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Abstract. Holder continuous observations on hyperbolic basic sets satisfy strong statistical
properties such as exponential decay of correlations, central limit theorems and invariance
principles (approximation by Brownian motion).

Using an equivariant version of the Ruelle transfer operator studied by Parry and
Pollicott, we obtain similar results for equivariant observations on compact group
extensions of hyperbolic basic sets.

1. Introduction

Let A be a topologically mixing hyperbolic basic set equipped with an equilibrium state
(Gibbs measure). It is by now classical (see, for example, Bowen [5], Ratner [29],
Ruelle [32], Parry and Pollicott [26]) that Holder continuous observations ¢ : A — R
satisfy strong statistical properties such as exponential decay of correlations and the central
limit theorem (CLT). Furthermore, an almost sure invariance principle (ASIP) [10], states
that the partial sums of ¢ approximate Brownian motion on the line.

Recently, interest has focused on (skew product) extensions A x G of a hyperbolic basic
set A by a compact connected Lie group G. Such extensions are automatically partially
hyperbolic and are typically ergodic and even stably ergodic and mixing [15, 27].

Counterexamples of Dolgopyat [11] show that, even when A x G is stably ergodic, the
decay of correlations of Holder observations may be arbitrarily slow. The counterexamples
are toral extensions of subshifts of finite type. On the other hand, if G is semisimple, or if
A is Anosov, then Dolgopyat obtains rapid (though not exponential) decay of correlations
when A x G is stably ergodic. The CLT then follows from Liverani [21].

§ Permanent address: Department of Mathematics and Statistics, University of Surrey, Guildford,
Surrey GU2 7XH, UK.



88 M. Field et al

Motivated by issues arising for certain non-compact (primarily Euclidean) group
extensions, Nicol er al [23] considered a class of G-equivariant n-dimensional
observations ¢ : A x G — R”". Under the same hypotheses as in [11], Nicol ef al [23]
obtained an n-dimensional CLT with convergence to a normal distribution N (0, ¥) where
¥ is an n X n covariance matrix. Furthermore, X is typically non-singular.

In this paper, we show that by restricting to equivariant observations from the outset,
it is possible to bypass [11, 21]. Instead, we use an equivariant version of the Ruelle
transfer operator studied by Parry and Pollicott [25, 26]. This leads both to cleaner proofs
and stronger results. For example, the counterexamples of Dolgopyat [11] do not apply
to equivariant observations and we obtain exponential decay of correlations (not merely
rapid decay) for equivariant Holder observations on weak mixing extensions of arbitrary
hyperbolic basic sets. Our results apply to principal extensions as well as to (skew product)
extensions by compact connected Lie groups.

We also prove a version of the ASIP, where for almost every initial condition, the partial
sums of ¢ approximate n-dimensional Brownian motion. Immediate consequences of the
ASIP are the law of the iterated logarithm (LIL), the CLT and the weak invariance principle
(WIP).

The remainder of the paper is organized as follows. In §2, we state our main results for
extensions of hyperbolic basic sets. In §3, we describe a general framework for proving
exponential decay of correlations, the CLT, the WIP and the upper half of the LIL for
classes of observations for non-invertible dynamical systems. In §4, we prove exponential
decay of correlations for skew and principal extensions of hyperbolic basic sets. In §5, we
briefly review the definition and properties of the covariance matrix. In §6, we prove the
ASIP for extensions of hyperbolic basic sets.

2. Statement of main results

Let M be a C* compact manifold and suppose that A C M is a topologically mixing
hyperbolic basic set for the diffeomorphism f : M — M. In the remainder of the paper,
we always assume f is smooth—that is, of class at least C'. Let d denote a choice of
smooth Riemannian metric on M.

Recall that p : A — R is Holder continuous with exponent «, i.e. p € C%,ifa € (0, 1)
and forall x, y € A, wehave | f(x)— f(y)] < Cd(x, y)*, for some constant C > 0. In the
following, when we refer to Holder continuous maps defined on subsets of manifolds, we
always assume Holder continuity is with respect to some fixed exponent o.

Let p : A — R be Holder continuous and @ denote the associated equilibrium state
(Gibbs measure). In the following, we regard pu as a measure on M supported on A.
Necessarily, f | (A, i) is u-mixing (and more, see [S5]). Let G be a compact connected
Lie group with Haar measure v and define the product measure m = u x von M x G.
In the following, unless otherwise stated, all integrals are over M x G (equivalently, A x G)
with respect to the measure m.

Let f : M x G — M x G be the compact group extension defined by 4 : M — G.
That is, fr(x,g) = (fx, gh(x)), (x,g) € M x G. We make the standing assumptions
that (1) all group extensions are determined by Holder continuous skewing maps #, and (2)
Jn: M xG — M x G is weak mixing (with respect to the measure m). Note that it follows
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from Rudolph’s Theorem [31], that if f; is weak mixing then it is mixing. However, as
we only make use of properties of weak mixing in the sequel, we emphasize weak mixing
rather than mixing.

Remark 2.1. Field and Parry [15] prove that weak mixing holds for an open and dense
set of smooth G-extensions f : M x G — M x G provided either A is a hyperbolic
attractor or G is semisimple (see also [14]). Even if none of these conditions holds, a
residual set of G-extensions are weak mixing (this is an elementary consequence of Parry
and Pollicott [27, Proposition 8]).

Suppose that R” is an orthogonal representation of G. An observation¢ : M xG — R”
is G-equivariant if ¢(x,ag) = a¢(x, g) for all a € G. Equivalently, ¢(x, g) = gv(x)
where v : M — R”". Equivariant observations arise naturally in applications to problems
with non-compact symmetry groups, see [1, 23].

In the following, if b, c are vectors in R”, then beT denotes an n x n matrix in Mat, (R).
We always assume observations are Holder continuous.

THEOREM 2.2. (Exponential decay of correlations) Let f, : M x G — M x G be a weak
mixing G-extension of a hyperbolic basic set.

Then there is a constant t € (0, 1) such that for all Holder continuous G-equivariant
observations ¢,y : M x G — R", there is a constant C > 0 such that

‘/qbof,{t/fT—/qﬁ/wT

Analogous results hold for principal G-extensions.

<Ct/, forallj>1.

Remark 2.3. The restriction to equivariant observations is crucial, since Dolgopyat [11]
has counterexamples for general observations when A is a subshift of finite type and
G is a torus—even when A x G is stably weak mixing. In fact, Dolgopyat obtains
superpolynomial (but not exponential) decay of correlations for general observations
provided G is semisimple or M is Anosov.

Let ¢ : M x G — R" be a G-equivariant observation, and define

N-1

ov= pof.
j=0

If ¢ has mean zero ( ¢ = 0), then it is an elementary consequence of Theorem 2.2 that
the limit limy oo (1/N) [ pn 1, exists (see §3 below).

Definition 2.4. Let ¢ : M x G — R" be a G-equivariant observation with mean zero.
Define its covariance matrix ¥ = Xy = limy_oo(1/N) quNqS]{,.

Note that ¥ is a G-equivariant symmetric positive semidefinite linear operator on R".
In fact, there are no further restrictions on ¥ and generically (for a C°-open and C*-dense
set of C* observations ¢) X is non-singular (see Nicol er al [23] and also Remark 5.4
below).

