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Abstract. Let f : X → X be the restriction to a hyperbolic basic set of a smooth
diffeomorphism. If G is the special Euclidean group SE(2) we show that in the set
of C2 G-extensions of f there exists an open and dense subset of stably transitive
transformations. If G = K × Rn, where K is a compact connected Lie group, we
show that an open and dense set of C2 G-extensions satisfying a certain separation
condition are transitive. The separation condition is necessary.

1. Introduction. This paper is part of a program attempting to classify the ob-
structions to (stable) topological transitivity in various classes of skew-product
transformations with non-compact fiber, which is part of the current surge of ac-
tivity in the study of partially hyperbolic systems. Recall that if X is a topological
space, and f : X → X a continuous map, then f is said to be transitive if it has a
dense orbit.

Let M be a smooth manifold endowed with a Riemannian metric. Let f : M →
M be a smooth diffeomorphism and X ⊂ M a compact and f -invariant subset
of M .

We say that f : X → X is hyperbolic if there exists a continuous Tf -invariant
splitting Es ⊕ Eu of the tangent bundle TXM and constants C > 0, 0 < λ < 1,
such that for all n ≥ 0 and x ∈ X we have:

‖(Dfn)xv‖ ≤ Cλn‖v‖, v ∈ Es

‖(Df−n)xv‖ ≤ Cλn‖v‖, v ∈ Eu.
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We say that X is maximal and isolated if there exists an open neighborhood U
of X such that every compact f -invariant set of U is contained in X.

The set X is a basic set for f : M → M if:

1. f is hyperbolic on X;
2. X is maximal and isolated;
3. f : X → X is transitive.

The basic set is nontrivial if it is not a periodic orbit. Throughout, we restrict
attention to basic sets that are nontrivial.

Assume that X is a hyperbolic basic set for f : X → X and let G be a finite-
dimensional connected Lie group. Let β : X → G be a continuous map, called a
cocycle. Define a skew product, or G-extension,

fβ : X ×G → X ×G, fβ(x, h) = (f(x), β(x)h).

The G-extension fβ is called stably transitive if β lies in the interior (usually in
the Hölder or Cr topology, r ≥ 1) of the subset of extensions that are topologically
transitive. The question of interest here is whether noncompact group extensions
of a hyperbolic basic set are typically stably topologically transitive.

It was already observed in [12] that β taking values in a proper closed sub-
semigroup S of G is an obstruction to (stable) transitivity. For example if G = R
and the image of β is included in R+, or if G = SL(2,R) and the image of β is
included in the set of matrices with positive entries, then fβ cannot be transitive.
In [11] it is conjectured that this is essentially the only obstruction.

Several classes of groups for which the conjecture has been verified are: G com-
pact [1, 5]; SE(n), n ≥ 4 even [10]; Euclidean spaces Rn [13, 5]. In [11] we prove
the existence of a transitive extension for the fiber being any connected Lie group.
Moreover [11] contains examples of stably transitive extensions with fiber the sym-
plectic groups Sp(n,R), as well as other noncompact groups.

For direct products G = K×Rn with K compact, and for the group G = SE(2),
the conjecture in [11] was verified when the base is a hyperbolic attractor. In this
paper, we verify the conjecture for these groups when X is a general basic set.

Let G = K × Rn, where K is a compact connected Lie group. A (closed) half-
space in Rn is a closed region bounded by a hyperplane passing through the origin.
It is clear that fβ cannot be transitive if the Rn-component of β is cohomologous
to a cocycle with values in a half-space in Rn. Hence, we define S to be the open
set of Cr cocycles β for which the Rn-component is not cohomologous to a cocycle
with values in a half-space.

Theorem 1.1. Let X be a hyperbolic basic set for f : X → X and r ≥ 2. Suppose
that G = K ×Rn. Then there is a C2-open and Cr-dense set of cocycles β ∈ S for
which fβ : X ×G → X ×G is transitive.

Recall that SE(n) = SO(n) n Rn is the group generated by rotations and
translations in Rn. The multiplication in SE(n) is given by (θ1, v1)(θ2, v2) =
(θ1θ2, θ1v2 + v1). When the fiber is SE(n), no separation condition is necessary for
transitivity.

