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Abstract. We show that volume-preserving perturbations of some product
actions of property (T) groups exhibit a “foliation rigidity” property, which
reduces the partially hyperbolic action to a family of hyperbolic actions. This
is used to show that certain partially hyperbolic actions are locally rigid.

1. Introduction and Main Results. The purpose of this paper is to prove the
local rigidity of a wider class of measure preserving partially hyperbolic product
actions of higher rank lattices. It extends the results of [11]. We prove here that
C1-small perturbations of certain partially hyperbolic actions are conjugated to the
original action. This is an improvement over the previous results, which required
at least C2-closeness.

The new tool is our “foliation-rigidity” result for actions of property (T) groups,
Theorem 1.3.

We combine it with the local rigidity results for hyperbolic actions obtained by
A. Katok and R. Spatzier [6] (see Theorem 1.6 below) to obtain the following:

Theorem 1.1. Let Γ be an irreducible higher rank lattice, and α : Γ → Diff(M)
a linear Anosov action on the infranilmanifold M. Consider the product action
ρ0 : Γ → Diff(M × S1), ρ0(γ) = α(γ)× IdS1 . Fix a smooth ρ0-invariant volume µ
on M × S1 and K ≥ 1.

Then ρ0 is C1,K−
-locally rigid in Diff∞µ (M × S1).

See Corollary 1.5 for a more general statement.
Let us recall the rigidity properties we are considering.
Unless specified otherwise, we assume that all manifolds and maps are smooth.

Notations. 1. Throughout this paper by a Cr-lamination we mean a topological
foliation whose leaves are immersed Cr-submanifolds that vary continuously in the
Cr-topology. A (continuous) foliation stands for a C0-foliation.
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2. By Ck− we denote the class of functions that are Ck−ε for any ε > 0. The
Ck−-topology stands for the coarsest topology for which the inclusions Ck− ⊂ Ck−ε

are continuous for each ε > 0. However, by C1− we mean C1.

Definition 1.2. Let Γ be a finitely generated discrete group, M a compact man-
ifold, and ρ, ρ̃ : Γ ×M → M two C∞-actions. Fix a finite set of generators {γi}
of Γ. We say that ρ is CL-close to ρ̃ if the C∞-diffeomorphisms ρ(γi) and ρ̃(γi)
are close in the CL-topology for all i. A CL-perturbation of the action ρ is a C∞-
action CL-close to ρ. A CL-deformation of the action ρ is a CL-continuous path of
C∞-actions ρt, 0 ≤ t ≤ 1, with ρ0 = ρ. An action ρ is said to be CL,K-locally rigid
if any CL-perturbation of ρ contained in a sufficiently small CL-neighborhood of ρ
is conjugated to ρ by a CK-diffeomorphism which is C0-close to the identity. An
action ρ is said to be CL,K-deformation rigid if any CL-deformation of ρ contained
in a sufficiently small CL-neighborhood of ρ is conjugated to ρ by a continuous
path of CK-diffeomorphisms C0-close to the identity.

Here are a few previous rigidity results for non-hyperbolic actions. Fix K ≥ 1.
C2,K−

-local rigidity results for actions similar to ρ0 were obtained in [11], where
the actions are more particular, but there is no need to require the existence of an
invariant volume. The center direction is still one-dimensional. C5,K−

-deformation
rigidity results for product actions having center direction of arbitrary dimension
were obtained in [10, 11]. Local rigidity results in the analytic category were ob-
tained by Zeghib [19]. G. Margulis and N. Qian proved C1,∞-local rigidity for
weakly-hyperbolic actions in [8].

The main new ingredient is our result dealing with actions of groups having
Kazdahn’s property (T). One result used in its proof is the sufficient conditions
given by C. Pugh and M. Shub [15] for the ergodicity of a partially hyperbolic
diffeomorphism (see Theorem 4.3).

Theorem 1.3. Let Γ be a discrete group having Kazdahn’s property (T). Assume
that each of the finite index subgroups of Γ has vanishing cohomology for any finite
dimensional representation. Let α : Γ → DiffK(M) be an action generated by
finitely many Anosov diffeomorphisms. [Note that under generic conditions, this
holds provided there is one Anosov diffeomorphism in α(Γ).]

Denote by ρ0 : Γ → DiffK(M×S1) the action α×IdS1 . Fix a smooth ρ0-invariant
volume µ on M × S1 and K ≥ 2.

If α has a periodic point (i.e., a point whose Γ-orbit is finite), then any volume
preserving action ρ : Γ → DiffK

µ (M × S1) which is C1-close to ρ0 is conjugated to
a “foliated” action. That is, there is a CK−

-lamination H = {Hy}y∈S1 each leaf
of which is preserved by ρ. On each leaf, the induced action is hyperbolic. This
invariant lamination is close to {M × {y}}y∈S1 .

The lamination H is spanned by the stable and unstable foliations of a partially
hyperbolic map ρ(γ∗), where γ∗ is a fixed element with α(γ∗) Anosov. Therefore,
the H-holonomy between the center leaves of ρ(γ∗) is CK−1 (see 2 of Theorem 2.1).
The H-holonomy between the verticals

{
{x} × S1

}
x∈M

is Lipschitz (see 4 of Lemma
3.3).

Examples of groups Γ that satisfy the hypothesis of the Theorem are lattices in
higher rank Lie groups.

One actually needs the vanishing cohomology condition only for a normal sub-
group of finite index Γ0 C Γ for which α|Γ0 has a fixed point.
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A more precise result can be obtained if the action α is rigid. We need a slight
strengthening of the local rigidity property:

Definition 1.4. Let Γ be a discrete group, M a compact manifold, K,L ≥ 1, and
α : Γ → DiffK(M) an action. The action α is called continuously CL,K-locally
rigid if it is CL,K-locally rigid, and the conjugacy varies continuously in the CK−

topology when the perturbation varies continuously within a compact set in the
CK topology.

Corollary 1.5. Let L ≥ 1 be fixed and assume that the hypothesis of Theorem 1.3
holds.

If α is also CL−,K-locally rigid, then any action ρ ∈ Diff∞µ (M×S1) which is CL-
close to ρ0 is conjugated to ρ0 by a homeomorphism Φ : M×S1 →M×S1 such that
Φ(·, y) ∈ CK(M,M×S1) for each y ∈ S1 and x ∈M 7→ Φ(x, ·) ∈ CK−1(S1,M×S1)
is continuous.

If, moreover, α is continuously CL−,K−1-locally rigid, then ρ0 is CL,(K−1)−-
locally rigid in Diff∞µ (M × S1).

Remark. One can state a similar result for finitely differentiable actions, provided
the local-rigidity of α holds in that class. This is the case for many of the known
rigidity results for Anosov actions (including the actions considered in Theorem 1.1).

