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Abstract

In dynamical systems theory, a standard method for passing from discrete
time to continuous time is to construct the suspension flow under a roof func-
tion. In this paper, we give conditions under which statistical laws, such as the
central limit theorem and almost sure invariance principle, for the underlying
discrete time system are inherited by the suspension flow.

As a consequence, we give a simpler proof of the results of Ratner (1973)
and recover the results of Denker and Philipp (1984) for Axiom A flows. More-
over, we obtain several new results for nonuniformly and partially hyperbolic
flows, including frame flows on negatively curved manifolds satisfying a pinch-
ing condition.

1 Introduction

Let (X,µ) be a probability space. Suppose that S : X → X is a measure-preserving
transformation and that Φ : X → R is a measurable observation. Consider the
sequence of partial sums ΦN =

∑N−1
j=0 Φ ◦ Sj. Provided S is ergodic and Φ ∈ L1(X),

Birkhoff’s ergodic theorem (or the strong law of large numbers) states that

(SLLN) lim
N→∞

ΦN

N
=

∫

X

Φ dµ a.e.

Under certain hypotheses, the central limit theorem (CLT) states that
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(CLT) lim
N→∞

µ
{ΦN −N

∫

X
Φ dµ

√
N

< c
}

=
1√

2πσ2

∫ c

−∞
e−x

2/2σ2

dx.

The CLT has been established for large classes of dynamical systems. Usually
the dynamical system X is assumed to have some hyperbolicity properties (Axiom A
or nonuniformly/partially hyperbolic, see for example [25, 27, 30, 31, 7, 11, 22]) or
expansivity properties (for example [28, 19]), and the observation Φ is assumed to
have certain regularity properties such as Hölder continuity or bounded variation.

Suspension flows There is a standard method for constructing continuous time
dynamical systems (or flows) from a discrete time dynamical system S : X → X.

A measurable function r : X → R is called a roof function if r is positive almost
everywhere and r ∈ L1. Define the suspension

Xr = {(x, u) ∈ X × R : 0 ≤ u ≤ r(x)}/ ∼,
where (x, r(x)) is identified with (Sx, 0). The suspension flow St : Xr → Xr is given
by St(x, u) = (x, u+ t) computed subject to the identifications. (If S : X → X is not
invertible, then St is a semi-flow, but we shall still speak of suspension flows.)

Let r =
∫

X
r dµ. Then µr = µ × `/r is an invariant probability measure for the

suspension flow, where ` stands for the Lebesgue measure on the real line. Given an
L2 observation φ : Xr → R, we consider the family of integrals φT =

∫ T

0
φ ◦ St dt.

Central limit theorems for suspension flows (convergence in distribution of
1√
T

(φT − T
∫

Xr
φ dµr)) were obtained by Ratner [25] for Hölder observations in the

Anosov context. It follows from Bowen [3] that Ratner’s results hold for general
Axiom A flows. Denker and Philipp [9] gave a relatively elementary proof of Rat-
ner’s theorem, using the fact that the hyperbolic diffeomorphism S : X → X satisfies
strong statistical properties, in particular the almost sure invariance principle (ASIP).

In this paper, we give mild conditions under which the CLT for a general sus-
pension flow St : Xr → Xr follows from the corresponding result for the discrete
dynamical system S : X → X. Our proof is not constrained to the hyperbolic con-
text and is more general, and simpler, than the original proof of [25]. In addition our
proof does not rely on the ASIP. A major advantage of our approach is that the roof
function r need not be bounded. Hence, we are able to prove the CLT in a number
of situations where [9, 25] do not apply, see Section 5.

We assume throughout that φ : Xr → R is an observation of mean zero, and
r ∈ La(X), φ ∈ Lb(Xr), where a, b are moderately large. We define

Φ(x) =
∫ r(x)

0
φ(x, u)du.

Then Φ : X → R is a mean zero observation on X, and the aim is to deduce statistical
properties of φ on the suspension flow from the corresponding statistical properties
of Φ on the base dynamics.
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Central Limit Theorem The first version of our main theorem is as follows. In
this result, we do not require invertibility of S : X → X.

