
Limits and Continuity on R
n

One of the most profound concepts in mathematics is the notion of the limit. It has puzzled

introductory calculus students for years. Let f be a real valued function, f :Rn → R , where

below we will use the shorthand notation f(x) to signify f(x1, x2, . . . , xn) . Let x0 ∈ R
n .

What is meant by writing the limit

lim
x→x0

f(x) = L

is the following: For any number ǫ > 0, there exists a number δ > 0 such that

|f(x)− L| < ǫ whenever 0 < ||x− x0|| < δ.

Generally, the number δ depends on ǫ . (Sometimes I’ll write δǫ to emphasize this fact.)

The main weakness of this ǫ -δ definition of the limit is that it is nonconstructive in nature.

It does not tell you what the limit L is, it only gives you a means to check whether or

not L = limx→x0
f(x) . Nevertheless, there are very good reasons why the ǫ -δ definition

has stood the test of time. It’s not too hard to understand, and it makes establishing the

major limit theorems a straight-forward endeavor.

Here are two Calculus I (n = 1) examples.

Define a function c(x) by

c(x) =
{

cos(1/x) if x 6= 0
0 if x = 0.

Does the limit limx→0 c(x) exist? It does not, and here’s why. Assume for the moment

that the limit did exist, say c = limx→0 c(x) . This would say (taking ǫ = 1) we must

have |c(x) − c| < 1 whenever 0 < |x − 0| < δ for some δ > 0. However, no matter how

small δ > 0 is, there is a positive odd integer, no , such that xo ≡ 1
n0π

< δ and a positive

even integer, ne , such that xe ≡ 1
neπ

< δ . Notice that c(xo) = −1 and c(xe) = +1. But

there is no number c satisfying both |(−1) − c| < 1 and |(+1) − c| < 1. Therefore, the

assumption that the limit existed is impossible.

Next define a function p(x) ≡ x c(x) where c(x) is as defined in the previous paragraph.

Does the limit limx→0 p(x) exist? It does, its limit value is zero, and here’s why. For

x 6= 0, notice that |p(x) − 0| = |x cos(1/x)| ≤ |x| . So, whenever 0 < |x− 0| < δǫ ≡ ǫ , we

have |p(x)− 0| ≤ |x− 0| < δǫ = ǫ . That is, for any ǫ > 0 (no matter how small) we have

|p(x)− 0| < ǫ whenever 0 < |x− 0| < ǫ ≡ δǫ.

All of the basic limit theorems from Calculus I extend to R
n . For example

If lim
x→x0

f(x) = F and lim
x→x0

g(x) = G,

then lim
x→x0

f(x) + g(x) = F +G, lim
x→x0

f(x) g(x) = F G, etc.
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Their proofs are trivially adapted to R
n by making one simple observation:

If 0 < δ1 ≤ δ2 then {x : 0 < ||x− x0|| < δ1} ⊆ {x : 0 < ||x− x0|| < δ2}.

That is, a ball centered at x0 with radius δ1 > 0 is contained inside a ball centered at the

same point with larger radius δ2 .

Here’s a remark intended for the more interested student. The norm used above to define

the n -dimensional limit was not explicitly stated. However, since all norms on finite

dimensional vector spaces are equivalent, it doesn’t matter which norm is used. That is,

whether or not the limit exists and/or what its particular value is does not depend on the

norm. Sadly, this fact does not generalized to infinite dimensional normed vector spaces.

Next, I’m going to show you by example how to evaluate a two dimensional limit by using

your first year calculus skills.

For the first example, consider the function

f(x, y) =







x2 − y2

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

To determine a possible value of lim(x,y)→(0,0) f(x, y) (assuming it exists) we’ll use polar

coordinate rays, x = r cos θ and y = r sin θ , and let r ↓ 0. Plugging in, we get

lim
r↓0

f(r cos θ, r sin θ) = lim
r↓0

(r cos θ)2 − (r sin θ)2

(r cos θ)2 + (r sin θ)2
= cos2 θ − sin2 θ = cos 2θ.

If the limit as (x, y) → (0, 0) were to exist, it must not depend on the path. But here

it does; i.e. it depends on the ray angle θ . Therefore, for this function the limit as

(x, y) → (0, 0) does not exist.

This example illustrates the following fact, a fact you are expected to know. If

lim
r↓0

f(x0 + r cos θ, y0 + r sin θ)

does not exist, or yields a limit which varies with θ , then

lim
(x,y)→(x0,y0)

f(x, y)

does not exist.

The second example is more interesting primarily because it has a limit. Consider

u(x, y) =







x sin(x) cosh(y) + y cos(x) sinh(y)

x2 + y2
if (x, y) 6= (0, 0)

1 if (x, y) = (0, 0).