Theorem 1.1 is a special case of Corollary 1.5 (take L = 1), in view of the
following result (the continuity of the local rigidity follows from the proof):

Theorem 1.6 (Katok-Spatzier, [6]). Any linear Anosov action on an infranilmani-
fold of an irreducible lattice in a linear semisimple Lie groups G all of whose factors
have real rank at least 2 is (continuously) C1,∞-locally rigid.

This paper is organized as follows: in §2 we recall a few basic results about
partially hyperbolic maps. In §3 we prove Theorem 1.3 and its corollary, using a
few lemmas whose proof is given in §4.

2. Preliminaries. We recall first several standard facts about partially hyperbolic
diffeomorphisms.

Let X be a compact, connected, boundaryless manifold. Denote by TX the
tangent bundle of X. A C1-diffeomorphism f : X → X is called partially hyperbolic
if the derivative Tf : TX → TX leaves invariant a continuous splitting TX =
Es ⊕Ec ⊕Eu, Es 6= 0 6= Eu, such that, with respect to a fixed Riemannian metric
on TX:

‖Tuf−1‖ < 1, ‖T sf‖ < 1, (2.1)

‖T s
p f‖ < m(T c

pf), ‖T c
pf‖ < m(Tu

p f) for all p ∈ X, (2.2)

where m(L) := inf{‖Lv‖ | ‖v‖ = 1} = ‖L−1‖−1 is the conorm of the linear
transformation L.
Es, Ec and Eu are called the stable, center, respectively unstable distributions.

If the center distribution Ec = 0, then f is called an Anosov (or hyperbolic) diffeo-
morphism.

The distributions Es and Eu are tangent to unique laminations W s
f and Wu

f

which have C1 leaves. If the diffeomorphism f is CK , 1 ≤ K ≤ ∞, then the
laminations W s

f and Wu
f are CK as well [1, 13]. These are called the stable and
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unstable foliations. [To be precise, we should call these laminations, but this is not
the standard terminology. We will adhere to this convention when speaking about
the center foliation as well.]

Let f : X → X be a partially hyperbolic diffeomorphism. f is r-normally hyper-
bolic if the center distribution Ec is integrable to a Cr-boundaryless leaf immersion
(see [4, §6]) and

m(Tu
p f) ≥ ‖T c

pf‖k, ‖T s
p f‖ ≤ m(T c

pf)k, k = 0, . . . , r. (2.3)

Roughly speaking, the center distribution integrates to a “lamination” that can
have self-intersections; its leaves are Cr. This set-up is necessary in order to assure
that r-normal hyperbolicity is a C1-open condition.

We recall the results of [4, Theorems 6.1, 6.8, 7.1, 7.2] about partially hyperbolic
diffeomorphisms and their small perturbations. We describe only the case that will
be of interest in the sequel. In the case of hyperbolic diffeomorphisms, these are
the classical results of Anosov ([1]). See also the Remark following the Theorem.

The partially hyperbolic diffeomorphism f ∈ Diff(X) is said to satisfy the r-th
order center-bunching conditions if for all p ∈ X and 0 ≤ ` ≤ r

‖T s
p f‖‖T c

pf‖` < m(T c
pf) and ‖T c

pf‖ < m(Tu
p f)m(T c

pf)`.

Theorem 2.1 (Hirsch-Pugh-Shub, [4]). Let X be a compact manifold and f ∈
Diffr(X), r ≥ 1, a diffeomorphism which is r-normally hyperbolic at a Cr-lamination
W c

f having compact leaves.
1. Through each leaf of W c

f there exists a Cr center-stable manifold. The center-
stable manifold through x ∈ X consists of those points whose forward f-orbit
does not stray away from the orbit of W c

f (x). Hence, since the leafs of the
lamination W c

f are compact, each center-stable manifold is a union of center
leafs; the center-stable manifolds form the center-stable lamination W cs

f . A
similar statement holds for the center-unstable lamination, W cu

f .
2. There exists a Cr stable lamination W s

f whose leafs lie in those of W cs
f .

The points of a stable leaf are characterized by sharp forward asymptoticity.
If f satisfies the (r − 1)-th order center-bunching conditions then the stable
distribution is Cr−1 on each center-stable leaf. In particular, the holonomy
maps determined by the stable lamination inside the center-stable leafs are
Cr−1. A similar statement holds for the unstable lamination, Wu

f .
3. If g ∈ Diffr(X) is C1-close to f , then g is r-normally hyperbolic at a unique
Cr-lamination W c

g , and the stable, unstable and center laminations of g con-
verge in Cr to those of f as g converges to f in the Cr-topology. The sta-
ble (unstable) holonomy maps within the center-stable (respectively, center-
unstable) leafs of g converge in Cr−1 to those of f , as g converges in Cr

to f .
4. Moreover, if W c

f is a Cr-foliation, then in the case 3 there exists a leaf-
conjugacy H ∈ Homeo(X) between (f,W c

f ) and (g,W c
g ): H maps the leaves

of W c
f to those of W c

g and W c
g (H ◦ f(x)) = W c

g (g ◦ H(x)). H is a Cr dif-
feomorphism of each leaf of W c

f onto its image, varying continuously in Cr

with the leaf. For x ∈ X, W c
g (H(x)) is uniquely characterized by the fact that

its g-orbit does not stray away from the f-orbit of W c
f (x). Modulo the choice

of a normal bundle to W c
f , H is uniquely determined. If g converges to f in

the Cr-topology then H converges to the identity in the Cr-topology along the
leafs of W c

f and to IdX in C0.
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Here “never strays away” means that gn(W c
g (H(x))) stays within a tubular

neighborhood of predetermined small size of fn(W c
f (x)), for each n ∈ Z.

Remark. The statement in 2 above about the smoothness of the stable distribution
within the center-stable leaves follows from the Cr-section theorem [4, Theorem 3.5]
(applied in this case for Cr−1). The compactness of the base space can be replaced
by the appropriate uniformities. The continuous dependence of these holonomies
described in 3 follows from a straight-forward generalization of the similar continuity
contained in the Cr-section Theorem. Theorem B of [16] proves that the holonomy
of W s inside W cs is Cr−1 under milder conditions.

We introduce now a few notions related to Theorem 4.3 of Pugh and Shub [15].
If the distributions Eu⊕Ec, Ec, and Ec⊕Eu of a partially hyperbolic diffeomor-

phism f are tangent to continuous foliations with C1 leaves W cu, W c, respectively
W cs, and if W c and Wu subfoliate W cu, while W c and W s subfoliate W cs, then f
is said to be dynamically coherent.

The center bolicity of f is the ratio b = ‖T cf‖/m(T cf). The map f is said to
be center bunched if b is close to 1 (see [15, §4] for the precise meaning of “close”).
This is a stricter condition that the “relative” partial hyperbolicity introduced in
(2.2).