Theorem 1.1 Let S : X → X be an ergodic transformation. Suppose that (1 −
1
a
)(1− 1

b
) ≥ 1

2
. Suppose that Φ and r each satisfy the CLT. Then φ satisfies the CLT.

Moreover, if the CLT for Φ has variance σ2
1 ≥ 0, then the CLT for φ has variance

σ2 = σ2
1/r.

Remark 1.2 (a) The regularity hypothesis (1− 1
a
)(1− 1

b
) ≥ 1

2
is optimal in the sense

that otherwise Φ need not lie in L2 (see Remark 2.4).

(b) The proof of Ratner [25] relies heavily on the additional assumptions that (Φ, r)
jointly satisfy a 2-dimensional CLT, and that Φ ∈ L∞.
(c) We do not require that the CLTs for Φ and r are nondegenerate (they may
have zero variance). Moreover, the result remains true if 1√

N
(rN −Nr) converges in

distribution, regardless of the limit distribution.

We have the following generalization of Theorem 1.1.

Theorem 1.3 Let S : X → X be an invertible ergodic transformation. Suppose that
(1− 1

a
)(1− 1

b
) ≥ 1

2
and that 1√

N
ΦN →d G. Suppose further that there exist α ∈ (0, 1],

β ∈ (0, 1) with αβ ≤ 1
2

such that

(i) 1
|N |αΦN → 0 a.e. as N → ±∞ (where ΦN = −

∑|N |
j=1 Φ ◦ S−j for N < 0), and

(ii) 1
Nβ (rN −Nr) converges in distribution as N →∞.

Then 1√
T
φT →d G/

√
r as T →∞.

Remark 1.4 (a) For invertible dynamical systems, the SLLN and the CLT hold in
backwards time (N, T → −∞) if and only if they hold in forwards time. Hence in
Theorem 1.1 it is not necessary to assume that S : X → X is invertible, since we
can pass to the natural extension. In particular, Theorem 1.1 is a special case of
Theorem 1.3 with α = 1 and β = 1

2
. Theorem 1.3 shows that the CLT condition on

r can be weakened when the SLLN condition on Φ is strengthened.
(b) In many situations, including the hyperbolic setting, hypotheses (i) and (ii) of
Theorem 1.3 are valid for all α, β > 1

2
, so certainly αβ ≤ 1

2
.

(c) For ease of exposition, we have focused on convergence in distribution for which
the normalizing factors are

√
N and

√
T . It is easy to generalize Theorem 1.3 to

allow for different normalizing factors. Let c > 0. Assume that a, b ≥ 1 satisfy
(1− 1

a
)(1− 1

b
) ≥ (1− 1

c
) and that α ∈ (0, 1], β ∈ (0, 1) satisfy αβ ≤ c. Let r ∈ La(X),

Φ ∈ Lb(Xr) satisfy conditions (i) and (ii) of Theorem 1.3 for the revised values of α
and β. If 1

NcΦN →d G, then 1
T c
φT →d G/r

c.
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Conjecture 1.5 The conclusion of Theorem 1.3 remains valid if, instead of condi-
tions (i) and (ii), there exists β ∈ (0, 1) such that

1

|N |β
(rN −Nr)→ 0 a.e. as N → ±∞.

Other limit laws Our results on the CLT extend in a straightforward way to the
functional central limit theorem (or weak invariance principle). For example, suppose
that S : X → X is ergodic, and let r ∈ L∞(X) and φ ∈ L2(Xr). Suppose that r
satisfies the CLT. If Φ satisfies the functional CLT, then so does φ.

We also consider almost sure results such as the law of the iterated logarithm
(LIL) and the ASIP, generalising and simplifying results of Wong [29] and Denker
and Philipp [9] respectively. The arguments are easier than for the CLT.

We note that the corresponding results for time-one maps of hyperbolic flows are
more delicate than those for the flow itself. See [11, 22].

The remainder of the paper is organized as follows. Section 2 contains an approx-
imation result. Our main results on the CLT are proved in Section 3. In Section 4,
we prove the LIL and ASIP for suspension flows. In Section 5, we apply our results
to nonuniformly hyperbolic and partially hyperbolic flows, including frame flows on
negatively curved manifolds satisfying a pinching condition.

