A NEW PROOF OF TORELLI'S THEOREM

by

Henrik H. Martens

JUNE

April 1, 1962

A dissertation in the Department of Mathematics submitted to the faculty of the Graduate School of Arts and Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at New York University.
A NEW PROOF OF TORELLI'S THEOREM

by

Henrik H. Martens*

Let X be a complete, nonsingular curve of genus $g > 1$. Let $\varphi: X \to J(X)$ be a canonical map of X into its Jacobian variety, $J(X)$. Assume φ chosen so that $\varphi(P) = 0$ for some point, $P \in X$.

If $D = \Sigma d_i Q_i$ is a divisor on X, we define $\varphi(D) = \Sigma d_i \varphi(Q_i)$. The image under φ of the positive divisors of degree $\leq r$ on X will be denoted by W^r, and we extend this definition by setting $W^0 = \{0\}$.

It is known[2] that W^1 is birationally equivalent to X, and that W^{g-1} determines the canonical polarization of $J(X) = W^g$. The object of this paper is to prove that W^1 is determined up to a translation and reflection by $J(X)$ and W^{g-1}, (i.e., X is determined up to a birational equivalence by the same data).

A classical version of this theorem was proved by Torelli.[4] Weil[5] gave a modern proof, valid in the abstract case, based on an idea of Andreotti. Other abstract proofs were later given by Matsusaka[3] and Andreotti.[1]

*This work was done at the Courant Institute of Mathematical Sciences under a CDTP Fellowship from the Bell Telephone Laboratories, Incorporated.
The proof to be given here is based on a modification of
two of Weil's lemmas which enables us to recover
Torelli's theorem as a combinatorial consequence of the
Riemann-Roch theorem and Abel's theorem.

We begin by proving four preliminary lemmas of
which the second and fourth may be characterized as
modifications of Weil's Hilfssätze 3 and 1, respectively.
Lemmas 2, 3, and 4 admit generalizations which, however,
are not needed for our purposes.

We denote, as usual, by \(W^r_a \) the translate of \(W^r \)
by an element \(\alpha \in J(X) \). Following Weil,[5] we denote by \((W^r_a)^* \)
the image of \(W^r_a \) under the map \(u \mapsto u + \varphi(Z) \) where \(Z \) is a
canonical divisor on \(X \). We recall [2] that the sets \(W^r_a \) and
\((W^r_a)^* \) are subvarieties of \(J(X) \).

Our first lemma is a known result which we prove
for convenience:

Lemma 1

\[(W^g_{a-1})^* = W^g_{a-1} \]

Proof: Given a positive divisor, \(D \), of degree \((g-1) \), there
exists a positive divisor \(D' \), of degree \((g-1) \) such that
\(D + D' \sim Z \), where \(\sim \) denotes linear equivalence. By Abel's
theorem

\[\varphi(D) - a = - \varphi(D') + \varphi(Z) - a \]

As the left-hand side traverses \(W^g_{a-1} \) the right-hand side
traverses \((W^g_{a-1})^* \), and conversely.
Lemma 2

Let

\[0 \leq r \leq g-1. \]

Then

\[W_a^r \subset W_b^{g-1} \iff a \in W_b^{g-1-r}. \]

Proof: The implication from right to left is trivial.

Assume now that \(W_a^r \subset W_b^{g-1} \). This means that for every positive divisor, \(D \), of degree \(r \), there is a positive divisor, \(\hat{D} \), of degree \(g-1 \), such that \(\phi(D) + a = \phi(\hat{D}) + b \). In particular, there is a positive divisor, \(A \), of degree \(g-1 \), such that \(a = \phi(A) + b \). Hence, \(\phi(D) + \phi(A) = \phi(\hat{D}) \), and, by Abel's theorem

\[D + A \sim \hat{D} + rP. \]

Let \(A' \) and \(\hat{D}' \) be positive divisors of degree \(g-1 \) such that \(A + A' \) and \(\hat{D} + \hat{D}' \) are canonical divisors. Then

\[D + \hat{D}' \sim A' + rP. \]

Since an equivalence of this form must hold for all positive divisors, \(D \), of degree \(r \), it follows* that \(\ell(A' + rP) \geq r+1. \)

*By \(\ell(D) \) we denote the dimension of the (linear) space of functions whose divisors are \(\geq -D \).
By the Riemann-Roch theorem it follows that \(\ell(Z - A' + rP) \geq 1 \). Hence, there is a positive divisor, \(\hat{A} \), of degree \(g-1-r \) such that \(A' + rP + \hat{A} \sim Z \), whence \(\varphi(A) = \varphi(\hat{A}) \). But then

\[
a = \varphi(\hat{A}) + b \in W^{g-1-r}_b.
\]

Lemma 3

Let

\[
0 \leq r \leq g-1.
\]

Then

\[
W^{g-1-r} = \cap \left\{ W^{g-1}_{-u} : u \in \mathbb{W}^r \right\}
\]

and

\[
(W^{g-1-r})^* = \cap \left\{ W^{g-1}_{+u} : u \in \mathbb{W}^r \right\}.
\]