By Theorem 2.1, r-normal hyperbolicity to a Cr lamination with compact leaves
is a C1-open property in Diffr(X) (see [4, Theorem 6.1] for the general case). The
property of being center bunched is preserved by C1-small perturbations. By [14,
Proposition 2.3], and [4, Theorem 7.2], dynamical coherence is stable under C1-
small perturbations, provided the center lamination of the original diffeomorphism
is a C1-foliation.

In conclusion: for each γ ∈ Γ such that α(γ) is Anosov, ρ0(γ) = α(γ) × IdS1

is r-normally hyperbolic, where r is limited only by the smoothness of the map.
ρ0(γ) satisfies the center-bunching conditions of any order. A C1-small perturbation
f ∈ Diffr(M × S1) of ρ0(γ) is r-normally hyperbolic, center bunched, dynamically
coherent, and leaf-wise conjugated to ρ0(γ).

3. Proof of the Main Theorem. In this section we are going to prove Theorem
1.3 and its corollary, based on a few Lemmas. These Lemmas will be proven in §4.

Definition 3.1. Consider a partially hyperbolic diffeomorphism f ∈ Diff1(X),
where X is a compact manifold. Denote by W s

f and Wu
f its stable, respectively

unstable foliations. We say that x ∈ X and y ∈ X are (u, s)-accessible for f if there
is a continuous, piecewise-C1 path connecting x and y each segment of which is in
either a stable or an unstable leaf of f . Introduce the equivalence relation

x ∼f y ⇐⇒ x and y are (u, s)-accessible for f.

Definition 3.2. Assume X = M × S1 and f ∈ Diff1(M × S1) is C1-close to
A× IdS1 , where A ∈ Diff1(M) is Anosov.

Denote the center foliation of f by W c and let q : M×S1 → M̂ := (M×S1)/W c

be the quotient map. By the Hirsch-Pugh-Shub Theorem 2.1, M̂ is homeomorphic
to M and the action f̂ induced by f is conjugated to A.

Let C0 be a center leaf of f . For x, y ∈ C0 define the equivalence relation x ∼f,0 y

if x ∼f y through a path whose image in (M̂, q(C0)) is contractible with fixed end-
points.
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We might drop from the notations the reference to the diffeomorphism, when it
is clear which one we have in mind.

Notation. For an equivalence relation ∼=, we will denote by [x]∼= the ∼=-equivalence
class of x.

Lemma 3.3. Let K ≥ 1 and assume A ∈ DiffK(M) is an Anosov diffeomorphism,
f ∈ DiffK(M×S1) is C1-close to A× IdS1 , C0 is a center leaf of f , and f |C0 = IdC0 .
Then:

1. Each ∼-equivalence class is f-invariant and projects onto M̂ via q.
2. Any ∼0-equivalence class that contains more than one point is open. In par-

ticular, if C0 is not a single equivalence class, then there are classes consisting
of only one point.

3. If M × S1 is not a single ∼-equivalence class, then for each y ∈ C0 the equiv-
alence class [y]∼ is either a compact CK−

submanifold Hy ⊂ M × S1 for
which q|Hy

: Hy → M̂ is a homeomorphism, or an open set Uy bounded by
submanifolds described above. In particular, C0/ ∼= C0/ ∼0.

We call the equivalence classes of the form Hy horizontal leaves of f .
4. Assume that K ≥ 2 and f preserves a smooth volume µ.

• With respect to the measure µ, the diffeomorphism f is ergodic on each Uy.
• If there is an open set Ĩ ⊂M×S1 laminated by {Hy}y∈I , I ⊂ C0, then for

each y ∈ I there is an f-invariant volume form µy on Hy. In particular,
f is ergodic on each Hy with respect to the measure µy. Moreover, the
lamination by {Hy} of Ĩ is absolutely continuous, in the following sense.
Label the leaves by their intersection with a vertical segment V = ({x∗}×
S1) ∩ Ĩ. Then any measurable set U ⊂ Ĩ has zero µ-measure if and
only if for almost each leaf (measured on V with respect to the Lebesgue
measure), the µy measure of U ∩ Hy is zero. This follows from the fact
that the holonomy maps between vertical segments are uniformly Lipschitz
(and therefore absolutely continuous).

The result of Pugh and Shub [15] (see Theorem 4.3 below) is needed to prove
the first statement in part 4 above.

The next two lemmas are used in connection with the property (T) of the group Γ.

Notations. 1. Given a smooth measure µ on the manifold X which is positive on
open sets, there is a homomorphism from the group of diffeomorphisms on X to
the unitaries of L2(X,µ),

f ∈ Diff1(X) 7→ Uf ∈ U(L2(X,µ)), Uf (φ) = φ ◦ f−1 ·∆1/2
f ,

where ∆f = ∆f (µ) = ∂f∗µ
∂µ is the Radon-Nikodym derivative of f∗µ(Ω) := µ(f−1(Ω))

with respect to µ.
Although in the end we will deal with volume preserving actions, in which case

Uf (φ) = φ ◦ f−1, some of the results are more general.
2. It will be convenient to describe subsets of S1 by inequalities. To do this

we are going to specify the sets in R and use the quotient map R → R/Z ∼= S1

(sometimes without mentioning it).
3. For a C1 function w : M → S1, denote by ‖w‖(1) := ‖d w‖C0 the norm of its

differential (considered with respect to some fixed metrics on M and S1).
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Definition 3.4. Call a set Ĩ ⊂ M × S1 horizontal if there are bot, top : M → R
such that their images in S1, bot0, top0 : M → S1 are C1 mappings and

Ĩ = {(x, y) ∈M × S1 | x ∈M,bot(x) ≤ y ≤ top(x)},
where bot(x) < top(x) ≤ bot(x) + 1,

(3.1)

We call such a set C-flat if ‖bot0‖(1) ≤ C, ‖top0‖(1) ≤ C.
Associate to a horizontal set Ĩ the function

φĨ(x, y) := χĨ(x, y) ·
2 min{|y − top(x)|, |y − bot(x)|}

top(x)− bot(x)
, (x, y) ∈M × S1 (3.2)

(the difference is meant in R).

Lemma 3.5. Let A ∈ Diff1(M) be hyperbolic and assume given an A× IdS1-
invariant smooth volume µ on M × S1 which is positive on open sets.

Fix ε > 0. Then there is a δ = δ(A,µ) > 0 such that if f ∈ Diff1(M × S1)
satisfies distC1(f,A× IdS1) ≤ δ and Ĩ is any set of the form (3.1) such that f(Ĩ)
is also of the form (3.1), then

‖Uf (φĨ)− φf(Ĩ)‖L2 ≤ ε‖φĨ‖L2 .