The complex analysis student might recognize this as the real part of sin(z)/z when z 6= 0.
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Again, assuming the limit of u exists as (x, y) → (0, 0)

lim
(x,y)→(0,0)

u(x, y) = lim
r↓0

u(r cos θ, r sin θ)

= lim
r↓0

(

cos θ
sin(r cos θ)

r
cosh(r sin θ) + sin θ cos(r cos θ)

sinh(r sin θ)

r

)

Using first year calculus techniques, compute that as r ↓ 0

sin(r cos θ)

r
→ cos θ, cosh(r sin θ) → 1,

cos(r cos θ) → 1,
sinh(r sin θ)

r
→ sin θ,

and these together yield

lim
r↓0

u(r cos θ, r sin θ) = cos2 θ + sin2 θ = 1.

So, if the limit of u(x, y) were to exist as (x, y) → (0, 0), u would have to tend to one.

You’ll be asked to show in an exercise below that indeed u(x, y) → 1 as (x, y) → (0, 0).

This example illustrates another fact you are expected to know. If

lim
r↓0

f(x0 + r cos θ, y0 + r sin θ)

exist and is constant in θ , then

lim
(x,y)→(x0,y0)

f(x, y)

may exist, and if it did, the two limits (i.e. r ↓ 0 and (x, y) → (x0, y0)) would have the

same value.

The third example I give here is intended to show you it is possible for

lim
r↓0

f(x0 + r cos θ, y0 + r sin θ) = const in θ , but lim
(x,y)→(x0,y0)

f(x, y) fails to exist.

Consider the following 2d real valued function

f(x, y) =

{

1 if y = x2

0 otherwise.

Try to visualize this. It has value one on the parabola, y = x2 , but is zero everywhere

else. Now, let’s consider f(r cos θ, r sin θ) for various fixed angles θ . Along any ray with

π ≤ θ ≤ 2π , (in the third or fourth quadrant), f(r cos θ, r sin θ) = 0 for every r > 0.

Therefore, for these angles limr↓0 f(r cos θ, r sin θ) = 0. Along the vertical ray, θ = π/2,

we again have f(r cos θ, r sin θ) = 0 for every r > 0. Finally, for rays with 0 < θ < π/2 or

π/2 < θ < π notice that

f(r cos θ, r sin θ) =

{

1 if r = sin θ/ cos2 θ > 0
0 for all other r > 0.
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Make sure you understand why this also says limr↓0 f(r cos θ, r sin θ) = 0 for every θ in

these ranges. Therefore, for every ray angle θ , we have shown

lim
r↓0

f(r cos θ, r sin θ) = 0.

However, it’s easy to see the limit of this function can not possibly exist as (x, y) → (0, 0).

Check that for any δ > 0, there are points in the ball

{(x, y) : 0 <
√

(x− 0)2 + (y − 0)2 < δ}

with f(x, y) = 0 but also points with f(x, y) = 1.

I’m going to close this 2d limit discussion by stating a little theorem. Suppose a possible

limit is identified by computing

lim
r↓0

f(x0 + r cos θ, y0 + r sin θ) = L,

where L does not depend on the ray angle θ . If

lim
r↓0

sup
θ

|f(x0 + r cos θ, y0 + r sin θ)− L| = 0,

then the limit of f(x, y) exists as (x, y) → (x0, y0) , and the limit value is L . I’ll be glad

to prove this in class if requested.

The fact that the full 2-d limit may not exist even when it has a unique limit along rays is

somewhat pathological. It is essentially the same idea that a sequence may not converge

uniformly when it has a pointwise limit. (You should touch on these concepts when you

take intermediate analysis.) I don’t want to dwell on this distinction here however. Give

it some thought, but not too much. I don’t plan to test you on it.

We’ll close this set of homework notes by briefly discussing the concept of continuity.

A function f :Rn → R is continuous at a point x0 if for any number ǫ > 0, there exists a

number δ > 0 such that

|f(x)− f(x0)| < ǫ whenever ||x− x0|| < δ.

It should be obvious how closely related the concepts of the limit and continuity are. In

fact,

f(x) is continuous at x0 ⇐⇒ f(x0) = lim
x→x0

f(x).

Clearly, the functions f(x) = const and f(x) = xi for each coordinate direction 1 ≤ i ≤ n

are continuous at every point x0 ∈ R
n .

Also, the following facts are established for n -dimensional real valued functions in exactly

the same way as done in Calculus I for 1-dimensional functions.

If f(x) and g(x) are both continuous at x0 then

f(x) + g(x) and f(x) g(x) are continuous at x0 .
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In addition if f(x0) 6= 0 then

1/f(x) is continuous at x0 .