A stochastic process W : [0,00) x  — R”" is called an n-dimensional Brownian
motion if (i) W(0) = 0 almost surely, (ii) there is an n x n covariance matrix ¥ such that
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W (¢) has distribution N (0, tX) foreach t > 0 and (iii) foreachO0 <t} < th < --- < I, the
increments W (t1), W(t2)—W(t1), ..., W(tx)— W (tx—1) are independent random variables.
When X = I,,, W(¢) is called a standard n-dimensional Brownian motion. It is a basic
property of Brownian motion that W € C([0, oo), R") almost surely. That is, W is a
random element with values in C ([0, co), R"). (This generalizes the notion of a random
variable with values in R.) We can now state our second main result.

THEOREM 2.5. (ASIP) Let f : M x G — M x G be a weak mixing G-extension of a
hyperbolic basic set. Let ¢ : M x G — R" be a G-equivariant observation with mean
zero and non-singular covariance X.

Then for each ¢ € R", there is a one-dimensional Brownian motion W with variance
cTScanda sequence of random variables S.(N) such that the sequences {cTopn, N > 1}
and {S¢(N), N > 1} are equal in distribution and such that for each § > 0,

S.([t) = W) + 048 ast — oo,

almost surely.
Analogous results hold for principal G-extensions.

Remark 2.6. The error term O (t!/ 4+‘3) is slightly better than the error term O !/ 28 ) that
is more usual in statements of the ASIP [10, 28].

There are a number of standard consequences of the ASIP (see, for example, [28]).
A few of these are listed below.

COROLLARY 2.7. (CLT) Suppose that f;, and ¢ are as in Theorem 2.5. Then (1/~/N)dy
converges in distribution to an n-dimensional normal distribution with mean zero and
covariance ¥ as N — oo.

Proof. Let ¢ € R" and note that ¢ ¢ is a one-dimensional observation with mean zero and
variance ¢! Z¢. It follows from the ASIP that (1 / VN Yelon converges in distribution to a
one-dimensional normal distribution with mean zero and variance ¢’ Sc. By the Cramer—
Wold technique (see for example [4, Theorem 29.4]), this implies the required result. O

Set Wy (0) = 0 and
1 Nt—1 1

Wa() = ——dni = —= 3 dofl, 1=
WS TN & N

e e

=

Linearly interpolating on each interval [(k — 1)/N, k/N1], k
random elements Wy € C ([0, c0), R").

v

1, we obtain a sequence of

COROLLARY 2.8. (WIP) Suppose that f, ¢ and X are as in Theorem 2.5, and that W
is an n-dimensional Brownian motion with covariance ¥. Then Wy converges weakly
in C([0,00),R") to W as N — o0. (In other words, the measures induced by Wy on
C ([0, 00), R™) converge weakly to an n-dimensional Wiener measure.)

Proof. The ASIP implies that 7 Wy converges weakly to ¢” W for each ¢ € R” and again
this is enough to imply the n-dimensional result. a
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Remark 2.9. Let x : C([0, c0), R") — R be continuous. A consequence [3] of the WIP
is that the sequence of random variables x (Wy) converges weakly to x (W). Taking x to
be evaluation at r = 1, we see that the WIP implies the CLT. (The WIP is often called the
functional CLT.)

As usual, a version of the LIL, together with its functional form which we do not state
explicitly, follows directly from the ASIP.

COROLLARY 2.10. (LIL) Suppose that fy, and ¢ are as in Theorem 2.5. For each c € R",

. oy
lim sup

—FV—— = O,
N—oo +/2Nloglog N
almost surely, where O’CZ =cTxec.

Remark 2.11. We have proved n-dimensional versions of the CLT and WIP, but our
versions of the ASIP and LIL are restricted to one-dimensional projections c” ¢y .
We conjecture that the n-dimensional versions of the ASIP and (functional) LIL are valid
under the same hypotheses, but the proof will require a different approach from the one
in this paper (this is already the case for n-dimensional independent random variables,
see [9]).

3.  General framework

Suppose that (¥, m) is a probability space and that 7 : ¥ — Y is a measure-preserving
endomorphism. In this section, all integrals are over Y with respect to the measure m.
Let U : L>(Y,R") — L*(Y,R") be the induced isometry (U¢ = ¢ o T), with adjoint
operator U*.

Let F be a Banach space embedded in L2(Y,R"), with norm | - || scaled so that
[pl2 < |l¢]|l for all ¢ € F. We assume (without loss) that the constant functions lie
in F. Define the closed subspace Fp = {¢ eF:[¢= 0}. We suppose that U and U*
restrict to operators on F' and that the following property holds. There are constants C > 0
and p € (0, 1) such that

I(U*) ¢l < Co’ll¢ll forall j > 1and p € Fo. (3.1)

Remark 3.1. All the results in this section go through with p/ replaced by any positive
function a(j) such that

> Jja(j) < oo,
j=1

The remainder of the section is divided in several subsections. Exponential decay
of correlations is derived in §3.1 and is used to define the covariance matrix in §3.2.
§3.3 consists of a standard Gordin-type argument which yields information on the non-
degeneracy of the covariance matrix and at the same time leads to a multiplicative sequence
of random variables. The CLT, WIP and upper LIL are consequences of multiplicativity.
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3.1. Exponential decay of correlations

PROPOSITION 3.2. There exist constants K > 0 and p € (0, 1) such that

‘/(qus)w—qufx/ﬂ

forall j > 1andall ¢ € L>(Y,R"), ¥ € F(Y,R").

< Kpllplallvl,

Proof. Note that

f((ufmx/ﬂ —f¢fwT> =fo¢(1/f—/w)T =f¢(U*)-"<w—f1/f>T

so that
‘/U%W—/cb/ﬁ < ¢l (U*)f'(w—/vf> X
However,
‘(U*)J’(w—/w) = (U*)f'(vf —/w) < Cpf(nwn +‘/wD <2Cp’ |y,
so the result follows with K = 2C. O

3.2. Covariance matrices. For notational convenience, given ¢, v € LZ(Y ,R™), we
write

E(¢, ) = /wT € Mat, (R).
Also, we set
N-1
¢y =) U'op.
=0
We prove below that the covariance matrix (see Definition 2.4) is well defined, so the
limit
b lim dNOL
= lim —
¢ N—oo N NPN
exists. We conclude that the covariance matrix Ly is a symmetric positive semidefinite
n X n matrix.
PROPOSITION 3.3. If ¢ € Fy, then the series

Sy =E($,9)+ ) EU/¢, ¢)+
=1

j=

Y E@@,U/¢) (3.2)
j=1

J

converges absolutely and

E(@pn,¢n) = NZyp + O(1), as N — oo.
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Proof. The case n = 1 is standard (see for example [8]) and the proof for general n is
similar. We give the details for completeness.

