Math 1431

Section 14839
M TH 4:00 PM-5:30 PM Online

Susan Wheeler
swheeler@math.uh.edu

Office Hours:
5:30 - 6:15 pm M Th Online or by appointment
Wed 6:00 – 7:00 PM Online
Important Dates This Week

9-8: Quiz 3, HW 2, EMCF 2
* John 6:30-8:30 PM are all at 11:59 PM
9-9: Lab has problem help session online

9-11: Quiz 4 due at 11:59 PM

9-12: Popper 2, Lab Quiz 3
The theorem states: If \(f(x) \) is continuous on the closed interval \([a, b]\) and \(N \) is a real number such that \(f(a) \leq N \leq f(b) \), then there is at least one value \(c \) in \((a, b)\) so that \(f(c) = N \).

Example 1: Use the intermediate value theorem (IVT) to show that there is a solution to the given equation in the indicated interval.

a. \(204 - 3x = 0 \) on \([2, 4]\)

b. \(2\tan 1 - x = 0 \) on \([0, 4]\)

We can also use the IVT to prove the existence of roots/zeros/x-intercepts of a function.

If \(f(a) \) is \((+) \) and \(f(b) \) is \((-) \), yes a root on \([a, b]\).

Does \(f(x) \) have a root on \([a, b] \), \(f(x) \) is cont.

If \(f(a) \) is \((-) \) and \(f(b) \) is \((+) \), yes there is a root on \([a, b]\).
The Extreme Value Theorem

If a function f is continuous on a bounded interval $[a,b]$. Then f takes on both a maximum value and a minimum value. \(\text{on } [a,b] \)

If the function in not continuous in the interval, it may or may not have a minimum or maximum value in that interval. \(\Rightarrow \) \text{No guarantee}
The Derivative

Measuring how $f(x)$ changes when x changes.

Section 2.1
Slope of a Secant line — slope between two points — average rate of change

\[
m_s = \frac{f(b) - f(a)}{b - a} = \frac{\Delta y}{\Delta x}
\]

of \(f(x) \) between \(x = a \) and \(x = b \)
Slope of a Tangent line – slope at A point – instantaneous rate of change of $f(x)$ at point A
$y = f(x)$

$m = \text{instantaneous rate of change of } f(x) \text{ at } x = a$
$y = f(x)$

Slope of Secant = $\frac{f(b) - f(a)}{b - a}$
$y = f(x)$

$h = b - a$

$b = a + h$

Secant Line
$y = f(x)$

Secant Line
As \(h \) gets smaller the secant line is becoming a better approximation to the tangent at point \(A \) on \(f(x) \).

\[
m = \frac{f(b) - f(a)}{b - a} = \frac{f(a+h) - f(a)}{h}
\]

\(b = a + h \quad \Rightarrow \quad h = b - a \)
\[y = f(x) \]

Tangent Line

Distance from
\[a \rightarrow b \rightarrow 0 \]
\[b - a \rightarrow 0 \]
\[h \rightarrow 0 \]

\[m = \lim_{h \rightarrow 0} \frac{f(a+h) - f(a)}{h} \]

The same
\[a+h \]

\[\frac{f(b) - f(a)}{b - a} \]

Tangent Line
Slope of the Tangent Line at the point $x = a$ is

$$\lim_{{h \to 0}} \frac{f(a + h) - f(a)}{h}$$

Which is

the \textit{instantaneous rate of change} of f at $x = a$

Which is

the \textit{derivative} of f at $x = a$
PreCal Quick Review:

For $f(x) = 2x + 3$

$f(a) = 2a + 3$
$f(3) = 2(3) + 3 = 9$

$f(a + h) = 2(a + h) + 3$
$= 2a + 2h + 3$

$f(3 + h) = 2(3 + h) + 3 = 6 + 2h + 3 = 9 + 2h$

For $f(x) = x^2 + 1$

$f(a) = a^2 + 1$
$f(3) = 3^2 + 1 = 10$

$f(a + h) = (a + h)^2 + 1$
$= a^2 + 2ah + h^2 + 1$

$f(3 + h) = (3 + h)^2 + 1 = 9 + 6h + h^2 + 1 = 10 + 6h + h^2$
Using what we know, find the slope of the tangent line at \(x = 3 \) if \(f(x) = x^2 + 1 \).

\[
\begin{align*}
f(3) &= 10, \\
f(3 + h) &= (3 + h)^2 + 1, \\
&= h^2 + 6h + 10
\end{align*}
\]

Slope of the tangent line

\[
\text{slope} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
\]

\[
\begin{align*}
&= \lim_{h \to 0} \frac{f(3 + h) - f(3)}{h} \\
&= \lim_{h \to 0} \frac{h^2 + 6h + 10 - 10}{h} \\
&= \lim_{h \to 0} \frac{h^2 + 6h}{h} \\
&= \lim_{h \to 0} \frac{h(h + 6)}{h} \\
&= \lim_{h \to 0} (h + 6) = 0 + 6 = 6
\end{align*}
\]

\[**\text{Slope of the tangent line at } x = 3**\]
The Definition of the Derivative

A function \(f(x) \) is differentiable at \(x \) if and only if

\[
\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

exists. In this case, we denote

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

and we refer to \(f'(x) \) as the derivative of \(f \) at \(x \).
\(f'(x) \) can be thought of as the slope function. It gives the slope of the graph of \(f(x) \) at any point \(x \).

You may also see \(f'(x) \) written as \(\frac{df}{dx} \).

If \(y = f(x) \) you may see \(f'(x) = y' = \frac{dy}{dx} \).
Find $f'(x)$ where $f(x) = x^2 - 2x$ using the definition of the derivative.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x+h) = (x+h)^2 - 2(x+h) = x^2 + 2xh + h^2 - (2x + 2h)$$

$$f(x+h) = x^2 + 2xh + h^2 - 2x - 2h$$

$$f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 2x - 2h - (x^2 - 2x)}{h} =$$

$$f'(x) = \lim_{h \to 0} \frac{2xh + h^2 - 2h}{h} = \lim_{h \to 0} \frac{2x + h - 2}{h} =$$

$$= \lim_{h \to 0} 2x + h - 2 = 2x - 2 = f'(x)$$
Use the previous result to give the equation of the tangent line to the graph of \(f(x) = x^2 - 2x \) at \(x = -1 \).

Slope of the tangent at \(x = -1 \):

\[
\begin{align*}
\text{Slope} = f'(x) &= 2x - 2 \\
\end{align*}
\]

\[
\begin{align*}
f'(-1) &= 2(-1) - 2 = -4 = m \\
\end{align*}
\]

Point:

\[
\begin{align*}
\text{Point} &= (-1, f(-1)) = (-1, 3) \\
\end{align*}
\]

\[
\begin{align*}
f(-1) &= (-1)^2 - 2(-1) = 3 \\
\end{align*}
\]

Line:

\[
\begin{align*}
(y - y_1) &= m(x - x_1) \\
y - 3 &= -4(x + 1) \\
y - 3 &= -4x - 4 \\
y &= -4x - 1
\end{align*}
\]

Eqn of Tangent Line at \(x = -1 \):

\[
\begin{align*}
y &= -4x - 1
\end{align*}
\]
Find $f'(x)$ where $f(x) = x^3 - 2$ using the definition of the derivative.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x+h) = (x+h)^3 - 2 = x^3 + 3x^2h + 3xh^2 + h^3 - 2$$

$$f'(x) = \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - 2 - (x^3 - 2)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h} = \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$$

$$f'(x) = \lim_{h \to 0} 3x^2 + 3xh + h^2 = 3x^2 = f'(x)$$
\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