Theorem 1.2. Let X be a hyperbolic basic set for f : X → X and r ≥ 2. Suppose
that G = SE(2). Then there is a C2-open and Cr-dense set of Cr cocycles β : X →
G for which fβ : X ×G → X ×G is transitive.
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Remark. As in [5], we also obtain Cr-open and Cr-dense sets of transitive cocycles
for all r > 0 (with C1 interpreted as Lipschitz). If X is an attractor, we proved
Hölder open and Cr-dense for all r > 0 in [11].

The proof relies on a blend of techniques developed to study extensions with non-
compact fibers. Some of these techniques are reviewed in Section 2. In Section 3, we
prove Theorem 1.1 in the special case K = C×Td where C is a compact semisimple
group and Td is a torus. In Section 4, we complete the proof of Theorem 1.1.
Theorem 1.2 is proved in Section 5.

2. Preliminaries. We review several results needed for the proof of the main
results. In particular we review a couple of transitivity criteria that are useful for
non-compact extensions.

Assume that X is a hyperbolic basic set for f : X → X, G a Lie group, and
β : X → G a Hölder cocycle. Denote βn(x) = β(fn−1x) . . . β(fx)β(x).

As in [13], for abelian G, we associate to each periodic orbit fkx = x the weight
βk(x) and denote by Hβ =

{
βk(x) : fkx = x

}
the collection of all weights assigned

to the set of periodic orbits of f .
The following proposition is proved in Niţică & Pollicott [13, §6].

Proposition 2.1. If G is abelian and Hβ generates a dense semigroup in G, then
fβ is transitive.

Sketch of the proof. We need to show that for any nonempty open sets U, V ⊂ X×G
there is a positive integer N such that fN

β (U) ∩ V 6= ∅. Let (y, g1) ∈ U and
(z, g2) ∈ V . Let h = g2 − g1. Let ε > 0 be fixed, and such that B((y, g1), ε) ⊂ U
and B((z, g2), ε) ⊂ V . Since Hβ generates a dense semigroup, we can choose a
finite set of periodic orbits O1,O2, . . . ,Or such that the periodic weighting over
them generates an ε-dense semigroup in G. Then one can use these periodic orbits
and shadowing to build a trajectory for fβ that starts in B((y, g1), ε) and ends in
B((z, g2), ε).

The following results that will be used later on are proved in Field et al. [5,
Theorems 1.3, 1.7].

Theorem 2.2. Let G be a compact connected Lie group and X a hyperbolic basic
set for f : X → X. For r > 0, there exists a Cr open and dense subset Wr of
Cr(M, G) such that for all β ∈ Wr, the extension fβ is transitive.

Theorem 2.3. Let X be a hyperbolic basic set for f : X → X, and S the subset
of β ∈ Cr(M,Rn) satisfying the separation condition that Hβ is not contained on
one side of an Rn hyperplane passing through 0. For r > 0, there exists a Cr open
and dense subset Wr of S such that for all β ∈ Wr, the extension fβ is transitive.

Next, we recall a technique due to Melbourne et al. [11]. Suppose for the moment
that G is an arbitrary connected Lie group with Lie algebra LG. Choose a norm
‖ ‖ on LG. There is a metric d on G with the following properties (Pollicott &
Walkden [15, p. 2886]):

1. d(γ1δ, γ2δ) = d(γ1, γ2);
2. d(δγ1, δγ2) ≤ ‖Ad(δ)‖d(γ1, γ2);

for any γ1, γ2, δ ∈ G. A basic estimate in terms of this metric is obtained in [11,
Lemma 2.2]. For convenience, we restate this estimate in the simpler situation of
this paper for groups of the form G = KnRn where K is a compact connected Lie
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group. (Certain bunching and strong bunching conditions in [11] are automatic for
such groups.)

Lemma 2.4. Let G = K n Rn where K is a compact connected Lie group, and
β an α-Hölder cocycle. There is a constant C = C(f, β) > 0 with the following
property.

Given ε > 0 sufficiently small and any n ≥ 1, assume that there are two trajec-
tories xk = fkx0, yk = fky0 such that d(xk, yk) < ε for 0 ≤ k ≤ n− 1. Then

d(βn(x0), βn(y0)) ≤ C(‖Ad(βn(x0))‖+ 1)εα.

As in [11], we associate to each x ∈ X the set

Lβ(x) = {g ∈ G| there are xk ∈ X, nk > 0 such that xk → x, fnk

β (xk, e) → (x, g)}.
The set Lβ(x) is a closed semigroup in G [11, Lemma 3.1].

The following proposition follows from [11, Theorem 3.3].