Absolute convergence of the series for X4 is an immediate consequence of decay of
correlations. Next compute that

N—-1

E@n.¢n) = ) EU'$.U'¢) = (Z+Z+Z>E(zﬂ¢, U’¢).
i=j

i,j=0 i>j i<j

Since E(U'¢p, U'¢p) = E(¢, ¢), the first term reduces to N E(¢, ¢). The second term can
be written as

N-1
Y EUGUI¢) =) EUTT$.¢)=) (N-nNEU $.9)
r=I1

i>j i>j
00 N—-1 00
=N)Y EU'¢.¢)— ) rEU ¢, ¢)—NY EU$,¢).
r=I1 r=1 r=N

It follows from decay of correlations that

N-1

Y rEWU¢, )

r=1

o
< Kliphll D rp" < oo.

r=1

Similarly,

<N Y Ko'lphligl = NoKiglallll/(1 - p) — 0,

‘N EU" ¢, $)
r=N

r=N

as N — oo. Hence

Y EWU'¢.U¢)=NY EU $.¢)+ 0(1) asN — oo.

i>j r=1
Similarly,
. . o0
Y EWU'$,U/¢)=NY E@$.U$)+0(1) asN — oo.
i<j r=I1

We conclude that
E@n,¢n) = NE@, )+ N Y EWU' ¢, )+N Y E(p, U'$)+0(1) = NS+ 0(1)
r=I1 r=1

as required. O

3.3. Multiplicative sequences and martingales. We recall a standard argument of
Gordin [17].

LEMMA 3.4. If ¢ € Fo, then ¢ is cohomologous to an element v € Fy such that
U*y = 0. That is, there exists W, x € Fo such that U*y = 0 and

p=v+Ux—x.
Moreover, Ly = Xy = E(Yr, ¥).
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Proof. The sequence of partial sums Ziv: U *)/ ¢ is a Cauchy sequence in Fy and hence
converges to

o0
x=)_(U"¢e k.
=1
Note that x — U*y = U*¢. Now define v = ¢ + x — Ux € Fp and note that
Uy = U*¢p + U*y — x = 0.
If j > 1, then

EUIY. ¥) =/Ufwf7 =/w((U*)fw>T —0

and similarly E (i, U J y) = 0. Hence, by definition (equation (3.2)) of Xy, we have that

Ty =EW, ¥).
It remains to prove that £4 = T,. Equivalently, ¢’ Zyc = ¢T Zyc for all ¢ € R".
However, ¢! ¢y = Ty + ¢ (UM x — x), so taking L%-norms,

lcTonla < T ynla + 21T x1a.
Since

IcTon13 = / cTonple =cTE@n, dn)e,

we deduce that

1
NcTE(qu, on)c < NcTE(I/fN, YUn)e +o(l).

Hence c” Ypc < c72¢c and the reverse inequality follows by the same argument. O

COROLLARY 3.5. Let ¢ € Fy. Then £y =0 ifand only if ¢ = U x — x for some x € Fy
(that is, ¢ is a coboundary in Fy).

Proof. If ¢ is a coboundary, then ¢y = UN x —x and E(¢n, ¢n) = O(1), so that Yy =0.
Conversely, suppose that 34 = 0 and write ¢ = v + U x — x as in the lemma. Then

0=E¢=E(w,w>=fwT
sothatyy =0and¢p =Uyx — x. O

Remark 3.6. This argument, which directly produces a coboundary in Fp, positively
answers a question raised by Bowen [5, p. 39]. The usual approach is to
first construct an L2 coboundary and to then prove regularity, see for example
[26, Proposition 4.12]. (The L? coboundary criterion for degeneracy holds very generally,
see [26, Proposition 4.12] and for a simpler argument [8, Lemma 2.4].)

Definition 3.7. A sequence of random variables {X ;} is multiplicative if
/Xj]Xh---Xj, =0 foralji>jr>-->j>0,r>1. (3.3)

PROPOSITION 3.8. Suppose that U*¢ = 0 and let c € R". Define X; = cTU/¢.
Then {X ;} is a multiplicative sequence.
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Proof. The isometries U on L%(Y,R") and L%(Y, R) are related by UcTy) = cTUY
and hence the corresponding adjoints U* satisfy U*(cTy) = ¢TU*y. In particular,
U*Xy = cTU*¢ = 0. Suppose that j; > --- > j._| > j.. Letk; = j; — j, and
compute that

/lesz"'xjr Z/Xk] "'Xk,_|X0Z/U{Xkl—l"'Xk,_|—l}XO

= /Xk]—l X —1U'X0=0

as required. O

COROLLARY 3.9. Suppose that T : Y — Y is ergodic and ¢ € Fy. Then (1/+/N)pn
converges in distribution to an n-dimensional normal distribution with mean zero and
covariance matrix L.

Proof. By Lemma 3.4, ¢y = ¥y + O(1) where U*yy =0, and X4 = X. Hence, without
loss of generality we may suppose that U*¢ = 0. In particular, 4 = [ popT.

By the Cramer—Wold technique it is sufficient to prove the CLT for the sequence ¢/ U/ ¢
for each vector ¢ € R". It follows from Proposition 3.8 that this is a multiplicative sequence
and hence we can apply results of McLeish [22] or Fukuyama [16]. a

Remark 3.10. Similarly, the WIP holds for multiplicative sequences by [16, 22].
Furthermore, if F C L, it follows from Takahashi [36, Theorem 2] that the upper half of
the law of the iterated logarithm holds for ¢. That is, for each ¢ € R",

. cTon
lim sup

T S GC’
N—oo /2N loglog N
2

almost surely, where 0> = ¢ Tyc.

Remark 3.11. We have not assumed that Xy is non-singular in Corollary 3.9 or
Remark 3.10.

Remark 3.12. In this section, we have used probabilistic limit theorems for multiplicative
sequences rather than for martingales. However, the martingale approach proves useful
in §6, so we recall this formulation for later reference.

Suppose that T : ¥ — Y is ergodic and let M be the o-algebra on Y. Of course,
T and ¢ are M-measurable and T~! M C M. Suppose that U*¢ = 0. The conditional
expectation E(- | T~!M) is equal to the projection UU*, from which it follows that
E@| T~ 'M)=0.

It follows immediately that 7~/ M is a decreasing sequence of o -algebras and that for
all j > 0,¢ o T/ is T™/ M-measurable and E(¢p o T/ | T-U+tD M) = 0.

The CLT and WIP can now be recovered by a standard argument, which is implicit
in Gordin [17]. For completeness, we sketch the argument—although the approach using
multiplicative sequences is more elementary.

Firstembed 7 : ¥ — Y in its natural extension 7 : ¥ — Y (see [30]). The observation
¢ : Y — R" lifts to an observation $ .Y — R" and the joint distributions of :I;N are
identical to those of ¢y for N > 1. Let /\//\l be the o-algebra M lifted to Y. Then T/ M\ R
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Jj > 1, is an increasing filtration of o-algebras and moreover for all j > 1, :z)\ o T is
/T\-"/\//Y-measurable and E((Eo T |fj_1ﬂ) = 0. In other words, {Z;V:l :z)\o /T\_j, N > 1}
is a stationary martingale.

IfT :Y — Y is ergodic, then T:Y—>7Yis ergodic, so that {le\lzl $o T/, N> 1}is
an ergodic stationary martingale. It now follows from Billingsley [2, 3] that the CLT and
WIP hold for Z?]:l é o T—/. However,

N—lA . N PR
Y poTi=) ¢poT /oTV
j=0 j=1

so that the partial sums Zi‘\/:_ol poT/, Zi‘\/:_ol ¢ 0T/, and Z?]:l ¢ o T~/ have the same
distribution. It follows easily that the CLT and WIP hold for ¢ as N — oo.