Remark. It is not hard to see that given A as above, for any δ > 0 there is
c1 = c1(A) > 0 such that if distC1(f,A× IdS1) ≤ c1 then f(Ĩ) is horizontal and
δ-flat for any horizontal c1-flat set Ĩ.

Moreover, by 3 of Theorem 2.1 used for r = 1, any horizontal leaf of f is c1-flat
provided distC1(f,A× IdS1) is small enough.

Lemma 3.6. Assume Ĩ ⊂M × S1 is described by (3.1) and µ is a smooth volume
on M × S1. Then for any ε > 0 there is a δ = δ(µ) > 0 such that if

‖ψ − φĨ‖L2 ≤ δ‖φĨ‖L2 (3.3)

then for any λ ∈ C
µ(ψ−1(λ) ∩ Ĩ) ≤ εµ(Ĩ). (3.4)

With these preparations we are ready to prove the main Theorem.

Proof of Theorem 1.3.
We will specify the C1-distance between ρ and ρ0 along the way.
Let x0 ∈ M be a periodic point of α, and denote by Γ0 the finite index normal

subgroup of Γ that fixes each point of the (finite) orbit of x0.
First we obtain a fixed center leaf (needed in Lemma 3.3). Because α contains

Anosov elements, {x0}×S1 is an isolated set of fixed points for ρ0|Γ0 . In view of the
vanishing cohomological condition imposed on Γ0 we can apply Stowe’s Theorem
[18, Thm. 2.1]. Hence, there is a C1-neighborhood U of ρ0 such that for each ρ in
U the restriction ρ|Γ0 has a set of fixed points C0 diffeomorphic to {x0} × S1. We
assume from now on that ρ ∈ U .

Pick now one of the Anosov elements α(γ0). There is an integer p0 6= 0 such
that γp0

0 ∈ Γ0. Let A0 := α(γp0
0 ), f0 := ρ(γp0

0 ). Assume ρ is C1-close enough to ρ0

so that Theorem 2.1 applies to A0 × IdS1 and f0. Since f0 is partially hyperbolic
and leaf-wise conjugated to A0 × IdS1 , we conclude that C0 is a center leaf of f0.

The other assumption we made about Γ is Kazhdan’s property (T). Recall its
definition [3, Proposition 14 in Ch. 1]:
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Definition 3.7. A discrete group Γ has the property (T) if there exists a finite
set S ⊂ Γ and δ > 0 such that any unitary representation π : Γ → U(H) that has
a nonzero (δ, S)-invariant vector has a nonzero invariant vector as well. [A vector
ξ ∈ H is (δ, S)-invariant if ‖π(a)ξ − ξ‖ ≤ δ‖ξ‖ for all a ∈ S.]

Remarks. 1. The following is a consequence of the property (T) [3, Proposition
16 in Ch. 1]:

Assume the group Γ has the property (T) relative to the finite set S ⊂ Γ. Then,
for any ε > 0 there is a δT = δT (ε) > 0 such that given a unitary representation
π : Γ → U(H) and a (δT , S)-invariant vector ξ ∈ H, ξ 6= 0, there exists an invariant
vector ξ′ 6= 0 with ‖ξ − ξ′‖ ≤ ε‖ξ‖.

2. By reducing the value of δT above, one can replace the set S by any finite
generating set.

3. Finite index subgroups of property (T) groups have property (T) as well.

Pick a finite family {γ̃j}1≤j≤κ̃ of Anosov generators of α(Γ). Then there is a
finite family {γi}1≤i≤κ ⊂ Γ0 of (finite) products of the γ̃j ’s that generate Γ0. Let
Aj := α(γ̃j), fj := ρ(γ̃j) and gi := ρ(γi).

Take ε = 1/2 in Lemma 3.6. Use the δL3.6 provided by that Lemma as the ε in
1. of the previous Remark, applied to Γ0 and S = {γi}, the generator set described
above. The δT obtained this way is used below in (3.5).

If ρ is C1-close enough to ρ0, we can apply successively Lemma 3.5 (note the
Remark following the Lemma) to conclude that there is a c1 > 0 such that:

if Ĩ is any c1-flat set of the form (3.1), then

‖Ugi(φĨ)− φgi(Ĩ)‖L2 ≤ δT ‖φĨ‖L2 , 1 ≤ i ≤ κ
(3.5)

We first show that ρ is not ergodic. See M × S1 as Ĩ with top ≡ 1, bot ≡ 0
(viewed in R), and consider the corresponding function given by (3.2). This function
is invariant under ρ0, hence it is almost invariant for ρ under a set of generators
(in the sense of Lemma 3.5; since now Ĩ is a large set, the almost invariance is
immediate). Therefore, by property (T), ρ has an invariant L2-function, which, in
view of Lemma 3.6, cannot be constant.

We apply Lemma 3.3 to the element f0 ∈ ρ(Γ0) defined earlier. Since ρ is not
ergodic, the decomposition {Fξ}ξ∈C0/∼f0

of M × S1 into ∼f0 classes cannot be a
single class.

By reducing the C1-distance between f0 and A0× IdS1 , we can assure that each
connected subset of M×S1 bounded by horizontal leaves of f0 is a horizontal c1-flat
set.

Abbreviate ∼f0 to ∼, ∼f0,0 to ∼0, and define

B = {y ∈ C0 | ρ(γ)Fξ 6= Fξ for some γ ∈ Γ0, where ξ = [y]∼0} ,

B̃ =
{
z ∈M × S1 | z ∼ y, y ∈ B

}
.

Assume B̃ is non-empty. Then B̃, the union of ∼-equivalence classes that are
not preserved by Γ0, is ρ|Γ0-invariant, because so is its complement. B̃ is also open,
because its complement is closed (the boundary of M×S1 \B̃ consists of horizontal
leaves Hy; these leaves are in M × S1 \ B̃ because the Γ0-action on C0 is trivial).

Let Ĩ be a connected component of B̃. Since ρ|Γ0 acts as the identity on C0, Ĩ
is Γ0-invariant. In particular, it is a union of ∼-equivalence classes and thus has to
be c1-flat. Therefore, (3.5) shows that φĨ is a (δT , {γi})-invariant vector for ρ|Γ0 .
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Property (T) implies that there is an invariant function ψ ∈ L2(M × S1, µ) such
that ‖ψ − φĨ‖L2 ≤ δL3.6‖φĨ‖L2 . By Lemma 3.6, ψ|Ĩ cannot be a constant, and its
preimages split Ĩ into ρ|Γ0-invariant sets of volume at most µ(Ĩ)/2. One can prove
the following (see the proof later):

Claim. There is an open horizontal subset of Ĩ, say Ĩ0, on which ψ is µ-a.e.
constant.

