+4y2 & z ≤ 1} and

Stop = {(x, y, z) : x2 + 4y2 ≤ 1 & z = 1} . Both boundaries can be regarded as mappings

from the 2–d parameter set C = {(x, y) : x2 + 4y2 ≤ 1} into 3–d by

Fside(x, y) = x ex + y ey + (x2 + 4y2) ez ⇒ Sside = Fside(C),
and Ftop(x, y) = x ex + y ey + 1 ez ⇒ Stop = Ftop(C).

With this particular parameterization, verify the following.

(a) dAside = (−2x ex − 8y ey + 1 ez) dx dy (b) dAtop = ez dx dy
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Now consider a vector field F(x, y, z) = y ex + z ey + x ez and compute that its curl is

given by ∇×F = −ex − ey − ez . With this, use cartesian coordinates (i.e. (x, y) ∈ C ) to
compute the following surface integrals.

(c)

∫∫

Sside

(∇× F) · dA (d)

∫∫

Stop

(∇× F) · dA

A closed curve, say Γ, is the boundary for both surfaces Sside and Stop . Orient Γ in the

counter–clockwise direction when looking down the z–axis.

(e) Compute

∮

Γ

F · dx and compare to values obtained in parts (c) and (d).

(f) Finally, compute the volume of R ,

∫∫∫

R

dV , using cartesian coordinates (in which

obviously dV = dx dy dz ) and iterated integrals. (Answer: π/4.)

7. Here we repeat the previous exercise, but this time using elliptical–cylindrical coordi-

nates

x(r, θ, ζ) = 2r cos θ, y(r, θ, ζ) = r sin θ, z(r, θ, ζ) = ζ.

Here both boundaries can be regarded as mappings from the rectangular 2–d parameter

set P = {(r, θ) : 0 ≤ r ≤ 1/2, 0 ≤ θ ≤ 2π} into 3–d by

Fside(r, θ) = 2r cos θ ex + r sin θ ey + 4r2 ez ⇒ Sside = Fside(P),

and Ftop(r, θ) = 2r cos θ ex + r sin θ ey + 1 ez ⇒ Stop = Ftop(P).

With this particular parameterization, verify the following.

(a) dAside = (−4r cos θ ex − 8r sin θ ey + 1 ez) 2r dr dθ (b) dAtop = ez 2r dr dθ

Finally, repeat parts (c), (d) and (f) from exercise 6 using these coordinates. Note that in

these coordinates dV = 2r dr dθ dζ .

The previous two exercises exemplify Stokes’s theorem (as stated in calculus). That is
∫∫

S

(∇× F) · dA =

∮

Γ

F · dx,

where the curve Γ is the properly oriented boundary of the surface S . Next we give an

example of the divergence theorem. This important theorem says
∫∫∫

R

(∇ · F) dV =

∫∫

S

F · dA,

where the 3–d solid region R has S as its boundary surface which is oriented so that its

normal vector points outwards to R .
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8. Use the region R defined in exercise 6 and the elliptical-cylindrical coordinates given in

exercise 7 to compute

(a)

∫∫∫

R

(∇ · F) dV (b)

∫∫

S

F · dA

where F(x, y, z) = x ex + y ey + z ez .

9. Consider the hemispherical region R given by {(x, y, z) : x2 + y2 + z2 ≤ 1 & z ≥ 0} .
Its boundary surfaces can be parameterized by (x, y) ∈ C ≡ {(x, y) : x2 + y2 ≤ 1}

Ftop(x, y) = x ex + y ey +
(

√

1− (x2 + y2)
)

ez(c–c)

Fbot(x, y) = x ex + y ey + 0 ez

Stop = Ftop(C) Sbot = Fbot(C),

or perhaps more simply in polar form (r, θ) ∈ P ≡ {(r, θ) : 0 ≤ r ≤ 1 & 0 ≤ θ ≤ 2π}

Ftop(r, θ) = r cos θ ex + r sin θ ey +
(

√

1− r2
)

ez(c–p)

Fbot(r, θ) = r cos θ ex + r sin θ ey + 0 ez

Stop = Ftop(P) Sbot = Fbot(P),

or even more simply in spherical form (φ, θ) ∈ S ≡ {(φ, θ) : 0 ≤ φ ≤ π/2 & 0 ≤ θ ≤ 2π}

Ftop(φ, θ) = cosφ cos θ ex + cosφ sin θ ey + sinφ ez(c–s)

Fbot(φ, θ) = cosφ cos θ ex + cosφ sin θ ey + 0 ez

Stop = Ftop(S) Sbot = Fbot(S).

Use the coordinates (c–p) to evaluate the following surface integrals.

F(x, y, z) = x ex + y ey + z ez

(a)

∫∫

Stop

F · dA (b)

∫∫

Sbot

F · dA.

Use the coordinates (c–s) to evaluate the following surface integrals.

F(x, y, z) = y ex + z ey + x ez

(c)

∫∫

Stop

(∇× F) · dA (d)

∫∫

Sbot

(∇× F) · dA.

10. Consider the 2–d coordinates

x = x(u, v) ≡ u2 − v2, y = y(u, v) ≡ 2uv,

and a 2–d solid region R defined by {(x(u, v), y(u, v)) : 0 ≤ u ≤ 1 & 0 ≤ v ≤ 1} .
(a) Sketch the region R. (b) Show that dV = (4u2 + 4v2) du dv.

(c) Compute that the volume (area) of R is

∫∫

R

dV = 8/3.
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