4. Exponential decay of correlations

In this section we prove exponential decay of correlations for equivariant observations. For
one-sided shifts this is a direct consequence of the fact that condition (3.1) of §3 holds in
our setting (Proposition 4.5). For two-sided shifts (Theorem 4.10) we use the one-sided
results and an adaptation of the proof for scalar-valued observations.

In §4.1 and §4.2, we consider G-extensions of one-sided subshifts and two-sided
subshifts, respectively. In §4.3 we consider G-extensions of general hyperbolic basic
sets. In §4.4 we show that these results extend to a larger class which includes principal
G-extensions over hyperbolic basic sets as well as examples of partially hyperbolic sets
where the G-action is not free.

4.1. Extensions of one-sided subshifts

The Ruelle operator. let o : XT — X7 denote an aperiodic subshift of finite type.
The Holder spaces Fp(X ', R), 0 < 6 < 1, are defined in the usual way, see Appendix A.
Given f € Fy(XT, R), the Ruelle operator Ly : C(X*,R) — C(X™,R) is defined by

Lyw) = Y e/ V).
oy=x
Note that L ¢((v 0 0)w) = vL yw. We recall some basic facts about the Ruelle operator
and refer to the books by Ruelle [32], Bowen [5], or Parry and Pollicott [26] for details.

First of all, f can be ‘normalized’ so that L y1 = 1. We shall always assume that f is
normalized. It follows immediately that L ;U = I where Uw = w o o. There is a unique
o-invariant equilibrium state x such that L% 1 = p. Note that L ¢ acts on L2=L%X*t, n
and that U is an isometry on L2, Moreover, Ly = U *,

It is clear that the spectrum of Ly lies inside the unit disk and that 1 is an
eigenvalue (since L1 = 1). In fact, 1 is a simple eigenvalue and there are no further
eigenvalues on the unit circle. Restricting to Holder spaces, it can be shown that
Ly: Fo(X T, R) — Fy(XT,R) has essential spectral radius 6. Outside this radius, the
spectrum consists of isolated eigenvalues of finite multiplicity. Hence, the spectrum of L ¢,
excluding the simple eigenvalue 1, has radius pp € (0, 1).
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The subspace of Fy(X ™', R) consisting of functions w with [ x+ wdu = 01is preserved
by L r and on this subspace, L s has spectral radius pg. Hence, for any p € (oo, 1) there is
a constant C > 0 such that ||L",'pw||9 < Cp/|lwllg forall j > 1 and w € Fy(Xt, R) with
Jx+wdp =0.

Similarly, Ly : Fp(X*,R") — Fg(XT,R") has an eigenvalue 1 of multiplicity n
(the eigenfunctions are the constant functions) and the reminder of the spectrum lies in the
disk of radius pp. Again, ||L"fw||9 < Cplllwllg, forall j > 1 and w € Fy(X+, R") with
Jx+wdp =0.

Therefore, it follows from [5, 26, 32] that the Banach space F = Fp(X ', R") satisfies
the property (3.1) required in §3 and that exponential decay of correlations holds for Holder
observations.

The equivariant Ruelle operator. Let G be a compact Lie group with Haar measure
v. Suppose that G acts (orthogonally) on R"” and identify G with a subset of O(n).
For f € Fy(X™,R) normalized as above and h € Fy(X™T, G), define the equivariant
Ruelle operator Ly, : Fg(XT,R") — Fg(XT,R") by

Lipw = Lf(l”l_1 - w).

The operator L f; was introduced and studied extensively by Parry and Pollicott [25], see
also [26]. Again, Ly has spectral radius of at most 1 and essential spectral radius 6.

We define the skew productoj, : XT x G — X+ x G by o3(x, g) = (ox, gh(x)).
The product measure m = p X v is invariant under o,. Recall that o, is weak mixing if
the only measurable eigenfunctions are the constants (that is, the equation ¢ o 6, = ¢
a.e., where ¢ : XT x G — C is measurable and o € C, has only the ‘trivial’ solutions
o = 1 and ¢ constant). It is a consequence of a LivSic-type regularity theorem [24] that
measurable solutions ¢ have Holder continuous versions (and hence oy, is weak mixing if
and only if it is topologically weak mixing).

In the remainder of this section, we suppose that f € Fp(XT,R)and h € Fp(X™', G)
are such that oy, is weak mixing.

COROLLARY 4.1. Suppose that Fix G = {0}. Then Ly, : Fo(XT,R") — Fp(Xt,R")
has spectral radius less than one.

Proof. (cf.[26, Theorem 8.3]) Since Ly, has essential spectral radius 8 < 1, it is sufficient
to rule out the existence of eigenvalues « € C with |¢| = 1. Such an eigenvalue
leads to the equation L s,w = aw and by a standard convexity argument [26, p. 130],
h(x)w(ox) = oflw(x). Equivalently, ¢ o o, = a’lqﬁ where ¢ (x, g) = gw(x). By the
definition of weak mixing, ¢ is constant. Since Fix G = {0} we deduce that w = 0. O

Write R* = FixG @ (FixG):. Then Fs(Xt,R") = Fp(X*T,FixG) @
Fo(X™, (Fix G)1), and Ly, preserves the splitting. Moreover, Ly, = Ly on the
first summand, and Corollary 4.1 applies to the second summand. Hence there is the
eigenvalue 1 of multiplicity equal to the dimension of Fix G and, provided o}, is weak
mixing, the remainder of the spectrum of L 7, lies within a disk of radius pp < 1.
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COROLLARY 4.2. Let p € (po, 1). Then there is a constant C (that depends only on
6, p, f and h) such that

HL’,»,hw—/ g-wdm| < Clwlgop’,
’ XtxG 0
forall j > 1andallw € Fo(XT,R").
Proof. For the Fix G components of w, we have
j g
Lf’hw_wa—> X+w

exponentially quickly, as in the non-equivariant case. For the (Fix G)~ components,
Jx+xg & wdm = 0and we apply Corollary 4.1. O

Remark 4.3. Viewed as an operator on LZ(X T, R"), L £,k is the adjoint of the isometry U
defined by Uv = hv o 0.

The one-sided shift o5, : X* x G — XT x G induces an isometry U : L% (X" x
G,R") — L2 (Xt x G,R") defined by U¢p = ¢ o 0,. We have a natural bijective
isometry L% (X+ x G,R") = L2(xt, R"), defined by mapping ¢ € LZ(X* x G,R")
tod € LZ(X+ R), where ¢(x,g) = gp(x), for all (x,g) € X+ x G Under this
natural isomorphism, the isometry U of L2 (X* x G,R") determines the isometry U
of L2(Xt,R") defined above. The next result is an immediate consequence of these
observations.

PROPOSITION 4.4. The adjoint U* of U : L2 (Xt xG, R") — L2 (XT xG,R") is given
by U* = U*. (That is, given ¢ € L2 c(Xt x G R"), U*¢ = thq))

Let FQG (XT x G,R") denote the space of equivariant observations ¢ (x, g) = gv(x)
where v € Fy(Xt,R") and define ||¢llo = |lv|le. Just as above, we have the natural
|| - llg preserving isomorphism F (X+ x G, R") = Fp(X*+, R"). The operators U, U* on
LZG(XJr x G, R™) restrict to operators on FQG(XJr x G,R").

