1. Each given function \(f(z) \) has an isolated singularity at \(z = 0 \). Determine its full Laurent expansion about \(z = 0 \), classify the singularity type and state the residue value.

 (a) \(f(z) = \frac{\sin(z)}{z^2} \)

 (b) \(f(z) = \frac{e^{z^2} - 1}{z^5} \)

 You may freely use \(\sin(z) = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} \) and \(e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!} \).

2. Each given \(f(z) \) has an isolated singularity at \(z = 0 \). Determine each term in the singular part of its Laurent expansion about \(z = 0 \), classify the singularity type and state the residue value.

 (a) \(f(z) = \cos(z) \sin(z) \)

 (b) \(f(z) = \frac{1}{e^z - 1 - z} \)

 You may use \(\cos(z) = 1 - z^2/2 + \cdots \).

3. Determine the location of all poles and also determine the pole’s order for the following.

 (a) \(f(z) = \frac{1}{z^2 + 1} \)

 (b) \(f(z) = \frac{z^2}{\sin(z)} \)

4. In this problem, you are asked to evaluate the value of the integral \(I \equiv \int_0^{2\pi} \frac{1}{2 + \cos \theta} \, d\theta \).

 (a) Write \(I \) as a complex integral \(\oint_{\Gamma} f(z) \, dz \) where \(\Gamma \) is parameterized by \(z(\theta) = e^{i\theta} \).

 (b) Determine the locations of all singularities of this \(f(z) \).

 (c) Determine \(f \)’s residue at the one singularity inside \(\Gamma \). BTW \(-1 < -2 + \sqrt{3} < 0\).

 (d) Use these results to compute the value of given real integral \(I \).

5. Consider the complex path integral \(\oint_{\Gamma_R} \frac{e^{iz}}{z^2 + 1} \, dz \) where \(\Gamma_R \) is the sideways "D" considered on your homework. (Ask me and I’ll specify \(\Gamma_R \) further on the blackboard.)

 (a) Determine the residue of the integrand at the singularity inside \(\Gamma_R \) for \(R > 1 \).

 (b) Use this result to determine the value of the real integral \(\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} \, dx \).

Jordan’s lemma is not needed here to do part (b).