Proposition 2.5. Let G = K nRn where K is a compact connected Lie group. If
there is a point x ∈ X such that Lβ(x) = G, then the extension fβ is transitive.

Sketch of proof. We need to show that for any nonempty open sets U, V ⊂ X ×G
there is a positive integer N such that fN

β (U) ∩ V 6= ∅. Let (y, g1) ∈ U and
(z, g2) ∈ V . Let ε > 0 be fixed, and such that B((y, g1), ε) ⊂ U and B((z, g2), ε) ⊂
V . Let ω1 be an orbit of f from B(y, ε) to B(x0, ε), and ω2 an orbit of f from
B(x0, ε) to B(z, ε). Using symbolic formalism, the orbits ω1, ω2 can be chosen to
have reasonable length.

Since Lβ(x0) = G, there exists an orbit ω of f starting and ending in B(x0, ε)
such that d(β(ω), β(ω2)−1hβ(ω1)−1) < ε. Altogether, ω1ωω2 gives a pseudo-orbit
for fβ starting in U and ending in V . By standard shadowing techniques, one can
find now an orbit ω̃1ω̃ω̃2 of f which Kε-shadows the pseudo-orbit ω1ωω2. The
orbit ω̃1ω̃ω̃2 has a lift to an orbit of fβ that starts in B((y, g1), ε) and ends in
B((z, g2), ε).

A proof of the following lemma follows from Appendix A of Niţică & Török [14].

Lemma 2.6. Let f : X → X be a hyperbolic map, G = K nRn and β : X → G a
Hölder cocycle. Then fβ admits stable and unstable foliations on X ×G, which are
Hölder and invariant under right-multiplication by elements of G. The stable leaf
of fβ through (x, e) is the graph of the function

γs
x : W s(x) → G, γs

x(t) = lim
n→∞

βn(t)−1βn(x).

This function is α-Hölder, and varies continuously with the cocycle β in the follow-
ing sense: if βk → β in the C0-topology and βk stay Cα-bounded, then, on W s

loc(x),
γs

k,x → γs
x in the C0-topology.

One way to generate elements in the set Lβ(x) is given by [11, Lemma 4.1],
which we describe below.

Lemma 2.7. Let x ∈ X be a fixed point for the transformation f and y a homoclinic
point to x. If there is a subsequence nk → ∞ such that βnk

(x) → e, then ωx(y) ∈
Lβ(x), where ωx(y) is the holonomy of the homoclinic loop determined by y.

Sketch of the proof. Let us describe the meaning of ωx(y). Consider the homoclinic
path determined by the orbit of y ∈ W s(x) ∩Wu(x) (covered along Wu(x) from
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x to y and then along W s(x) from y to x). Then, the lift to the unstable/stable
foliations of fβ , with initial point (x, e), of this homoclinic path ends at (x, ωx(y)).

Applying Lemma 2.6 to f and f−1, we obtain that the stable/unstable manifold
are the graphs of the functions

γs
x : W s(x) → G, γs

x(t) = lim
n→∞

βn(t)−1βn(x),

γu
x : Wu(x) → G, γu

x (t) = lim
n→−∞

β−n(t)−1β−n(x),

and the continuous dependence holds. Therefore, the holonomy around the homo-
clinic loop determined by y ∈ W s(x) ∩Wu(x) is

ωx(y) = lim
n→∞

(
βn(y)−1βn(x)

)−1
β−n(y)−1β−n(x)

= lim
n→∞

βn(x)−1β2n(f−ny)β−n(x).

Hence, if βnk
(x) → e, then ωx(y) ∈ Lβ(x) because

lim
k→∞

f2nk

β (f−nky, e) = lim
k→∞

(fnky, β2nk
(f−nky)) = (x, ωx(y)).

Note that these holonomy values can be easily modified in a continuous way by
changing β in an open set which contains only finitely many iterates of y.

We review next techniques of Brin [1, 2]. The group G is a semidirect product
K n Rn where K is a compact connected Lie group (although, we will use these
results for G = K × Rn only).

The following definitions go back to Brin [2]. Denote by Ws(ξ), respectively
Wu(ξ), the leaves through ξ ∈ X × G for the stable and unstable foliations in
Lemma 2.6.

Definition 2.8. Let f : X → X be a hyperbolic map, and β : X → G a Hölder
cocycle. A (u, s)-path between two points ξ, η ∈ X × G is a sequence of points
ξ0 = ξ, ξ1, . . . , ξm = η ∈ X × G such that ξi ∈ Ws(ξi−1) or ξi ∈ Wu(ξi−1). We
will say that the pair ξ, η is (u, s)-accessible, and refer to ξi, 0 ≤ i ≤ m, as junction
points.