PROPOSITION 4.5. Let C > 0 and p € (0, 1) be as in Corollary 4.2. Suppose that
¢ € FE(Xt x G,R") and [ ¢ = 0. Then

I(U* ¢llg < Cpllipllo, forall j > 1.
Proof. Tt follows from Corollary 4.2 that ||Lj 4®llo < Colll@lp. Hence

U pllo = 1L h¢|l9 < Cpll1pllo = CpIllo. 0

It follows that F = F@G(XJr x G, R") satisfies the requirement (3.1) of §3. In particular,
we have established exponential decay of correlations for extensions of one-sided subshifts.

THEOREM 4.6. Let C > 0and p € (0, 1) be as in Corollary 4.2. Then

Joutsr[of

forall j > 1, and forall ¢ € LL(X" x G,R"), ¥ € FZ(XT x G,R").

< Clphlvlop’,
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4.2. Extensions of two-sided subshifts. Let 0 : X — X be an aperiodic two-sided
subshift of finite type. The Holder spaces Fy(X,R"), Fg(X, G), 8 € (0, 1) are defined
as in the one-sided case, see Appendix A. Let f € Fp(X, R) be a Gibbs potential. It is
known [26] that f is cohomologous to a potential f € Foipp (X*t,R). We denote the
corresponding equilibrium states on X, X* by u, [, respectively. If ¢ : XT — R is
ji-measurable, then the natural map induced by ¢ on X is u-measurable and the integrals
over X, X coincide (if they exist).

We consider skew products o, : X X G — X x G induced by h € Fyp(X, G), and write
oj (x,8) = (0/x,gh;(x)) for j € Z. In particular, hj(x) = h(x)h(ox)--h(c/" x)
when j > 1.

Suppose that G acts orthogonally on R"”. Again, there is a natural one-to-one
correspondence between equivariant observations ¢ : X x G — R”" and functions
a : X — R”". We define the spaces of Holder equivariant observations FGG XxG,RHYEZE
Fp(X, R™) just as we did in the one-sided case.

The following result enables us to apply results for one-sided subshifts.

LEMMA 4.7. Suppose that¢ e Fy(X, R”) h e Fy(X, G), where 0 < 6 < 1. Then there
exist functions h M e Fy12(X, G) and I/f X € Fpia(X,R") such that w and h depend
only on future variables and

h = Mﬁ(!\?oa)_l, M_l$= ‘Z"‘X —EX o0.
Moreover, oy, is weak mixing if and only oy, is weak mixing.

Proof. The construction of h and M can be found in Parry and Pollicott [26, Appendix II].
The construction of ¢ and y is a simple adaptation of the standard proof where 4 is absent
and is proved in Appendix A. a

Let ¢, : X x G — R”" be the equivariant observations corresponding to a, {h\,
respectively. We define M : X x G — G by M(x,g) = gM(x)g~!. For N > 1

define
N-1 .
_ J
n=) Vool
j=0

COROLLARY 4.8. ¢y = My + O(1).
Proof. It suffices to show that :I;N = 1\//}1}\1\/ +O(1). Since hj = Mﬁj (A//iooj)*l, we have
ﬁjaz hjao ol = Mﬁj(ﬁ? ocrj)flao ol = Mﬁj(]\?fla) oo’
= Mﬁj(ao ol + X ool —ho a-j)( oo/th
= A’/}ﬁjf//\—i—]l//}(fzjx oo’ —lejJr]X oo /th.
The result follows. a

LEMMA 4.9. Suppose that h € Fo(XT,G) — Fy(X, G) and that o}, is weak mixing.
Let p € (po, 1) where pg is as in Corollary 4.2. Then there is a constant C > 0 such that

ountsr—fofo

forall j > 1, and forall ¢, ¥ € FZ (X x G, R").

< Clploll¥lo(p?), (4.1)
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Proof. We follow the proof of [26, Proposition 2.4], taking into account the extra
complications due to the presence of 1. We may restrict to the case Fix G = 0 (since when
G acts trivially we are in the non-equivariant case which is proved in [26, Proposition 2.4]).
In particular, ¢ and i automatically have mean zero. Since

/ ¢o(7,{1//Tdm=/hjvoaijdu,
XxG X
we reduce to proving that

< Clvllgllwlig(p/?)7.

‘/ hjvocrijd,u,
X

Following [26], for each k > 1, we choose vy depending only on coordinates x;, |i| < k,
such that |vg|eo < |V]eo and [V —vg|eo < |v|90k. Similarly, choose wy for w. (For example,

choose ¢ : X — X depending only on coordinates x;, |i| < k, and such that (¢ (x)); = x;
for |i| < k. Define v (x) = v(@k(x)) and note that |v — vi|eo < Varg(v).) Write

/hjvooijduzfh;(v—vk)ooijdu+/hjvkoa-j(w—wk)Td;L
X X X
+/hjvkoc7jwdeu.
X

The first two terms are estimated just as in [26]. The first term is dominated by
[hj(v — ve) o 07 oolWloo < |V]g|w]ocB¥. Similarly, the second term is dominated by
|v|oo|w|99k. Hence

‘/ hivoolw” dul < (vlolwlso + [v]solwle)d* + 1kl (4.2)
X
where
ik :/ hjvkocrj'wde,u,.
X
Since u is o -invariant,
ik :/th o o vy oakocrjowkTookd/L.

Note that 1j4x = hihj o oX = hjhi oo/ sothathj o o® = hi 'hjhy o o/. Tt follows that

Ijp = / hj(hvg 0 %) o o7 - (wi)T 0 o* dpu.
X

By the definition of v, wy and by our assumption on /%, the integrand depends only on
future coordinates. Therefore, it follows from Theorem 4.6 that we can choose a constant
C1 > 1 such that

[1jk| < Cilhxvg o 0¥ |oo | hxwi 0 0" [lgp? .

However, |hxvk 0 05|oo = |Uk|oo < |V]oo and we claim that

k —2%
lhkwik 00 llg < Calw|ocd ™™,
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where C, > 1 depends only on £ and 6. Hence
1] < Clvloolwlacf ™ p7, 43)
where C = C1C,. To verify the claim, compute that
lhxwi o o*llg = hiwk © 0% oo + lhwi 0 0*1p < Twiloo + lwk 0 0¥l + Ikl |wkl o,

and use the inequalities

[Wiloo < [Wloo,  wi 0 0¥lg < 0 Funle < 67%20 7w,
and
h 97k+1
o < Wil -+ -+ 10 0* o < [hlp(1 4 -+ 67++1) < EE—

This establishes the claim.
Combining (4.2) and (4.3), we have

/hjv oc/wl du

Now, let » > 1 be such that p” = 6 and set k = j/3r to obtain the required result. O

< C([vlglwlos + [Vloolw]g)8* + Clv|solw|od o

THEOREM 4.10. Suppose that h € Fg(X, G) and that oy, is weak mixing. There are
constants C > 0 and t € (0, 1) such that

f¢oa,{1/fT—f¢fwT

forall j > 1andforall g,y € FE(X x G,R").