Take the union of all connected open sets containing Ĩ0 on which ψ is a.e. con-
stant. Since ρ|Γ0 fixes C0, this set has to be ρ|Γ0-invariant; hence, so is its boundary,
which must consist of horizontal leaves of f0. We conclude that there is a ρ|Γ0-
invariant horizontal leaf Hy of f0 lying inside Ĩ. But this contradicts the fact that
Ĩ was a connected component of B̃.

Thus, we conclude that B̃ is empty, and therefore each ∼-equivalence classes of
f0 is ρ|Γ0-invariant. Assume that there is an equivalence class of the type Uy (i.e.,
which is not a horizontal leaf; see Lemma 3.3, part 3). Apply the above argument
to the set Ĩ := Uy. We obtain that there is a (ρ|Γ0-invariant) horizontal leaf inside
Uy, thus contradicting the definition of Uy.

In conclusion, the ∼-equivalence classes are all horizontal leaves Hy, y ∈ C0, and
each of them is ρ|Γ0-invariant. Denote this foliation by H = {Hy | y ∈ C0}.

It remains to show that each leaf of this foliation is actually preserved by the
whole Γ-action ρ. Denote F = Γ/Γ0 and let r be the order of the finite group F .
Note that the group F is determined by the unperturbed action α.

Let γ̃j be one of the Anosov generators of Γ. Then γ̃r
j ∈ Γ0, hence the stable and

unstable foliations of ρ(γ̃r
j ) span the leaves of the foliation H. Since the foliations of

ρ(γ̃r
j ) and ρ(γ̃j) are the same, we conclude that H is preserved by ρ(γ̃j). Repeating

this for each generator, we conclude that ρ preserves H. Thus, there is an action
ρ̂ : Γ → Homeo(C0) given by ρ(γ)Hy = Hρ̂(γ)(y). Since ρ̂ is trivial on Γ0, it induces
an action of F . If ρ is C1-close to ρ0 then the action of F is C0-close to the
trivial action. But then the only possible action is the trivial action (this is not
hard to see for actions on S1, but for general manifolds one can use a theorem of
M. H. A. Newman [9]; see [2, §9] for a version due to P. A. Smith [17]).

It remains to prove the Claim made earlier.

Proof of the Claim. If there is an open component Uy of f0 contained in Ĩ, we
are done because f |Uy is ergodic (by Theorem 4.3; see the first part in 4 of Lemma
3.3), hence ψ|Uy

is constant a.e.
Otherwise, Ĩ is foliated by horizontal leaves Hy of f0, and thus the second part

in 4 of Lemma 3.3 applies.
Label each leaf Hy, y ∈ I, by its intersection v with a fixed vertical segment

V = ({x∗} × S1) ∩ Ĩ (recall that Ĩ = {z ∈ M × S1 | z ∼ y, y ∈ I}). This defines
a homeomorphism v ∈ V 7→ y = y(v) ∈ I (which is actually bi-Lipschitz). Then,
by 4 of Lemma 3.3, for a.e. v ∈ V , the function ψ|Hy(v) is µy(v)-a.e. constant. By
changing ψ on a set of µ-measure zero, we may assume that ψ is constant on each
leaf Hy(v), v ∈ V .

The idea is the following: there is a leaf Hy mapped across an open set of leaves.
Since ψ is constant on each leaf and is (a.e.) Γ0-invariant, this forces an (a.e.) open
set of leaves to carry the same value of ψ. The following details are needed because
the invariance holds only a.e.
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For each γ ∈ Γ0, ψ ◦ ρ(γ)|Ĩ = ψ|Ĩ µ-a.e., hence there is Γ0-invariant set Z ⊂ Ĩ of
full µ-measure such that ψ ◦ ρ(γ)|Z = ψ|Z , for all γ ∈ Γ0.

Notice first that there are γ0 ∈ Γ0 and y0 = y(v0), y′0 = y(v′0) ∈ I such that
ρ(γ0)(Hy0) and Hy′0

have a point in common and intersect transversally. Indeed,
otherwise each ρ(γ) (γ ∈ Γ0) preserves the distribution Eu ⊕ Es tangent to {Hy},
and therefore it permutes the leaves of {Hy} (because Eu and Es are uniquely inte-
grable). But ρ(γ)|C0 = Id, hence ρ(γ) preserves each leaf of {Hy}, which contradicts
the fact that I ⊂ B.

Then there are open intervals v0 ∈ V0, v
′
0 ∈ V ′0 in V such that ρ(γ0)(Hy(v)) and

Hy(v′) have a point in common and intersect transversally, whenever v ∈ V0, v
′ ∈ V ′0 .

Pick v1 ∈ V0 such that Hy1 ∩ Z has full µy1-measure in Hy1 , where y1 = y(v1).
By the transversally condition, there is a non-zero vector u ∈ TwHy1 = (Eu⊕Es)|w
such that dρ(γ0)u /∈ (Eu ⊕ Es)|ρ(γ0)w. Consider a 1-dimensional C1-foliation O of
a neighborhood of w in Hy1 such that the leaf through w is tangent to u. Since
C1-foliations are absolutely continuous, a.e. leaf of O intersects Z in a set of full
(1-dimensional) measure. Therefore, we can find a local leaf, say O0, together with
a regular parametrization ω : (−ε, ε) → O0 ⊂ Hy1 such that the set J := {t ∈
(−ε, ε) | ω(t) /∈ Z} has zero measure and

t ∈ (−ε, ε) 7→ ρ(γ0)(ω(t)) is transversal to the foliation {Hy}. (3.6)

Consider the map h : (−ε, ε) → V defined by ρ(γ0)(ω(t)) ∈ Hy(h(t)). As in
the proof of 4 of Lemma 3.3, one can check that h : (−δ, δ) → V is a Lipschitz
(and therefore absolutely continuous) map for small δ ∈ (0, ε). By (3.6), h(0) is an
interior point of h((−δ, δ)). Therefore, h(J ∩ (−δ, δ)) ⊂ V has zero measure, and
thus h((−δ, δ)\J) ⊂ V contains — up to measure zero — an open interval. Denote
such an interval by I0.

Since Z is ργ0-invariant, ργ0(ω(t)) ∈ ργ0(Hy1 ∩ Z) ∩ (Hy(h(t)) ∩ Z) for each
t ∈ (−δ, δ)\J . But ψ is constant on each horizontal leaf and ψ|Z is ρ(γ0)-invariant,
therefore ψ|Hy(h(t)) ≡ ψ(ργ0(ω(t))) = ψ(ω(t)) ≡ ψ|Hy1

. We conclude that ψ|Hy(v)

has the value ψ|Hy1
for each v ∈ h((−δ, δ) \ J). This proves the claim, with

Ĩ0 := {z ∈M × S1 | z ∼ y, y ∈ I0}.
This concludes the proof of Theorem 1.3.