The pair of foliations Ws and Wu is called accessible if each pair of points of
X ×G is accessible.

A (u, s)-rectangle at x is a (u, s)-path of four segments that starts and ends in
the fiber {x}×G (i.e., it is the lift of a stable-unstable closed rectangle in X starting
at x).

Taking into account Lemma 2.6, the following result is a more precise statement
of what is proven in [2, Theorem 1]. The claim m > 0 is implicit there (note that
there is typo in [2, proof of Lemma 3]: y1 ∈ M1 should be z1 ∈ M1).

Lemma 2.9. Let G = K n Rn where K is a compact connected Lie group, and
let β : X → G be a Hölder cocycle over the hyperbolic map f : X → X. Assume
that the pair ξ1, ξ2 ∈ X ×G is connected by a (u, s)-path whose junction points are
nonwandering.

Then, given any open neighborhoods Uk ⊂ X × G of ξk, k = 1, 2, there exists
m > 0 such that fm

β (U1) ∩ U2 6= ∅.
Corollary 2.10. Let f : X → X and β : X → G be as in Lemma 2.9. Assume
that each point of X × G is nonwandering. If the pair (x, hg), (x, g) ∈ X × G is
(u, s)-accessible, then h ∈ Lβ(x).



360 I. MELBOURNE, V. NIŢICĂ AND A. TÖRÖK

Remark. This shows that for such skew products, the holonomy elements gen-
erated by (u, s)-rectangles at x (see the group HC of Brin [2]) are contained in
Lβ(x).

The following lemma is a stronger version of [11, Theorem 5.10]. Its proof is as
in [11], the only change being to replace [13, Lemma 5] by Lemma 2.12 below.

Lemma 2.11. Let K be a compact connected Lie group and S ⊂ K ×Rn. Assume
that the projection of S onto Rn does not lie in a half-space. Then the closure of
the semigroup generated by S is a group.

Lemma 2.12. Assume that the family L ⊂ Rn does not lie in a half-space. Then
the closed semigroup generated by L is a group.

Proof. Denote by S the semigroup generated (without closure) by L.
We claim that for each v0 ∈ L there is a sequence of non-negative integers mk →

∞ and vectors wk ∈ S such that mkv0 + wk → 0. Hence (mk − 1)v0 + wk → −v0

and so −L lies in the closure of S, yielding the conclusion.
To prove the claim, notice that because L is not contained in a half-space, there

are nonzero vectors v1, . . . , v` in L such that the origin is in the interior of the
convex hull of v1, . . . , v`. Indeed, assume by contradiction that this is not the case.
Then, for each finite F ⊂ L \ {0}, the set HF of halfspaces that contain F is
nonempty. Clearly the family {HF }F has the finite intersection property. Since
the set of halfspaces is compact, there is a halfspace in the intersection of all the
HF ’s. This means that L is contained in a halfspace, a contradiction.

Pick v0 ∈ L. For α > 0 small enough −αv0 is close to the origin, hence it is a
convex combination of v1, . . . , v`. This gives a relation

∑`
i=0 αivi = 0 with α0 > 0,

and αi ≥ 0. Thus,
∑`

i=0(tαi)vi = 0 for each t > 0. Denote by t̂ the image of the
vector (tα0, tα1, . . . , tα`) in T`+1 = R`+1/Z`+1. Because T`+1 is a compact group,
there is a subsequence tk →∞ for which t̂k converges to zero. Hence, denoting by
t
(k)
i the nearest integer to tkαi, it follows that mk := t

(k)
0 and wk :=

∑`
i=1 t

(k)
i vi

have the desired property.

3. Groups G = C×A where C is compact semisimple and A is abelian. In
this section, we prove Theorem 1.1 for connected Lie groups of the form G = C×A
where C is compact semisimple and A is abelian. Let pC : G → C and pA : G → A
denote the canonical projections.

Writing A = Td × Rn, we denote by S the open set of Cr cocycles β (r ≥ 2)
for which the Rn-component is not cohomologous to a cocycle with values in a
half-space.

Lemma 3.1. Let L ⊂ G be a closed semi-subgroup. Suppose that pA(L) = A and
pC(L) = C. Then L = G.