< Cliglgi2ll¥ligi2t?,

Proof. Again, we may suppose that Fix G = 0, so that it suffices to estimate
[oooivr = [0i50".
By Lemma 4.7, we may write h = Mﬁ(l\//} o o)1 where M, hoe Fg12(X, G) and h
depends only on future coordinates. Since h; = Mh j(M o o)™, we have
hG ool BT = (') 00 3T = ;oo §THT =& 00l 97,
where ® = ]\7*1& U= A//}’lf/f\ and &, ¥ € Fﬁ/z(X x G, R™). Hence
/(boa,{wT =/I/J\j$1//f\T = /71]-500/'@7 =/<Docr}~{\IJT.
Note that ®, ¥ € F,(X x G,R").

Since h depends only on future coordinates, it follows from Lemma 4.9 that there are
constants D > 0, t € (0, 1) such that

/ poo }{ wT
Finally, note that there is a constant K > 1 depending only on M and 6 such that

[Dlg12 < KlPlgiz, [Wlg2 < K|¥rlgiy.
The result follows with C = DK?2. O

< D|®llgi2Wlgr2t! = DI®llgi2Wlgr2t’.

Remark 4.11. Actually, Theorem 4.10 holds for all ¢, ¢ € FQGI/2 (X x G, R"). (Of course,
h must lie in Fy(X, G).)
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4.3. Extensions of Axiom A diffeomorphisms. Suppose that A C M is a hyperbolic
basic set for a diffeomorphism f : M — M, where M is a compact manifold. Let p :
A — R be Holder continuous and s denote the corresponding equilibrium state on A.
Bowen [5] proved that there is a two-sided subshift of finite type o : X — X and a Holder
semiconjugacy m : X — A such that ro = fm. Further, 7 is an isomorphism with
respect to i and the equilibrium state x on X defined by the potential pr.

Let G be a compact connected Lie group with Haar measure v. Let S : AxG — AxXG
be the compact group extension defined by the Holder map 2 : A — G. Then hx :
X — G is Holder and defines a group extension o, : X X G — X x G. Note that
I[I=7mxid: X x G — A x G defines a semiconjugacy between oy, and S. Also IT is an
isomorphism with respect to the measures my = wy X vand mp = ua X v. In particular,
S is weak mixing if and only if o5, is weak mixing.

It is therefore immediate that exponential decay of correlations for subshifts implies the
same for hyperbolic basic sets, proving Theorem 2.2.

4.4. Principal extensions. The previous results extend to principal extensions. Specif-
ically, suppose that M is a compact G-manifold, ¥ : M — M is a G-equivariant
diffeomorphism and 2 C M is a G- and F-invariant subset of M. We assume that G
acts freely on Q. It follows by standard results on smooth G-actions that G acts freely
on an open G-invariant neighborhood U of 2 (see Bredon [6]). If we choose an open
G-invariant neighborhood V of Q, V C U, such that F (V) C U, then F induces a smooth
embedding f : V/G C U/G and A = /G is then a compact f-invariant subset of
U/G. We assume that A is a hyperbolic basic set for f. Equivalently, and more naturally,
we may assume that Q2 is a partially hyperbolic subset of M with center foliation given by
the G-orbits (see [13]).

Choose a Holder continuous potential p on A and let ;p denote the corresponding
equilibrium state on A. (Equivalently, we could have chosen a Holder continuous
G-invariant potential on €2.) As usual, we assume that f is topologically mixing and
therefore is ua-mixing. Let m denote the Haar extension [13] of us to Q. Extend m
by zero to all of M. With this convention, F' is measure preserving. We further assume
that F is weak mixing. Just as in the case of skew extensions, it is straightforward to
verify that weak mixing holds generically (we refer to [13, 15] for a precise description
of allowable perturbations). Note that if the principal bundle 2 — A admits no principal
H -subbundles, for any compact Lie subgroup H of G, then F is always mixing (cf. [7, 27]).

Following the case of skew extensions of Axiom A diffeomorphisms, we choose a two-
sided subshift of finite type o : X — X and a Holder semiconjugacy = : X — A such that
o = fm. Let uy denote the equilibrium state on X defined by the Gibbs potential pr.

Let p : 2 — A denote the orbit map. Recall that the pullback p*X by p of X is
defined to be p*X = {(x,w) € X x Q : w(x) = p(w)}. Clearly, G acts freely on p*X
and the natural projection P : p*X — X gives p* X the structure of a G-principal Holder
bundle over X. Since X is totally disconnected, p* X is a trivial bundle and so we may
write p*X = X x G. The map H : p*X — p*X induced by F and o is G-equivariant
and hence we can write H = 0;, : X X G — X x G for some Holder continuous skewing
maph : X — G. LetIl : X x G — € denote the corresponding projection on €.
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Suppose ¢ : 2 — R” is a Holder continuous equivariant observation on 2. Then ¢ lifts
to the Holder continuous equivariant observation ¢I1 : X x G — R". Everything now
goes through just as in the skew extension case and so it follows that Theorem 2.2 holds
for principal extensions.

Remarks 4.12. (1) Note that the result on principal extensions holds even though
equivariant observations on €2 do not correspond to observations on 2/G. That is,
R”-valued maps on 2/G do not determine equivariant maps on 2 unless p : 2 — Q/G
is a trivial G-principal bundle.

(2) Theorem 2.2 continues to hold if we can construct equivariant Holder surjections of
twisted products X x g G onto 2. This is relevant for generalizations of our main results
to more general partial hyperbolic G-invariant sets for which the action of G is no longer
free (see [13]). For example, if H C G is a finite group and A is an H-invariant hyperbolic
set for an H-equivariant diffeomorphism, then Theorem 2.2 applies to the twisted product
AxgG.

5. Covariance matrix for equivariant observations
In §3.2, we defined the covariance matrix ¥ = X4 within a quite general framework.
In particular, we used decay of correlations to show that

¥ = lim i/quqs,Tv.

N—oo N

In the specific context of equivariant observations on a compact group extension, the
covariance matrices have additional structure. Moreover, we have good necessary and
sufficient conditions for non-degeneracy, cf. [23]. We recall these results now within the
context of G-extensions of one-sided subshifts.

Asin §4.1, we fix f € Fo(X*,R) and h € Fp(X™, G), and suppose that o, is weak
mixing.

PROPOSITION 5.1. Let ¢ € FZ (X" x G,R") with [y, ;¢pdm = 0. Define the
covariance ¥ = X4 as in Proposition 3.3. Then ¥ commutes with the action of G on R".

Proof. By Proposition 3.3,
.1 T
Y= lim — [ ¢ndpydm.

N—oo N

Equivariance of ¢ means that ¢(x,ag) = a¢(x,g) for all a € G. It follows from
invariance of Haar measure that

/¢N¢ZJ dm =a(/¢N¢]’]\; dm)(lT =a</¢N¢]€ dm)a1

foralla € G. Hence ¥ = aXa~! foralla € G. o
Recall that ¥ is degenerate if det ¥ = 0.

Remark 5.2. If G acts irreducibly on R”, then the real version of Schur’s Lemma
[20, Theorem 2, p. 119] states that the space of commuting linear maps on R” is a real
division ring and hence isomorphic to R, C or H. Positive semidefiniteness implies that
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¥ is a real scalar multiple of the identity. It follows that when G acts irreducibly, X is
degenerate if and only if ¥ = 0. Consequently, by Corollary 3.5, if G acts irreducibly,
then X is degenerate if and only if ¢ is a Holder coboundary.