From these facts, conclude that any rational polynomial

f(x) =
p(x)

q(x)
, p and q are polynomials in x1, . . . , xn ,

is continuous at any point x0 where q(x0) 6= 0. For example

f(x, y, z) =
3x2 + z3 − 7xyz

x2 + 2y2 + 6

is continuous everywhere in R
3 since the denominator here is never zero.

Finally, suppose f(x) is continuous at x0 ∈ R
n , and suppose α : R → R is continuous at

y0 ≡ f(x0) ∈ R . Then the composition

α(f(x)) is continuous at x0 .

Again, the proof of this fact is just like the proof you saw in first year calculus.

This last result allows us to take any member from the catalogue of first year calculus 1-d

continuous functions, e.g. ex , sin(x) , cos(x) , etc, and extend them to R
n . For example

f(x, y) =

{

log(|x2 − 3xy|+ 1) + cos(x)/ sin(y) when y 6= nπ
0 when y = nπ.

is continuous everywhere except possibly when y is an integer multiple of π .

1. Suppose f :Rn → R has a limit F as x tends to x0 . Prove there is a δ > 0 such that

|f(x)| < 1 + |F | for any x satisfying 0 < ||x− x0|| < δ . Hint: Let ǫ = 1.

2. Suppose f :Rn → R has a nonzero limit F as x tends to x0 . Prove there is a δ > 0

such that |f(x)| > 1
2 |F | for any x satisfying 0 < ||x− x0|| < δ . Hint: Let ǫ = 1

2 |F | .

3. The following limits do not exist. Explain why.

(a) lim
(x,y)→(0,0)

f(x, y) when f(x, y) =

{

+1 if x− y ≥ 0
−1 if x− y < 0.

(b) lim
(x,y)→(0,0)

f(x, y) when f(x, y) =







x
√

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

(c) lim
(x,y)→(2,1)

f(x, y) when f(x, y) =







x
√

(x− 2)2 + (y − 1)2
if (x, y) 6= (2, 1)

0 if (x, y) = (2, 1).

(d) lim
(x,y)→(1,0)

f(x, y) when f(x, y) =







(x− 1) y

4(x− 1)2 + y2
if (x, y) 6= (1, 0)

0 if (x, y) = (1, 0).
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4. Consider functions f(x, y) which, for (x, y) 6= (0, 0), are defined as given. Each has a

limit as (x, y) → (0, 0). Determine their limit values.

(a) f(x, y) =
x3 + xy2 + x2 + y2

x2 + y2
(b) f(x, y) =

xy
√

x2 + y2

(c) f(x, y) =
ex

2+y2

− 1

x2 + y2
(d) f(x, y) =

ex + ey − x− y − 2

x2 + y2

5. Recall u(x, y) from the example discussed earlier in the text

u(x, y) =







x sin(x) cosh(y) + y cos(x) sinh(y)

x2 + y2
if (x, y) 6= (0, 0)

1 if (x, y) = (0, 0).

There we showed

lim
r↓0

u(r cos θ, r sin θ) = 1.

Here you will show that in fact lim(x,y)→(0,0) u(x, y) = 1.

Don’t worry. This will not be on your exam.

(a) It can be shown that for 0 < κ ≤ 1 we have | cosh(κr) − 1| ≤ | cosh r − 1| and when

0 < r ≤ π | sin(κr)/(κr)− 1| ≤ | sin r/r − 1| . Use these to show that for r in this range

sup
θ

∣

∣

∣

∣

cos θ
sin(r cos θ)

r
cosh(r sin θ)− cos2 θ

∣

∣

∣

∣

≤ | cosh r − 1|+

∣

∣

∣

∣

sin r

r
− 1

∣

∣

∣

∣

.

(b) It can be shown that for 0 < κ ≤ 1 we have | sinh(κr)/(κr)− 1| ≤ | sinh r/r − 1| and

when 0 < r ≤ π/2 | cosκr − 1| ≤ | cos r − 1| . Use these to show that for r in this range

sup
θ

∣

∣

∣

∣

sin θ cos(r cos θ)
sinh(r sin θ)

r
− sin2 θ

∣

∣

∣

∣

≤ | cos r − 1|+

∣

∣

∣

∣

sinh r

r
− 1

∣

∣

∣

∣

.

(c) Use parts (a) and (b) to conclude

lim
r↓0

sup
θ

|u(r cos θ, r sin θ)− 1| = 0 which implies lim
(x,y)→(0,0)

u(x, y) = 1.

(d) Is u(x, y) continuous for every (x, y) ∈ R
2 ?

6. Consider v(x, y) given by

v(x, y) =







x cos(x) sinh(y)− y sin(x) cosh(y)

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

It has a limit as (x, y) → (0, 0). (a) What is the value of this limit? (b) Is v(x, y)

continuous for every (x, y) ∈ R
2 ?

FYI: This is the imaginary part of sin(z)/z for complex z 6= 0
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