Young’s, Hölder’s and Minkowski’s Inequalities

In class I derived the triangle inequality for the 2-norm (often called the Euclidean norm) on the vector space \(\mathbb{R}^2 \),

\[
|\mathbf{x}|_2 \equiv \sqrt{|x_1|^2 + |x_2|^2} \quad \Rightarrow \quad |\mathbf{x} + \mathbf{y}|_2 \leq |\mathbf{x}|_2 + |\mathbf{y}|_2.
\]

I used a somewhat brute force calculation together with the simple fact that

\[
0 \leq (a - b)^2 = a^2 - 2ab + b^2 \quad \Rightarrow \quad ab \leq \frac{1}{2}a^2 + \frac{1}{2}b^2.
\]

On your homework you are asked to extend this result from \(\mathbb{R}^2 \) to \(\mathbb{R}^n \).

Below I will show how to generalize the triangle inequality to the \(p \)-norm, \(p \geq 1 \), which on \(\mathbb{R}^n \) is defined by

\[
|\mathbf{x}|_p \equiv \sqrt[p]{\sum_{i=1}^n |x_i|^p}.
\]

The derivation is much more subtile than was required for the 2-norm. I’ll break the problem up into establishing three separate inequalities: (1) Young’s Inequality, (2) Hölder’s Inequality, and finally (3) Minkowski’s Inequality which is the name often used to refer to the \(p \)-norm triangle inequality.

(1) Young’s Inequality

For any real numbers \(a \geq 0 \) and \(b \geq 0 \) and \(p > 1 \) we have

\[
ab \leq \frac{1}{p}a^p + \frac{1}{q}b^q, \quad \text{where} \quad q = \frac{p}{p-1}.
\]

In class we used the special case with \(p = q = 2 \) to derive Cauchy-Schwarz.

Clearly, the sum of the highlighted areas given by \(\int_0^b f^{-1}(y) \, dy + \int_0^a f(x) \, dx \) is greater than or equal to area of the box of height \(b \) and width \(a \). (The image above comes from Wikipedia.)

Consider the figure above where \(f(x) \) at this stage can be any increasing function of \(x \) which satisfies \(f(0) = 0 \). It is easy to see by comparing the box delineated by the
coordinated axes and \(x = a \) and \(y = b \) to the two shaded regions in the figure we must have

\[
ab \leq \int_0^b f^{-1}(y) \, dy + \int_0^a f(x) \, dx.
\]

The first integral is the area of the shaded region on the left of the graph \(y = f(x) \) and the second integral is the area of the shaded region on the right. Now, let’s specifically pick \(f \). For \(p > 1 \) set \(f(x) = x^{p-1} \). Compute \(f \)’s inverse function to get \(f^{-1}(y) = y^{q-1} \) where \(q = p/(p-1) \). Integrate

\[
\int_0^a f(x) \, dx = \frac{1}{p} a^p \quad \text{and} \quad \int_0^b f^{-1}(y) \, dy = \frac{1}{q} b^q,
\]

and the desired inequality follows. This clever Calculus I based proof can be found at [1].

(2) Hölder’s Inequality

For \(p > 1 \) and \(q = p/(p-1) \), Hölder’s Inequality says

\[
\sum_{i=1}^{n} a_i b_i \leq \||a||_p||b||_q.
\]

\(p \) and \(q \) are said to be dual exponents and are related by \(1/p + 1/q = 1 \). The Cauchy-Schwarz Inequality is a special case of Hölder when \(p = q = 2 \).

Hölder follows easily from Young’s Inequality. Let \(\hat{a} = a/||a||_p \) and \(\hat{b} = b/||b||_q \). Using Young’s Inequality \(n \) times we get

\[
\sum_{i=1}^{n} \left(\hat{a}_i \hat{b}_i \right) \leq \sum_{i=1}^{n} \left(\frac{1}{p} |\hat{a}_i|^p + \frac{1}{q} |\hat{b}_i|^q \right)
\]

\[
= \frac{1}{p} \frac{1}{||a||_p} \sum_{i=1}^{n} |a_i|^p + \frac{1}{q} \frac{1}{||b||_q} \sum_{i=1}^{n} |b_i|^q
\]

\[
= \frac{1}{p} + \frac{1}{q} = 1.
\]

Since by the "\(\hat{\cdot} \)" normalization above we have

\[
\sum_{i=1}^{n} \hat{a}_i \hat{b}_i = \frac{1}{||a||_p||b||_q} \sum_{i=1}^{n} a_i b_i,
\]

the desired inequality follows.

(3) Minkowski’s Inequality

For any $p \geq 1$, Minkowski says $\|x + y\|_p \leq \|x\|_p + \|y\|_p$. The case when $p = 1$ is obviously true. To see it’s also true for any $p > 1$ write

$$\|x + y\|_p^p = \sum_{i=1}^{n} |x_i + y_i|^p = \sum_{i=1}^{n} |x_i + y_i| |x_i + y_i|^{p-1}.$$

We know that for real numbers $|x_i + y_i| \leq |x_i| + |y_i|$, Use this in the inequality above to conclude

$$\|x + y\|_p^p \leq \sum_{i=1}^{n} |x_i| |x_i + y_i|^{p-1} + \sum_{i=1}^{n} |y_i| |x_i + y_i|^{p-1}.$$

Finally, use Hölder on the first sum on the right hand side above with $a_i = |x_i|$ and $b_i = |x_i + y_i|^{p-1}$, and again on the second sum with $a_i = |y_i|$ and $b_i = |x_i + y_i|^{p-1}$ to arrive at

$$\|x + y\|_p^p \leq (\|x\|_p + \|y\|_p)^q \sqrt{n \sum_{i=1}^{n} |x_i + y_i|^{(p-1)q}}.$$

The fact that $q = p/(p-1)$ allows us to rewrite this as

$$\|x + y\|_p^p \leq (\|x\|_p + \|y\|_p) \|x + y\|_p^{p-1}$$

from which the Minkowski’s Inequality follows.