PROPOSITION 5.3. The covariance matrix X is degenerate if and only if there is an
irreducible subspace V. C R, with orthogonal projection wy : R" — V, such that
wy ¢ is a Holder coboundary.

Proof. Degeneracy means that dimker X > 1. Since ker ¥ is G-invariant, there is a
G-irreducible subspace V C ker . Restricting to V, we have X|y = 0. However, X|y is
the covariance matrix corresponding to the sequence of random variables (1/ VN)(y DN
Since V is G-invariant, my¢ is a G-equivariant observation and we remain within the
setting of §3. Now apply Corollary 3.5. O

Remark 5.4. Nicol et al [23, Lemma 5.8] show that typically 7y ¢ is not a coboundary for
any projection 7y . Indeed, it is sufficient to perturb ¢ at one point. Hence, we conclude
that for an open and dense subset of equivariant observations ¢ € FGG (X x G,R"), the
covariance matrix X is positive definite. Furthermore, ¥ is a general symmetric positive
definite G-equivariant n X n matrix.

6. Almost sure invariance principle

In §6.1 we prove the ASIP for extensions of two-sided shifts. This immediately leads to
similar results for (principal) extensions of hyperbolic sets, as well as for extensions of
one-sided shifts. These are mentioned in §6.2.

Throughout this section, the statement {Ay, N > 1} =4 {By, N > 1} means that
the two sequences are equal in distribution. This is equivalent to demanding equality
of the finite distributions {A;,j = 1,...,N}and {Bj,j = 1,...,N} forall N > 1
[19, Theorem 3.29].

6.1. Extensions of two-sided subshifts. Suppose that 0 : X — X is a two-sided
subshift of finite type and that 7 € Fy(X, G) induces a weak mixing G-extension
op, : X x G - X x G. Suppose also that ¢ € FGG(X x G,R") has mean zero and
non-singular covariance X.

Recall that if M : X — G,then M : X x G — G isdefined by M (x, g) = gM(x)g_l.

LEMMA 6.1. There exists i € Fyi2(X, G) such thatoj; : X xG — X x G is weak mixing

and there exists € FHG]/4 (X x G, R") with mean zero, and M : X — G 6'2-Holder

continuous, such that: ‘

(i) {wN = Z;\/:—OI Yo aﬁj, N > 1} is a stationary, ergodic, essentially bounded
(R"-valued) martingale; and

(i) ¢y =Myy+O()and [YyyT =%y = X.

Proof. Since the class of G-extensions of two-sided subshifts is closed under time-reversal,
it is sufficient to consider reverse time partial sums
N-1

¢-N = Z ¢ Oo’hij-
=0
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Construct / and ;ﬁ\ depending only on future coordinates as in Lemma 4.7. As in
Corollary 4.8, we can write ¢_y = My_y + O(1). By Lemma 3.4, we can replace
by a new ¢ depending only on future coordinates and satisfying U*yy = 0. (As usual, the
adjoint U* corresponds to the isometry U : LZ(X+ xG) —> L2(X+ x G) induced by o7).

Define the sequence

Yi=vyoo !, Fj=olM'xG),

where M is the o-algebra on XV lifted up to X. Then {F; : j € Z} is an increasing
sequence of o-algebras. We claim that {yy_ny = Z;VZ_OI Y;i, Fn, N € Z} is a martingale.
That s, Y; is Fj-measurable and E(Y; | F;_1) = O for all j. By stationarity, it suffices to
prove these for j = 0. Since ¥ depends only on future coordinates, Yy is Fo-measurable.
Since in addition % depends only on future coordinates, E({¥ | (771_ lF) = 0 by
Remark 3.12, proving the claim. a

PROPOSITION 6.2. Let ¢ € R" and set /L% =cT f¢¢Tc. Define X j = (1/pe)el ¢ o cr}{,
and define sjzv = 7;01 X%. Then for any § > 0,

512\/ =N+ 0(N1/2+‘3) almost surely.
Proof. Let
¢ =¢p" — f¢¢T.

Then ¢’ : X x G — Mat, (R) is Holder continuous with mean zero and is G-equivariant
with respect to the obvious representation of G on Mat, (R). It follows from Lemma 6.1
that ¢}, = M’ w;v + O(1) where w;v is a stationary ergodic Holder continuous martingale.
By Proposition B.2 (strong law of large numbers for martingales), ¢, = O(N 1/2+8)
almost surely.
Now compute that almost surely
N-1 1 1
sv=)_ X5= <F) T (ppT)ne = (?) [cTpye+ Nutl = N + 0NV,
]:0 c c

as required. O

PROPOSITION 6.3. If M : X x G — G is measurable, then {M¢yn, N > 1} =4 {on,
N > 1}.

Proof. Fix N > 1. It suffices to show that the finite sequences {M¢;,j =1,...,N} =4
{¢j.,j = 1,...,N}. Since the sequences are G-equivariant, their distributions are
determined by G-invariant subsets / C (R”)N . However, since M € G, it is immediate
that for such subsets (¢1, ..., ¢ny) and (M ¢y, ..., M¢y) have equal probability of lying
in /. O

THEOREM 6.4. For any ¢ € R", there is a one-dimensional Brownian motion W with
variance ¢ £c¢ and a sequence of random variables S.(N) (defined on the same space)
such that {CT¢N, N > 1} =4 {Sc(N), N > 1} and for every § > 0,

So([t]) = W) + 0/ almost surely.
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Proof. Set (762 = ¢ Sc. Rescaling variances to 1, it is equivalent to prove the result with
cT ¢ replaced by (1/0.)c’¢ and W replaced by (1/0,)W which is a standard Brownian
motion on the line. '

Lety, 7 be as in Lemma 6.1. Define X;j= (1/aC)cT1ﬁoa]'1~’. Then { Z?]:_()l Xj,N > 1}
is a (stationary ergodic) martingale.

Since X is stationary and continuous, hypothesis (a) of Theorem B.3 is trivially
satisfied. Hypothesis (b) follows from Proposition 6.2. Combining Theorems B.1 and B.3,
we have that {cT ¢y, N > 1} =4 {S.(N), N > 1} and S.([t]) = W(t) + O (t'/*+%) almost
surely.

By Proposition 6.3, {M ¥y} =4 {¥n}. Altogether, using Lemma 6.1, we have

oy =cTMyy +0(1) 6.1)
{"Myn, N > 1} =4 {S.N), N > 1}
SL([t]) = W) + O(V/**%)  almost surely. (6.2)

As in [28, p. 23], the probability space on which S.(N) and W are defined may be
enlarged so as to support a copy in distribution of {¢” ¢, ¢ My, N > 1}. This can be
done in such a way that equations (6.1) and (6.2) remain valid, while cTMm Y is identified
with S..(N). The result follows. a

6.2. Extensions of hyperbolic sets and one-sided subshifts. Suppose that A C M is
a hyperbolic basic, # : X — A its coding by a two sided-shift (as in §4.3), and
[M=naxid: XxG —-> AxG.If¢p: AxG — R”,thendeﬁneazqﬁol'l 1 XxG — R
Since 7 is an isomorphism of probability spaces, {¢n} =4 {aN} and therefore the ASIP
for ¢ follows from Theorem 6.4 applied to a

As in §4.4, we can reduce the case of principal extensions to extensions of a hyperbolic
basic set. Therefore, Theorem 6.4 also holds for principal extensions. This completes the
proof of Theorem 2.5.