Proof of Corollary 1.5. Choose an element γ∗ of Γ such that α(γ∗) has a
fixed point and H is spanned by the stable and unstable foliations of the partially
hyperbolic diffeomorphism f0 := ρ(γ∗) (e.g., the element denoted γp0

0 in the proof
of Theorem 1.3). Denote by C the center foliation of f0.

By 4 of Theorem 2.1, there is a homeomorphism H which is a leaf-wise conjugacy
between ρ0(γ∗) = α(γ∗) × IdS1 and ρ(γ∗). That is, H maps each Vx := {x} ×
S1 diffeomorphically onto a center leaf of ρ(γ∗) and ργ∗(H(Vx)) = H(Vαγ∗ (x)).
Moreover, H(x, ·) : S1 → M × S1 is a CK-diffeomorphism onto its image, and
varies continuously with x ∈M .

Define Φ as follows: pick a point x∗ ∈M and let

Φ(x, y) := H(Vx) ∩H(H(x∗, y)).

Then Φ(x, ·) : S1 → M × S1 is CK−1, because, by 2 of Theorem 2.1, the H-
holonomy between the center leaves of ργ∗ is CK−1. Moreover, x ∈M 7→ Φ(x, ·) ∈
CK−1(S1,M × S1) is continuous and Φ approaches IdM×S1 in C0(M × S1) as ρ
approaches ρ0 in C1.
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Because H is a leaf-conjugacy and each leaf of H is preserved by ρ, it follows
that ρ(γ∗) ◦ Φ = Φ ◦ ρ0(γ∗).

Note that the image of Φ(·, y) is one of the leaves of H; let us denote it by
Hy. This leaf can be described as the image of a map φ̃y : M → Hy ⊂ M × S1,
x 7→ (x, φy(x)), where φy : M → S1 is CK−

and y ∈ S1 7→ φ̃y ∈ CK−
(M,M × S1)

is continuous.
If the diffeomorphism ρ(γ∗) is C∞, then W s

ρ(γ∗)
and Wu

ρ(γ∗)
are C∞-laminations,

hence φ̃y is actually smooth and y ∈ S1 7→ φ̃y ∈ C∞(M,M × S1) is continuous.
Assume first that α is CL−,K-locally rigid. If ρ approaches ρ0 in CL then the fo-

liation H approaches in CL−
the horizontal foliation of ρ0 (by Theorem 2.1 applied

to the element γ∗, and Journé’s Theorem 4.1; see §4), hence the Γ-action induced
from Hy, φ̃−1

y ◦ ρ ◦ φ̃y, approaches α in CL−
. By the rigidity of α, there is a diffeo-

morphism hy ∈ DiffK(M), C0 close to the identity, such that φ̃−1
y ργ φ̃yhy = hyαγ on

M for each γ ∈ Γ. Considering this relation for γ∗, we conclude that Φ(·, y) = φ̃yhy

because α(γ∗) is hyperbolic and the centralizer in Homeo of a hyperbolic diffeomor-
phism is discrete.

We conclude that Φ(·, y) is a CK diffeomorphism from M onto its image Hy for
each y ∈ S1, and ρ(γ) ◦ Φ = Φ ◦ ρ0(γ) for all γ ∈ Γ.

If α is also continuously CL−,K−1-locally rigid, then y ∈ S1 7→ hy ∈ C(K−1)−

is continuous, hence y ∈ S1 7→ Φ(·, y) ∈ Diff(K−1)− is continuous. By Journé’s
Theorem 4.1, we conclude that Φ ∈ Diff(K−1)−(M × S1), as desired.

4. Proof of the Lemmas. In this section we prove Lemmas 3.3, 3.5 and 3.6.

Proof of Lemma 3.3. Denote f0 = A× IdS1 .
From the continuous dependence of W s,W c,Wu on the diffeomorphism (3 of

Theorem 2.1) it follows that the foliations W s and Wu of f are close to those of f0.
The dynamical coherence of f implies that the projection q : M × S1 → M̂ along
the center foliation takes the stable and unstable foliations of f to foliations of M̂ ,
which we will still call stable and unstable. By 4 of Theorem 2.1 we conclude that
these foliations are conjugated to the foliations of A : M →M .

Notice that any “(u, s)-path” in M̂ can be lifted to a (u, s)-path for f , starting
at any point of the corresponding center leaf.

We consider now one-by-one the statements of the Lemma.
1. By [12, Lemma 3.1] we see that the ∼-equivalence classes cover M̂ .

The f -invariance of each class follows from the f -invariance of Wu and W s, and
the fact that in each equivalence class there is a point in C0.
2. Assume that there are points x 6= y in C0 connected through a (u, s)-path γ

whose projection to M̂ is contractible. We will show that y is an interior point
of its ∼0-equivalence class. One can shrink the path γ (within the class of (u, s)-
paths) while keeping its initial point fixed. This shows that one of the intervals
determined by x and y in C0

∼= S1 is contained in [y]∼0 . Denote this interval
by I1. To reach the “other side” of y in C0, start from a point x′ ∈ I1 close to
x and follow the (u, s)-path γ̃ that projects onto q(γ) (such a path exists by the
dynamical coherence of f). Since holonomies of the foliations Wu and W s induce
orientation preserving local homeomorphisms of the central leafs (due to the leaf-
wise conjugacy of (M × S1,W c) with the center foliation of f0, all central leafs
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of f can be oriented consistently), the end point of γ̃ lies outside I1 and near y.
Shrinking γ̃, we conclude that a neighborhood of y in C0 is in [y]∼0 .

In conclusion, each ∼0-equivalence class of C0 is either a point or an open subset
of C0.
3. Consider now the ∼-equivalence relation restricted to C0. We claim that the
equivalence classes coincide with the ∼0-equivalence classes.

Note first that if [y]∼0 consists of a single point, then the foliations Wu and W s

commute along leaves that start at y, hence (u, s)-paths emanating from y fit into
a topological (actually, CK−, as we will see later) manifold which we denote by Hy

and q : Hy → M̂ is a covering. Since f(y) = y, we conclude that Hy is f -invariant.
We have to show that Hy ∩ C0 = {y}. Since q|Hy

is a covering, by the definitions
of ∼ and ∼0, there is an onto map

H : π1(M̂, q(y)) → Hy ∩ C0,

defined by letting H(ω) be the endpoint of the (u, s)-lift starting at y of ω ∈
π1(M̂, q(y)).

Moreover, H induces an f -equivariant action of π1(M̂, q(y)) on Hy ∩ C0.
In view of the orientation preservation mentioned above, H is monotonic: the

images {H(ωk)}k∈Z travel around C0 in a fixed direction.
The f -invariance of Hy implies that H(f̂∗ω) = H(ω) for ω ∈ π1(M̂, q(y)), hence

H(ηf̂∗(ω)ω−1) = H(η). (4.1)

Here f̂ is the map induced on M̂ by f .
This implies that the image ofH is only the point y (provided f is C1-close to f0).