Find \(f'(x) \) where \(f(x) = \frac{1}{1+x} \) using the definition of the derivative.

\[f(x+h) = \frac{1}{1+x+h} \]

\[f'(x) = \lim_{h \to 0} \frac{1}{1+x+h} \left(\frac{1+x}{1+x} \right) - \frac{1}{1+x} \left(\frac{1+x+h}{1+x+h} \right) \]

\[f'(x) = \lim_{h \to 0} \frac{1+x-1-x-h}{(1+x+h)(1+x)} \]

\[= \lim_{h \to 0} \frac{-h}{(1+x+h)(1+x)} \]

\[= \lim_{h \to 0} \frac{-1}{(1+x+h)(1+x)} \]

\[= \frac{-1}{(1+x)^2} \]
If f is differentiable at $x = a$, then f is continuous at $x = a$.

But

Not every continuous function is differentiable.

Just because it's continuous does not mean it's differentiable

Example: The function $y = |x|$ is continuous but not differentiable at $x = 0$.

![Graph showing the function $y = |x|$ with $m = -1$ and $m = 1$ at $x = 0$.]
How can the graph of a function be used to determine where a function is not differentiable?

A function is not differentiable at

1. points of discontinuity
2. cusps
3. sharp turns (corners)
Determine if \(f(x) \) is differentiable at \(x = 2 \).

Yes continuous \(\Rightarrow \) for continuity

1) \(f(2) = 2^2 + 1 = 5 \)

2) \(\lim_{x \to 2^+} 4x - 3 = 8 - 3 = 5 \)

3) \(f(2) = \lim_{x \to 2} f(x) = 5 \)

Now see if the right sided deriv = left sided deriv

\(f(x+h) = (x+h)^2 + 1 \)

\(f'(x) \) for \(x \leq 2 \) (Left-Sided)

\[
f'(x) = \lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h}
\]

\[
= \lim_{h \to 0^-} \frac{x^2 + 2xh + h^2 + 1 - (x^2 + 1)}{h}
\]

\[
= \lim_{h \to 0^-} \frac{2xh + h^2}{h}
\]

\[
= \lim_{h \to 0^-} (2x + h) = 2x
\]

\(f'(x) \) for \(x > 2 \) (Right-Sided)

\[
= \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}
\]

\[
= \lim_{h \to 0} \frac{4(x+h) - 3 - (4x - 3)}{h}
\]

\[
= \lim_{h \to 0} \frac{4h}{h} = 4
\]
\[
= \lim_{h \to 0} \frac{4x + 4h - 3 - 4x + 3}{h} \\
= \lim_{h \to 0} \frac{4h}{h} = \lim_{h \to 0} 4 = 4
\]

\[
f'_-(x) = 2x \quad \{ x = 2 \} \quad f'_-(2) = 2(2) = 4
\]

\[
f'_+(x) = 4 \quad \Rightarrow \quad x = 2 \quad f'_+(2) = 4
\]

\[
f'_-(2) = f'_+(2)
\]

Differentiable \quad Yes
Determine if \(f(x) \) is differentiable at \(x = 1 \).

\[
f(x) = \begin{cases}
 x & x \leq 1 \\
 x^2 & x > 1
\end{cases}
\]

\[
f(x) = \begin{cases}
 x+h & x \leq 1 \\
 (x+h)^2 & x > 1
\end{cases}
\]

1) \(\checkmark \) Continuity
 - \(f'(1^-) = f'(1^+) \)

\[
f'(x) = \lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0^-} \frac{x+h-x}{h} = \lim_{h \to 0^-} \frac{h}{h} = \lim_{h \to 0^-} 1 = 1
\]

\(f'(x) = 1 \)

2) \(\checkmark \) \(f(x) = \lim_{x \to 1} x = 1 \)
 - \(\lim_{x \to 1^-} x^2 = 1^2 = 1 \)
 - \(\lim_{x \to 1^+} x^2 = 1^2 = 1 \)