Finally, it is clear that, by taking the associated two-sided shift, the ASIP (together with
all of its consequences) for extensions of two-sided subshifts implies the corresponding
results for extensions of one-sided subshifts.

Remark 6.5. The CLT, WIP and upper LIL for one-sided subshifts can be proved directly
within the abstract framework of §3. However, our proof of the ASIP (and the full LIL)
for one-sided subshifts relies on the ASIP for two-sided subshifts and hence on the time-
reversal step at the beginning of the proof of Lemma 6.1.

Similarly, our proof of the ASIP for two-sided subshifts relies on the fact that the class
of such dynamical systems is closed under time-reversals. We note that the martingale
approach of Conze and Le Borgne (in the setting of geodesic flows on spaces of constant
negative curvature) relies also on this time-reversal property [8, Remarques 2.7(1)].
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A. Appendix. Holder spaces

Suppose that 0 : X — X is a two-sided subshift of finite type. If f : X — R" is
continuous, we define for each N > 1, the Nth variation vary f = sup|f(x) — f(¥)|,
where the supremum is over all x, y € X with x; = y; for [i|] < N. If 6 € (0, 1), define
|flo = supys; vary f/6N. Then Fo(X,R) = {f € C(X,R") : |flg < oo} is a Banach
space in the Holder norm Iflle =1floo+ 1flo-

Similarly, we define Fy(X *, R™) for the one-sided subshift o : X — X1 induced by
the two-sided subshift o. There is a natural embedding of Fy (X, R") inside Fy(X, R").
Indeed, we can identify functions in Fy(X™, R") with those functions in Fy(X, R") that
depend only on future coordinates.

We also define the Holder spaces Fy (X, O(n)) as subspaces of Fy (X, Mat, (R)).

LEMMA A.1. Let 0 : X — X be a two-sided subshift. Suppose that v € Fy(X,R")
and h € Fy(X,O(n)), where 6 € (0, 1). Suppose further that h depends only on future
coordinates.
Then there exists w € Fgi2(X,R") depending only on future coordinates and x €
Fyi12(X, R"), such that
v=w+x —hxyoo.

Proof. This result is a minor modification of [5, 33]. Our proof follows [26, Propo-
sition 1.2]. Fix a map ¢ : X — X that depends only on future coordinates. Define

X)) =Y (ha(x)v(0"x) = hy(x)v(c”" px)).

n=0
(This series converges, since A, is orthogonal and var, (v) < |v[¢6".)
Compute that v = w + x — hx o 0 where

wx) = Z(hn(x)v(cr"gox) — hpr1 (x)v(c"pox)),
n=0

which clearly depends only on future coordinates.
It remains to show that x (and hence w) lies in Fy1,2 (X, R"). First note that

Ix(x) — x()| < A(x, y) + A(px, ¢y) + B(x) + B(y),

where
N 00
A, y) =) Iha (v x) —ha (M"Y, Bx) = Y [v(e"x) = v(c"ex),
n=0 n=N+1
for all x, y.

We claim that there is a constant K > 0 such that (i) B(x) < K6" forall N > 1 and
x € X, and (ii)) A(x,y) < KON forall N > 1 and x,y € X withx; = y; for |[i|] < 2N.
It then follows that varay (x) < 4K60" forall N > 1, proving the result.

Now, |v(c”x) — v(o"@x)| < var,(v) < |v]g6", for all n > 1. Hence

Bx) < 2108 N,
(1-0)

verifying (i).
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Next,

N N

A(x,y) <Y 100" %) = v(©@" M|+ [Vloo Y 1hn(x) = k().

n=0 n=0

Since x; = y; for |i| < 2N, we have that (6/x); = (o/y); for |i| < 2N — j. It follows
that [v(c”x) — v(c"y)| < varan_, (V) < |v]|g0*N . Also

|hyn(x) = hy(P)| < |R(x) — h(Y)| + |h(ox) — h(oy)| + -+ |h(0_n—1x) _ h(o_n_ly)l
= |h|0(92N +92N71 + ... +92an+l)

|h|992N_n+1
)
Hence
lvlg | [vleclhle®) N
A ) = 9 )
x y)—<1—9 (1-0)?
verifying (ii). a

B. Appendix. Skorokhod representation
We will require the following embedding theorem for martingales, which generalizes the
Skorokhod representation theorem [34] for sums of independent random variables.

THEOREM B.1. [18, Theorem A.1] Let {SN = Z?];Ol X;,N = 1} be a square-
integrable (R-valued) martingale. Then there exists a probability space supporting

a Brownian motion W and a sequence of non-negative variables 1o, 11, ... with the
following properties:
If
N—1 N—1
Ty = Z T, W(Iy) = Z Y;
j=0 j=0

and Gy is the o -field generated by {W(T;) : j =0,...,N—=1}and {(W(t) : 0 <t < Ty},
then:

i {SN:N=1}=4{W(Tn):N =1}

(i) Ty is Gy-measurable for each N > 1;

(i) there is a constant C > 0 such that E(t%) < CE(Y¥) for each N > 1; and

(iv) E(tn | Gn-1) = E(Y} | Gn—1) almost surely for each N > 1.

Theorem B.1 was extended by Strassen [35] to obtain an ASIP for certain martingales.
The error term is typically of the form O(¢'/2~%) for sufficiently small @ > 0. In our
context, we obtain an improved error term of the form O(¢'/4*%) for arbitrarily small
6 > 0. This is due to the fact that the martingales that we consider in this paper have
the property that the partial sums of X ? — 1 are as amenable as the partial sums of X ;.
(Controlling X f — 1 is usually the difficult part of the procedure, see [28, p. 11].)

We require' the following strong law of large numbers for martingales (see for
example [12, p. 238]).
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PROPOSITION B.2. Suppose that { Zj-v:_ol Rj,N > 1} is a square integrable martingale
and that the sequence ||R |2 is bounded. Then for any § > 0,

N-1

j=0

almost surely.

THEOREM B.3. Suppose that {SN = le\lz—ol Xij,N > 1} is a martingale and that:

(a) there is a constant M > 0 such that [ X? < M forall j; and

(b) foranys > 0,
N-—1

Z Xf — N = O(NY*%)  almost surely.
=

Let W and Ty be as in Theorem B.1. Then, for any § > 0,
W(Ty) = W(N) + O(NY48)  almost surely.

Proof. (Following [28]) Let 8 > 0. We claim that Ty — N = O(NY/ 248y almost surely.
It follows from the claim that almost surely

W(Tn) = W(N + O(N'/*10)) = W(N) + O (N4,
It remains to prove the claim. Using property (iv), write
N-1 N-1 N-1
Tv—N=> (tj—E|Gi-))+ Y (EX}|Gi-)—Y)+ > Y} —N.
j=0 j=0 Jj=0

By the definition of Gy and property (ii), the first and second terms are martingales.
SetR; = E(Yj2 1 Gj—1) — sz. Then

IR 13 < IEYT 1 G-l + Y715 < 21715 = 201X5113 < 2M.

Hence Proposition B.2 takes care of the second term. The first term is treated similarly,
using property (iii). By property (i), the third term is equal in distribution to Z;VZ_OI X 5 —N

and hence is almost surely O (N2t by (b). O
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