Proof. We can rewrite G in the form G = K × Rn where K = C × Td is compact.
Note that the set L satisfies the half-space hypothesis in Lemma 2.11 since pA(L) =
A. So it follows from Lemma 2.11 that L is a group.

Since pA(L) = A, it suffices to show that C × {eA} ⊂ L. Now A is abelian and
so [L,L] = [pCL, pCL] × {eA}. Therefore [pCL, pCL] × {eA} ⊂ L. Since pCL is
dense in C, it is immediate that [pCL, pCL] is dense in [C, C]. But C is semisimple
so [C,C] = C. Hence we have shown that C × {eA} ⊂ L as required.
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Proposition 3.2. Theorem 1.1 holds for connected Lie groups G = C × A where
C is compact semisimple and A is abelian.

Proof. Fix x0 ∈ X and consider the closed semigroup Lβ(x0) ⊂ G. We construct
a C2 open and Cr dense set of Cr cocycles β ∈ S (r ≥ 2) such that Lβ(x0)
satisfies the hypotheses of Lemma 3.1. Then Lβ(x0) = G and the result follows
from Proposition 2.5.

By Theorem 2.3, in S there is an open and dense set S1 of cocycles β : X → G
for which fpAβ : X ×A → X ×A is transitive. Since C is compact, it is immediate
that pA(Lβ(x0)) = A. It follows now from Lemma 2.11 that Lβ(x0) is a group and
hence contains the identity element. It follows that (x0, g) is nonwandering for all
g ∈ G. Since x0 is arbitrary, all points in X ×G are nonwandering.

It follows from results on generators for compact semisimple Lie groups [9, 4] that
there is an open and dense set of pairs of elements (c1, c2) ∈ C × C that generate
C as a closed (semi)group. From [6, Lemma 2.9.1] we obtain an open and dense
subset S2 of β ∈ S1 for which the (u, s)-rectangles of pCβ at x0 determine a pair of
generators of C. Therefore, by Corollary 2.10, pCLβ(x0) contains a generator set of
C for all extensions β ∈ S2. It follows that pC(Lβ(x0)) = C for all these cocycles.
This completes the proof.

4. Groups G = K ×Rn where K is compact. In this section, we complete the
proof of Theorem 1.1.

Lemma 4.1. Let G be a group of the form G = K × Rn where K is a compact
connected Lie group. Let X be a hyperbolic basic set for f : X → X and β : X → G
a Hölder cocycle. Let Y ⊂ X be a closed f -invariant subset. If the restriction
(fβ)|Y×G : Y ×G → Y ×G is transitive, then fβ : X ×G → X ×G is transitive.

Proof. Let y0 ∈ Y . We can define a closed semigroup Lβ(y0) ⊂ G as in Section 2,
but we can do it using all trajectories in X or just those in Y . Denote the two
closed semigroups LX

β (y0) and LY
β (y0) respectively. Clearly, LY

β (y0) ⊂ LX
β (y0).

Now transitivity of Y ×G implies that LY
β (y0) = G. Hence LX

β (y0) = G, implying
transitivity of X ×G by Proposition 2.5.

Remark. Lemma 4.1 is similar in nature to a result of Field et al. [5, Proposi-
tion 6.1].

Proof of Theorem 1.1. It is always possible to embed a horseshoe inside a hyperbolic
basic set [8, Theorem 6.5.5, Exercise 6.5.1]). By Lemma 4.1, it suffices to prove
the result for the horseshoe. Hence, we may suppose from the beginning that X is
totally disconnected.

By the structure theorem for compact Lie groups ([3, Ch. V, Theorem 8.1]) there
is a finite cover p : C × Td → K where C is compact semisimple and Td is a torus.
This extends by the identity to a finite cover p : Ĝ → G where Ĝ = C ×Td ×Rn is
a group of the form studied in Section 3.

Let Ŝ consist of Cr cocycles β̂ : X → Ĝ for which the Rn-component of β̂ is not
cohomologous to a cocycle with values in a half-space. Recall that the cocycles we
are considering are Cr functions on a neighborhood of X in the ambient manifold,
but we are only interested in their restrictions to X. Since X is totally disconnected,
each Cr cocycle β : X → G has a Cr lift β : X → Ĝ. Clearly p−1(S) = Ŝ.
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By Proposition 3.2, it follows that there is an open and dense set of transitive
cocycles β̂ : X → Ĝ in Ŝ. Clearly, if β̂ defines a transitive Ĝ-extension, then β = pβ̂
defines a transitive G-extension.