\(f(x) = \lim_{x \to 1} x^2 = 1 \)

3) \(\checkmark \) \(f(x) = \lim_{x \to 1} f(x) = 1 \)
 - \(f(1) = \lim_{x \to 1} x^2 = 1 \)
 - \(\text{Yes continuous} \)
\[f'(x) = \lim_{h \to 0^+} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0^+} \frac{2xh + h^2}{h} = \lim_{h \to 0^+} h(2x + h) = \lim_{h \to 0^+} 2x + h = 2x = f'_+(x) \]

\[f'(x) = \begin{cases}
1 & x \leq 1 \\
2x & x > 1
\end{cases} \]

At \(x = 1 \), \(f'_-(1) = 1 \) and \(f'_+(1) = 2 \).

At \(x = 1 \), \(f'_-(1) \neq f'_+(1) \).

\(f(x) \) is \text{ Not Differentiable at } x = 1.
How can we use the derivative to find the slope of the normal line to the graph of \(f(x) \) at \(x = a \)?

The normal line to the graph at \(x = a \) is the perpendicular line to the graph at \(x = a \).

That is:

The normal line is perpendicular to the tangent line at \(x = a \).

\[
m_T = 2
\]

\[
m_N = -\frac{1}{2}
\]
Algebraic Properties of the Derivative

Differentiation Formulas

Section 2.2
If f and g are differentiable and c is a scalar, then $f + g$, $f - g$ and $(c f)$ are differentiable. Furthermore,

Derivative of the sum is the sum of the derivatives.

\[
\frac{d}{dx} \left(f(x) + g(x) \right) = \frac{d}{dx} f(x) + \frac{d}{dx} g(x)
\]

Derivative of the difference is the difference of the derivatives.

\[
\frac{d}{dx} \left(f(x) - g(x) \right) = \frac{d}{dx} f(x) - \frac{d}{dx} g(x)
\]

And the derivative of any scalar times a function is the scalar times the derivative of the function.

\[
\frac{d}{dx} \left(c f(x) \right) = c \frac{d}{dx} f(x)
\]
\[
\frac{d}{dx} 8 = \\
\frac{d}{dx} x = \\
\frac{d}{dx} (5x) = \\
\frac{d}{dx} (5x + 2) =
\]
Power Rule

\[\frac{d}{dx} \left(x^n \right) = nx^{n-1}, \ n \neq 0 \]

Find the derivative of each.

\[f(x) = x^2 \]

\[f(x) = x^3 \]

\[f(x) = x^5 - x^2 \]
\[f(x) = 3x^4 + 2x^3 - 4x \]

\[f(x) = \sqrt{x} = x^{\frac{1}{2}} \]

\[f(x) = x^{\frac{9}{7}} + x^{\frac{5}{7}} \]

\[f(x) = \frac{1}{x^2} \]
Higher Order Derivatives

\[f'(x), \quad f''(x), \quad f'''(x), \quad f^{(4)}(x) \]

\[\frac{d}{dx} f(x), \quad \frac{d^2}{dx^2} f(x), \quad \frac{d^3}{dx^3} f(x), \quad \frac{d^4}{dx^4} f(x) \]
Determine $\frac{d^2}{dx^2}(3x^3 - 5x^2 + 2x - 1)$

Determine $\frac{d^3}{dx^3}(3x^8 + 2x^5 - 3x - 5)$
Trig Derivatives:

\[
\frac{d}{dx} \sin x = \cos x \\
\frac{d}{dx} \cos x = -\sin x \\
\frac{d}{dx} \tan x = \sec^2 x \\
\frac{d}{dx} \cot x = -\csc^2 x \\
\frac{d}{dx} \sec x = \sec x \cdot \tan x \\
\frac{d}{dx} \csc x = -\csc x \cdot \cot x
\]

MEMORIZE THESE!