The idea is that for an infranilmanifold M the image of ”f̂∗ − Id ” : π1(M̂, q(y)) →
π1(M̂, q(y)) has finite index.

More precisely, note that, as long as f is close to f0, π1(M̂, q(y)) ∼= π1(M) such
that f̂∗ corresponds to A∗ and that there is an A∗-invariant exact sequence

1 = N0 ↪→ N1 ↪→ N2 ↪→ . . . ↪→ Nr ↪→ π1(M) → F → 1

where F is finite, Nk+1/Nk are abelian, and the images of A∗ − Id : Nk+1/Nk →
Nk+1/Nk have finite indexes (by the Franks–Manning classification of hyperbolic
diffeomorphisms on infranilmanifolds; see [7, proof of Lemma 4.5]).

We will prove by induction that H(Nk) = {y}. This is clear for N0; assume it
holds for Nk−1.

Pick a finite family {ωi} ⊂ Nk whose H-images cover H(Nk). Since there is
an order pk such that ωpk

i ∈ Ran[A∗ − Id : Nk/Nk−1 → Nk/Nk−1], then, by (4.1)
H(ωpk

i ) = y. Thus the points ,H(ωi),H(ω2
i ), . . . ,H(ωpk

i ) travel around the circle
from y and y. But if f is C1-close to f0 then each step is too small to cover the
circle in pk steps, therefore H(ωi) = y. This proves that H(Nk) = {y}.

Hence H(Nr) = {y}. Therefore one can consider H : π1(M)/Nr
∼= F → Hy∩C0.

Since F is finite, the same argument as above shows that H(π1(M)) = {y} for f
close to f0.

We proved therefore that for y ∈ C0, if [y]∼0 is a single point then [y]∼∩C0 = {y},
hence that Hy is a simple cover of M̂ . Consider the complement U in C0 of these
points. If this is the whole C0, then it has to be a single ∼0-equivalence class
(because in that case each equivalence class is open). As in [12, Lemma 3.1], this
implies that M × S1 is a single ∼-equivalence class. Otherwise, again by 2 of
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this Lemma, each connected component V of U is an ∼0-equivalence class, and its
endpoints y0, y1 ∈ C0 do not belong to U ; since the fibers are S1, this implies that
∼-equivalence class of V is the connected component of M×S1 \ (Hy0 ∪Hy1) which
intercepts V .

The fact that the leaves Hy are CK−
follows the fact that the leaves of Wu and

W s are CK and the following theorem of Journé (see [11, Theorem 3.1 (a)] for more
details).

Theorem 4.1 (Journé, [5]). Assume given on a manifold two continuous transverse
laminations, Fs and Fu, with uniformly smooth (or Ck+1) leaves. If a function f
is uniformly Ck+δ–smooth along the leaves of Fs and Fu, then f is Ck+δ–smooth
(1 ≤ k ≤ ∞, δ ∈ (0, 1)).

Moreover, if F ′s → Fs, F ′u → Fu, f ′|F ′
u
→ f |Fu

, f ′|F ′
s
→ f |Fs

in the Ck+δ-
topology, then f ′ → f in the Ck+δ-topology.

4. Recall the result of Pugh and Shub [15]:

Definition 4.2. By (essential) accessibility of a partially hyperbolic diffeomor-
phism f ∈ Diff(X) we mean that (almost) each pair of points x, y ∈ X is (u, s)-
accessible (with respect to the stable and unstable foliations of f).

Theorem 4.3 (Pugh-Shub, [15]). Assume X is a compact manifold endowed with
a smooth volume µ.

If f ∈ Diff2
µ(X) is a center bunched and dynamically coherent partially hyperbolic

diffeomorphism with the essential accessibility property then f is ergodic.

This shows that on each Uy the measure µ is ergodic for f .
Assume now that the manifolds {Ht}t∈I foliate their union Ĩ, where I ⊂ C0 is

an open set.
Denote by ω the volume form determined by µ (with respect to a Riemannian

structure on M × S1).
We will show that there is a (continuous) f -invariant vector field Xc on Ĩ which

spans the center distribution of f . Then iXc(ω), the interior product of Xc with
ω, restricts to a non-degenerate continuous f -invariant volume form on each Hy,
which determines an invariant measure µy. Since the diffeomorphism f is Anosov
on each leaf Hy, it will be ergodic on each (Hy, µy).

To show that such a vector field exists, recall that the Hy-holonomies between
center leaves of f are C1 (since one can write the holonomy between two center
leaves as a composition of W s-holonomies within W cs leaves and Wu-holonomies
within W cu leaves, and these holonomies are C1 by part 2 of Theorem 2.1). Choose
a C1-parametrization of one of the center leaves in Ĩ and extend it to the the other
leaves using the Hy-holonomies. Since {Hy} is f -invariant, these parametrizations
are f -equivariant. Therefore, the tangent field Xc they determine along each center
leaf is f -invariant as well.

It remains to prove the absolute continuity of the lamination {Hy}y∈I . This fol-
lows from the fact that holonomies between the vertical segments{
Vx := ({x} × S1) ∩ Ĩ | x ∈M

}
are uniformly Lipschitz. [We are not using the

holonomies between center leaves because the center foliation need not be abso-
lutely continuous.]

Indeed, let V := Vx and V ′ := Vx′ be two vertical segments, w1, w2 ∈ V close
to each other, Hi the leaf that contains wi, (i = 1, 2), and w′i := V ′ ∩ Hi. Denote
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u2 = H2 ∩W c(w1), u′2 = H2 ∩W c(w′1). Then the ratios

distW c(w1)(w1, u2)
distW c(w′

1)
(w′1, u

′
2)
,

distW c(w1)(w1, u2)
distV (w1, w2)

, and
distW c(w′

1)
(w′1, u

′
2)

distV ′(w′1, w
′
2)

are bounded away from both 0 and∞: the first ratio because the holonomy between
the center leaves is uniformly C1, the last two ratios because the tangent space
of {Hy}, Es ⊕ Eu, is close to the “constant” horizontal distribution TM ⊕ 0 ⊂
T (M×S1) while Ec = TW c is close to the “constant” vertical distribution 0⊕TM ⊂
T (M×S1). Thus the ratio distV (w1, w2)/distV ′(w′1, w

′
2) is uniformly bounded away

from zero and infinity, which proves our assertion.

We now proceed to the Lemmas related to the property (T).

Notations. 1. In order to simplify the exposition we are not going to write explic-
itly the small constants that are “uniform”. Instead, we will use either � or o(1).
For example, ‖Uf (φĨ) − φĨ‖L2 � ‖φĨ‖L2 means that ‖Uf (φĨ) − φĨ‖L2 ≤ ε‖φĨ‖L2

where ε > 0 depends only on the quantities “specified” beforehand, and can be
made arbitrarily small by choosing these quantities correspondingly.

