Math 3364: Homework 4

1. Recall from calculus: Along a smooth path $\Gamma(x_0, x_1)$ in \mathbb{R}^2 which joins x_0 to x_1 we have
\[
\int_{\Gamma(x_0, x_1)} \nabla \phi (x) \cdot dx = \int_{\Gamma(x_0, x_1)} (\phi_x \, dx + \phi_y \, dy) = \phi(x_1) - \phi(x_0).
\]
Use this together with Cauchy-Riemann to prove that along a smooth path $\Gamma(z_0, z_1)$ in \mathbb{C} which joins z_0 to z_1 we have
\[
\int_{\Gamma(z_0, z_1)} f'(z) \, dz = f(z_1) - f(z_0).
\]

2. Recall Green’s theorem from calculus: If S is a region in the plane with a smooth simple boundary Γ (positively oriented), and if $f(x, y) e_x + g(x, y) e_y$ is a smooth 2-d vector field on S, then the following line integral and surface integral are equal.
\[
\oint_{\Gamma} f \, dx + g \, dy = \iint_{S} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) \, dx \, dy.
\]
Suppose $u(x, y)$ and $v(x, y)$ are two real functions which satisfy the Cauchy-Riemann conditions. Use this and Green’s theorem to deduce the following.

(a) $\oint_{\Gamma} u \, dx - v \, dy = 0$.
(b) $\oint_{\Gamma} v \, dx + u \, dy = 0$.

(c) Conclude that when $f = u + iv$ we have $\oint_{\Gamma} f(z) \, dz = 0$.

3. Let $\Gamma(z_0, z_1)$ denote a smooth path in an open and simply connected subset $\Omega \subseteq \mathbb{C}$ which starts at z_0 and ends at z_1. Suppose f is a given continuous complex function on Ω whose integral is always path independent; i.e. for any two points z_0 and z_1 in Ω and any two smooth paths $\Gamma_1 = \Gamma_1(z_0, z_1)$ and $\Gamma_2 = \Gamma_2(z_0, z_1)$ joining z_0 to z_1 we have $\int_{\Gamma_1} f(\zeta) \, d\zeta = \int_{\Gamma_2} f(\zeta) \, d\zeta$. The assumption of path independence allows us to define the following function of z:
\[
F(z) = \int_{\Gamma(z_0, z)} f(\zeta) \, d\zeta
\]
for any $z \in \Omega$ where z_0 is a given constant point in Ω. (a) Observe that $F(z_0) = 0$.

(b) Let $z \in \Omega$ and $z + \Delta z \in \Omega$. Observe that
\[
F(z + \Delta z) - F(z) = \int_{\Gamma(z, z + \Delta z)} f(\zeta) \, d\zeta.
\]

(c) Take a particular straight-line path for $\Gamma(z, z + \Delta z)$ parameterized by $z(t) = z + t\Delta z$ for $t \in [0, 1]$; $(z(t) \in \Omega$ provided $|\Delta z|$ is small enough). Conclude that
\[
F(z + \Delta z) - F(z) = \Delta z \int_{0}^{1} f(z + t\Delta z) \, dt.
\]
(d) From this conclude that \(F \) is analytic in \(\Omega \) and is in fact the antiderivative of \(f \); i.e. \(dF(z)/dz = f(z) \).

4. Let \(\Gamma \) be a straight line in the complex plane going from \(z_0 = 1 + i \) to \(z_1 = 2 + 2i \).
 (a) Parameterize \(\Gamma \) by \(z(t) = z_0 + t(z_1 - z_0) \), \(t \) runs from 0 to 1, and compute \(\int_\Gamma z^2\,dz = \int_0^1 (z(t))^2 z'(t)\,dt \).
 (b) Use exercise 1 to compute this integral without parameterizing the line.

5. Let \(\Gamma \) be a 1/4 circle in the complex plane going from \(z_0 = 1 \) to \(z_1 = i \).
 (a) Parameterize \(\Gamma \) by \(z(t) = e^{it} \), \(t \) runs from 0 to \(\pi/4 \), and compute \(\int_\Gamma z^2\,dz = \int_0^{\pi/4} (z(t))^2 z'(t)\,dt \).
 (b) Use exercise 1 to compute this integral without parameterizing the circle.

6. Cauchy’s integral formula says that when \(f \) is analytic on an open and simply connected set \(\Omega \subseteq \mathbb{C} \), and \(\Gamma \) is a positively oriented simple path in \(\Omega \) which surrounds a point \(z \), then
 \[
 2\pi if(z) = \oint_\Gamma \frac{f(\zeta)}{\zeta - z}\,d\zeta.
 \]
 (a) Use induction to deduce
 \[
 \frac{d^k}{dz^k} \left(\frac{1}{\zeta - z} \right) = k! \frac{1}{(\zeta - z)^{k+1}}
 \]
 provided \(z \neq \zeta \).
 (b) Use this identity and Cauchy’s integral formula to derive the following generalize Cauchy formula
 \[
 2\pi if^{(k)}(z) = k! \oint_\Gamma \frac{f(\zeta)}{(\zeta - z)^{k+1}}\,d\zeta,
 \]
 where \(f^{(k)}(z) \) denotes the \(k \)th derivative of \(f \) at \(z \).

7. Let \(\Gamma_R \) denote the positively oriented circle, centered at \(z = 0 \) with radius \(R > 0 \). Use Cauchy’s integral formula and partial fractions to determine the values of the following integrals.
 (a) \(\oint_{\Gamma_R} \frac{z}{z^2 - 1}\,dz \)
 (b) \(\oint_{\Gamma_R} \frac{e^z}{z^2 - 1}\,dz \)
 Please note that your answer will depend on \(R \). The case here when \(R = 1 \) is special. Don’t worry about this now.

8. Let \(\Gamma_R \) be as given in the previous exercise. Determine the values of the following integrals.
 (a) \(\oint_{\Gamma_R} \frac{z}{(z-1)^2}\,dz \)
 (b) \(\oint_{\Gamma_R} \frac{e^z}{(z-1)^2}\,dz \)
9. Let Γ_R be as given in exercise 7. Determine the values of the following integrals.

(a) \[\oint_{\Gamma_R} \frac{1}{z^2(z-1)} \, dz \]
(b) \[\oint_{\Gamma_R} \frac{\cos z}{z^2(z-1)} \, dz \]

10. Suppose $f(z)$ is analytic in an open ball $B_\delta(z_0) \equiv \{z : |z - z_0| < \delta\}$ for some $\delta > 0$. Use the generalized Cauchy formula to conclude there is a constant M_ρ such that

\[|f^{(n)}(z_0)| \leq n! \frac{M_\rho}{\rho^n} \]

for any given ρ satisfying $0 < \rho < \delta$. Hint: Parameterize Γ by $z_0 + \rho e^{i\theta}$ and take $M_\rho = \max_{\zeta \in \overline{B}_\rho(z_0)} |f(\zeta)|$.