Proof: By Lemma 2,

\[
W^{g-1-r} \subseteq W^{g-1}_{-u} \leftarrow W^{g-1-r}_u \subseteq W^{g-1} \leftarrow u \in \mathbb{W}^r.
\]

Hence

\[
W^{g-1-r} \subseteq \cap \left\{ W^{g-1}_{-u} : u \in \mathbb{W}^r \right\}.
\]

On the other hand, if \(v \in W^{g-1}_v \) for all \(u \in \mathbb{W}^r \), then \(u \in W^{g-1}_{-v} \) for all \(u \in \mathbb{W}^r \), whence \(W^r \subseteq W^{g-1}_v \) and \(v \in W^{g-1-r} \), by Lemma 2. This proves the first formula, and the second formula follows from the equation.
\[\bigcap \{ w_{+u} : u \in W^r \} = \bigcap \{ (w_{-u}^{-1})^* : u \in W^r \} = \left(\bigcap \{ w_{-u}^{-1} : u \in W^r \} \right)^* . \]

Lemma 4

Let

\[0 \leq r \leq g-1 . \]

Let a and b be related by an equation, \(b = a + x - y \), where \(x \in W^1 \) and \(y \in W^{g-1-r} \). Then either \(W_a^{r+1} \subset W_b^{g-1} \), or else

\[W_a^{r+1} \cap W_b^{g-1} = W_a^r \cup S \]

where

\[S = W_a^{r+1} \cap (W_{y-a}^{g-2})^* . \]

Proof: By assumption, \(x = \varphi(R) \), \(y = \varphi(\hat{R}) \) and \(\varphi(R) + a = \varphi(\hat{R}) + b \), where R and \(\hat{R} \) are positive divisors of degrees 1 and \(g-1-r \), respectively. If \(R \) is a point of \(\hat{R} \), we get an equation \(a = \varphi(R') + b \), where \(\deg(R') = g-2-r \). But then \(a \in W_{b}^{g-2-r} \) and \(W_a^{r+1} \subset W_b^{g-1} \). Hence we assume that \(R \) is not a point of \(\hat{R} \).

Let \(u \in W_a^{r+1} \cap W_b^{g-1} \). Then there are positive divisors, D and \(\hat{D} \), of degrees \(r+1 \) and \(g-1 \), respectively, such that \(u = \varphi(D) + a = \varphi(\hat{D}) + b \). Hence

\[D + \hat{R} \sim \hat{D} + R . \]
If \(D + \mathcal{R} = \mathcal{D} + R \), R must be a point of \(D \) and
\[
u = \varphi(D) + a = \varphi(D') + \varphi(R) + a, \text{ where } \deg(D') = r. \text{ Then} \]
\(u \in W^r_{a+x} \).

If \(D + \mathcal{R} \neq \mathcal{D} + R \), then \(t(D + \mathcal{R}) \geq 2 \), and, given any point, \(Q \in X \), there is a positive divisor, \(\mathcal{Q} \), of degree \(g-1 \), such that \(D + \mathcal{R} \sim \mathcal{Q} + \mathcal{Q} \). Then
\[
u = \varphi(D) + a = \varphi(\mathcal{Q}) + \varphi(\mathcal{Q}) - \varphi(\mathcal{R}) + a,
\]
whence
\[
u \in \left\{ \frac{w^{g-1}_{a-y+v}}{v \in W^1_{a-y}} \right\} = \left(\frac{w^{g-2}}{y-a} \right)^*.
\]

Since
\[
\left(\frac{w^{g-2}}{y-a} \right)^* \subseteq \left(\frac{w^{g-1}}{y-a-x} \right)^* = W^r_b,
\]
the proof is completed.

Theorem

Let \(\varphi : X \rightarrow J(X) \) be a canonical map of a complete, nonsingular curve, \(X \), of genus \(g > 1 \), into its Jacobian variety \(J(X) \). Then \(W^1 = \varphi(X) \) is determined up to a translation and reflection by the canonical polarization of \(J(X) \).

Proof: By a translation, if necessary, we may normalize \(\varphi \) such that \(\varphi(P) = 0 \) for some point, \(P \in X \). Let \(Y \) be a second curve with the same Jacobian variety, \(J(X) \), and denote by \(V^r \) the image of the set of positive divisors of
degree ≤ r on Y under the (normalized) canonical map ψ: Y → J(X). The theorem will be proved by showing that if y^g−1 is a translate of W^g−1 (i.e., if the canonical polarizations are the same) then V^1 is a translate of W^1 or of (W^1)^∗.

Let r be the smallest integer such that V^1 ⊆ W^{r+1}_a or V^1 ⊆ (W^{r+1}_a)^∗ for some a. The theorem will be proved if we can show that r = 0. Assume to the contrary that r ≥ 1.