In order to show that two quantities are comparable, we are going to use ≈.
That is, u ≈ v means that 1/c ≤ u/v ≤ c for some constant 0 < c < ∞ which
is again uniform in the sense specified above. For inequalities that hold up to a
multiplicative uniform constant we use / and '.

2. Given a smooth volume µ on M × S1, we can write it as∫
M×S1

φ(x, y) dµ =
∫

M

∫
S1
φ(x, y)m(x, y) dy dν(x),

where ν is a smooth measure on M and m is a smooth positive function. If A ∈
Diff(M) is Anosov and A× IdS1 preserves µ, then we can choose ν to be A-invariant
(take the measure induced via the projection M × S1 → M) and then m depends
only on the y-variable (because A is ergodic).

Proof of Lemma 3.5. We consider fixed the measure µ and the diffeomorphism
A. All the constants (explicit or not) used in the rest of the proof depend only on
A, µ and δ = distC1(f,A× IdS1).

Since µ is A× IdS1-invariant and f is C1-close to A× IdS1 , ‖∆f − 1‖C0 = o(1).
Therefore

‖Uf (φĨ)− φĨ ◦ f
−1‖L2 = ‖φĨ − U−1

f (φĨ ◦ f
−1)‖L2 � ‖φĨ‖L2 ,

thus it is enough to deal with ‖φĨ ◦ f
−1 − φf(Ĩ)‖L2 .

We are going to check that

‖φĨ ◦ f
−1 − φf(Ĩ)‖C0 = o(1) (4.2)

and
‖φĨ‖L2 ≈ (µ(Ĩ))1/2, (4.3)

which imply our assertion.
Denote Ĩ ′ = f(Ĩ). Given ξ = (x, y) ∈ Ĩ, let W c

Ĩ
(ξ) be the connected component

of W c
f (ξ) ∩ Ĩ containing ξ. Denote the corresponding subset of ξ′ = f(ξ) ∈ Ĩ ′ by

W c
Ĩ′

(ξ′). Then f(W c
Ĩ
(ξ)) = W c

Ĩ′
(f(ξ)), by the invariance of W c

f .
Consider a = a(ξ) := top(x) − y, b = b(ξ) := y − bot(x), u = u(ξ) :=

distW c(ξ,W c
Ĩ
(ξ) ∩ top(Ĩ)), v = v(ξ) := distW c(ξ,W c

Ĩ
(ξ) ∩ bot(Ĩ)) where top(Ĩ) :=
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{(x, top(x)) ∈M ×S1 | x ∈M}, bot(Ĩ) := {(x, bot(x)) ∈M ×S1 | x ∈M} and by
distW c we mean the distance along the center leaves within Ĩ.

Since distC1(f,A× IdS1) is small, 3 of Theorem 2.1 implies that ‖Df |Ec
f
‖ =

1+o(1), and the center, stable and unstable distributions of f are C0-close to those
of A× IdS1 . Therefore, as δ → 0,∣∣∣a

u
− 1

∣∣∣ = o(1),
∣∣∣∣ bv − 1

∣∣∣∣ = o(1), (4.4)

which imply that ∣∣∣∣ a

a+ b
− u

u+ v

∣∣∣∣ = o(1). (4.5)

Denote by a′, b′, u′, v′ the quantities a, b, u, v corresponding to ξ′ = f(ξ). Since f
preserves the orientation of W c

f (being close to A× IdS1 ; however, with the obvious
changes in the proof, (4.2) holds even if f reverses the orientation of W c

f ), the
segment of the center manifold whose length is u is mapped onto the one whose
length is u′, and similarly for v and v′. But the differential of f along the center
distribution is almost an isometry, therefore

∣∣ u
u′ − 1

∣∣ = o(1),
∣∣ v
v′ − 1

∣∣ = o(1), and
hence ∣∣∣∣ u

u+ v
− u′

u′ + v′

∣∣∣∣ = o(1). (4.6)

Since φĨ(ξ) = 2 min
{

a(ξ)
a(ξ)+b(ξ) ,

b(ξ)
a(ξ)+b(ξ)

}
, the relation (4.5) and its equivalent

for Ĩ ′, together with (4.6), show that
∣∣∣φĨ(ξ)− φf(Ĩ)(f(ξ))

∣∣∣ = o(1), thus proving
(4.2).

In order to prove (4.3), notice first that

‖y ∈ [0, `] 7→ 2 min{y
`
,
`− y

`
}‖2L2( dy) =

`

3
and therefore

‖φĨ‖
2
L2(µ) =

∫
M

∫ top(x)

bot(x)

|φĨ(x, y)|
2m(x, y) dy dν(x) ≈

≈
∫

M

∫ top(x)

bot(x)

|φĨ(x, y)|
2 dy dν(x) =

1
3

∫
M

(top(x)− bot(x)) dν(x) ≈ µ(Ĩ)

Proof of Lemma 3.6. It is enough to prove relation (3.4) for the real part of ψ,
hence we may assume that ψ takes only real values and λ ∈ R.

Fix λ ∈ R and denote Ĩ(λ) := ψ−1(λ)∩ Ĩ, Ĩ(λ)x := {y ∈ S1 | (x, y) ∈ Ĩ(λ)}, and
Ĩ(λ)− := Ĩ(λ) \ {(x, y) ∈ M × S1 | |φĨ(x, y) − λ| < ω}, Ĩ(λ)−x := Ĩ(λ)x ∩ Ĩ(λ)−,
where ω will be specified later.

Then, using (4.3) and assuming (3.3):

δ2µ(Ĩ) ≈ δ2‖φĨ‖
2
L2 ≥ ‖ψ − φĨ‖

2
L2 ≥

∫
Ĩ(λ)−

|ψ − φĨ |
2 dµ =

=
∫

M

∫
Ĩ(λ)−x

|λ− φĨ(x, y)|
2m(x, y) dy dν(x) ≈

∫
M

∫
Ĩ(λ)−x

|λ− φĨ(x, y)|
2 dy dν(x) ≥

≥ ω2

∫
M

∫
Ĩ(λ)−x

dy dν(x) ≈ ω2µ(Ĩ(λ)−)
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and µ({(x, y) ∈ Ĩ | |φĨ(x, y) − λ| ≤ ω}) / 2ωµ(Ĩ), as can be easily checked by
integrating first along the vertical direction. Therefore

µ(Ĩ(λ)) / µ(Ĩ(λ)−) + 2ωµ(Ĩ) /

(
δ2

ω2
+ 2ω

)
µ(Ĩ).

This shows that, given ε, one can choose δ and ω to obtain the desired conclusion.
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