Given β ∈ S, let β̂ ∈ Ŝ be a lift of it to Ĝ. After an arbitrarily small perturbation,
we may suppose that β̂ defines a stably transitive Ĝ-extension. Moreover, cocycles
β′ that are Hölder close to β can be lifted to cocycles β̂′ that are Hölder close to β̂.
Since β̂ is stably transitive, the cocycles β̂′ are transitive and hence the cocycles β′

are transitive. Hence β is stably transitive as required.

5. SE(2)-extensions. In this section, we prove Theorem 1.2.

Lemma 5.1. There is an open and dense set of pairs of elements (g1, g2) ∈ SE(2)2

such that the closed semigroup H generated by g1 and g2 is a group of the form
H = K nR2 for a closed subgroup K ⊂ SO(2).

Proof. Let g1, g2 ∈ SE(2) be two rotations with distinct centers of rotation, such
that g1 has order at least seven. The set of such pairs is open and dense in SE(2)2.

Since g1, g2 are compact, the closed semigroup and group they generate coincide.
Denote this by H. Up to a conjugation, we may assume that g1 = (θ1, 0) and
g2 = (θ2, v2), where θ1, θ2 ∈ SO(2) and v2 ∈ R2 \ {0}. Then

g3 = g1g2g
−1
1 g−1

2 = (θ1, 0)(θ2, v2)(θ−1
1 , 0)(θ−1

2 ,−θ−1
2 v2)

= (e, θ1v2 − v2) ∈ H ∩ (R2 \ {0}).
Thus the group H contains g1, a rotation of order at least seven, and g3, a non-trivial
translation. Denote by H0 the closed group generated by g1, g3. Then H0 = K1nL
where K1 ⊂ SO(2) is the closed group generated by g1, |K1| ≥ 7, and L ⊂ R2 is
a closed K1-invariant subgroup. We claim that L = R2. This implies that H is a
semidirect product K nR2.

To prove the claim, note that by the crystallographic restriction [7, pages 70-81],
L is not a lattice. If L is not R2, then it is isomorphic to R× Z, and therefore the
R-direction must be preserved by K1. This is impossible.

Proof of Theorem 1.2. Let p : SE(2) → SO(2) be the canonical projection. We
start with an arbitrary cocycle. Choose a fixed point x0 ∈ X for f , or for a higher
iterate of f , and two points y1, y2 ∈ X homoclinic to x0 that have mutually disjoint
orbits. Then, by making Cr-small perturbations over small neighborhoods of y1

and y2 we can arrange that the holonomies ωx0(y1), ωx0(y2) ∈ Lβ(x0) are in the
set prescribed by Lemma 5.1. Since our perturbation can be arbitrarily small, the
holonomies depend continuously on the perturbation, and the set in Lemma 5.1 is
open, it follows that there is an open dense set U1 of cocycles β : X → SE(2) for
which the pair of holonomies ωx0(y1), ωx0(y2) ∈ Lβ(x0) belong to the open, dense
set of pairs defined in Lemma 5.1. Therefore, R2 ⊂ Lβ(x0) for all cocycles in U1.

It follows from Theorem 2.2 that, for a dense and open set U2 of β, the SO(2)
extension given by pβ is transitive.

We will show that Lβ(x0) = SE(2) for cocycles in U1 ∩ U2. Since R2 ⊂ Lβ(x0),
we only have to prove that SO(2) ⊂ Lβ(x0).

Let θ ∈ SO(2). By the transitivity of the pβ extension, there is a sequence of
orbits Pn = {xn, . . . , fpn(xn)} for which xn → x0, fpn(xn) → x0, and pβpn(xn) →
θ. Write βpn(xn) = (θn, vn) ∈ SO(2) n R2. Since R2 ⊂ Lβ(x0), one can find a
sequence Rn = {yn, . . . , frn(yn)} of orbits such that yn → x0, frn(yn) → x0, and
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d(βrn
(yn), (e,−vn)) → 0. Denote by {zn, . . . , fpn+rn(zn)} the orbit that shadows

the pseudo-orbit {Rn,Pn}. By Lemma 2.4 and the definition of the metric d,

d(βpn+rn(zn), βrn(yn)βpn(xn)) ≤ d(βrn(fpnzn), βrn(yn)) + d(βpn(zn), βpn(xn))

is small. Therefore, βpn+rn(zn) → (θ, 0), which shows that (θ, 0) ∈ Lβ(x0).
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