(Clearly, r < g−1.) Assume, changing notation if necessary, that V^1 ⊆ W^{r+1}_a. Choose x ∈ W^1, y ∈ W^{g−1−r}, and set b = a+x−y. Then, unless W^{r+1}_a ⊆ W^{g−1}_b, we have

\[V^1 \cap W^{g−1}_b = V^1 \cap W^{g−1}_b \cap W^{r+1}_a = (V^1 \cap W^r_{a+x}) \cap (V^1 \cap S) \]

in the notation of Lemma 4. Note that, a being given, W^r_{a+x} depends only on the choice of x, and S depends only on the choice of y.

We shall first show that for a fixed x, V^1 ⊆ W^{g−1}_b for almost all choices of y, and hence W^{r+1}_a ⊆ W^{g−1}_b for the same y.

As y varies over W^{g−1−r}, b varies over W^{g−1−r}_-(a+x). By assumption, there is a constant k, such that V^g−1_k = W^{g−1}_k. Hence, V^1 ⊆ W^{g−1}_b ↔ V^1 ⊆ W^{g−1}_b+k ↔ b ∈ W^{g−2}_k. Thus the set of b for which V^1 ⊆ W^{g−1}_b is given by - b ∈ W^{g−2}_-(a+x).
Now, if $V^1 \subseteq W_b^{g-1}$ for all b in $W^{g-1-k}_{(a+x)}$, then $V^1 \subseteq W_{a+x}^r$ by Lemma 3. This contradicts the assumption on r. Hence $W^{g-1-k}_{(a+x)} \nsubseteq V^{g-2}_K$, and the intersection of these sets is a lower dimensional subset of $W^{g-1-k}_{(a+x)}$.

We now return to consider the intersection

$$V^1 \cap W_b^{g-1} = (V^1 \cap W_{a+x}^r) \cup (V^1 \cap S).$$

It is well known\[^2\] that if $V^1 \nsubseteq W_b^{g-1}$, then there is a unique positive divisor, $D(b)$, of degree g on Y, such that

$$\psi(D(b)) = b+c$$

(1)

where c is a constant, independent of b, and the points of $D(b)$ are the preimages of the points of the intersection $V^1 \cap W_b^{g-1}$ under ψ.

We show first that $V^1 \cap W_{a+x}^r$ contains at most one point. If not, then as $-b$ varies over almost all points of $W^{g-1-k}_{(a+x)}$ (for fixed x), $D(b)$ will contain at least two fixed points, and hence $\psi(D(b))$ varies over a translate of V^{g-2}. By Eq. (1) we should then have an inclusion of $(W^{g-1-k})^*$ in a translate of V^{g-2}, say $(W^{g-1-k})^* \subseteq V^{g-2}_d$. But then

$$\cap \left\{ V^{g-1}_{K-u}; u \in V^{g-2}_d \right\} \subseteq \cap \left\{ W^{g-1}_{-u}; u \in (W^{g-1-k})^* \right\}.$$
and, using Lemma 3, we get an inclusion of V^1 in a translate of $(W^r)^*$, contradicting the assumption on r.

Keeping y fixed and varying x, we see by Eq. (1) that $V^1 \cap W^r_{a+x}$ must contain at least one point, and hence it contains exactly one point.*

It is now easily seen that we can find $x, x' \in W^1$ and $y \in W^{g-1-r}$ such that $D(a+x-y) = Q+\mathcal{D}$ and $D(a+x'-y) = Q'+\mathcal{D}$ where $Q, Q' \in Y$ and \mathcal{D} is a positive divisor of degree $g-1$ on Y not containing Q or Q'. By Eq. (1), $\varphi(Q) - \varphi(Q') = x-x'$, and hence W^1 has two distinct points in common with some translate of V^1. Now, if $x, x' \in W^1$, then $W^{g-1}_{-x} \cap W^{g-1}_{-x'} = W^{g-2}_{x+x'} \cap (W^{g-2}_{x+x'})^*$ by Lemma 4. By Lemma 3 we now get an inclusion of some translate of V^{g-2} in W^{g-2} or in $(W^{g-2})^*$, whence, again by Lemma 3, we get an inclusion of some translate of V^1 in W^1 or $(W^1)^*$. This completes the proof.

ACKNOWLEDGMENT

I am happy to have this opportunity to express my gratitude to my thesis advisor, Professor Lipman Bers, for his patient and generous guidance during my postgraduate studies at the Courant Institute of Mathematical Sciences, and for suggesting this area of research.

* Which, by the preceding argument, occurs in $D(b)$ with multiplicity 1, for almost all choices of y.

I am indebted both to Professor Bers and to Dr. Leon Ehrenpreis for giving their time to many stimulating discussions which resulted in substantial improvements in the presentation of my results.

Finally, I wish to thank the Bell Telephone Laboratories, Incorporated for allowing me to carry out my studies under an unusually generous fellowship.
REFERENCES

1959, (Ch. 2, Sec. 2).

Nr. 2.