2 An approximation result

Throughout this section, we assume that r : X → R is a roof function, so r is
positive almost everywhere, and r ∈ L1(X) with mean r =

∫

X
r dµ. We assume that

S : X → X is measure-preserving and that r satisfies the SLLN, so

rN = Nr + o(N) as N →∞, (2.1)

almost everywhere, where rN(x) = r(x) + r(Sx) + · · ·+ r(SN−1x).
It follows from (2.1) that limN→∞ rN = ∞ almost everywhere. Given T > 0, we

define n[x, T ] to be the largest integer n such that rn(x) ≤ T . That is

rn[x,T ](x) ≤ T < rn[x,T ]+1(x). (2.2)

For almost every x ∈ X, n[x, T ] is defined for all T > 0 and limT→∞ n[x, T ] =∞ a.e.
By the ergodic theorem, it follows easily (cf. [8, Lemma 11.2.1]) that

lim
T→∞

T

n[x, T ]
= r a.e. (2.3)

Given φ : Xr → R, we define Φ(x) =
∫ r(x)

0
φ(x, u)du as usual, and Ψ(x) =

∫ r(x)

0
|φ(x, u)|du. We have the following basic approximation result:
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Lemma 2.1 Suppose that 1 ≤ a, b, p ≤ ∞, and (1 − 1
a
)(1 − 1

b
) ≥ (1 − 1

p
). Let

r ∈ La(X), φ ∈ Lb(Xr). Then

(a) φT (x, 0) = Φn[x,T ](x) + o(T 1/p) as T →∞, for almost all x ∈ X, and

(b) 1
T 1/p

(

φT (x, u)− Φn[x,T ](x)
)

→ 0 as T →∞, in probability (on Xr).

Remark 2.2 If a = b = ∞ in Lemma 2.1, then φT (x, u), φT (x, 0) and Φn[x,T ](x)
differ by amounts that are O(1) almost everywhere.

The remainder of this section is concerned with the proof of Lemma 2.1.

Proposition 2.3 Suppose that 1 ≤ a, b, p ≤ ∞, and (1 − 1
a
)(1 − 1

b
) ≥ (1 − 1

p
). Let

r ∈ La(X), φ ∈ Lb(Xr). Then Φ,Ψ ∈ Lp(X) and ‖Φ‖p ≤ ‖Ψ‖p ≤ ‖r‖a‖φ‖b.

Proof Assume 1 < a, b, p <∞, hence b < p (the other cases are easier).
By Hölder’s inequality with 1/b′ + 1/b = 1, we obtain

Ψ(x) ≤
(∫ r(x)

0
1 dt
)1/b′(∫ r(x)

0
|φ(x, t)|b dt

)1/b
= r(x)(b−1)/b

(∫ r(x)

0
|φ(x, t)|b dt

)1/b
.

We apply Hölder’s inequality once more with 1/c + 1/d = 1 where d = b/p, hence
c = b/(b− p), to obtain

∫

X
Ψ(x)p dµ ≤

∫

X
r(x)p(b−1)/b

(∫ r(x)

0
|φ(x, t)|b dt

)p/b
dµ

=
∫

X
r(x)p(b−1)/b

(∫ r(x)

0
|φ(x, t)|b dt

)1/d
dµ

≤
(∫

X
r(x)cp(b−1)/b dµ

)1/c(∫

X

∫ r(x)

0
|φ(x, t)|b dt dµ

)1/d

which is finite provided that r ∈ Lp(b−1)/(b−p)(X) and φ ∈ Lb(Xr).
Setting p(b− 1)/(b− p) = a leads to the required condition.

Remark 2.4 The value of p is optimal, as can be seen from the following examples.
If a < ∞, given r ∈ La(X), take φ(x, t) = r(x)(a−1)/b; then φ ∈ Lb(Xr) and ‖Φ‖p =

‖Ψ‖p = ‖r‖a/pa , where (1 − 1
a
)(1 − 1

b
) = (1 − 1

p
). If a = ∞ take φ(x, t) = c(x) with

c ∈ Lb(X) and supp(c) ⊂ {r ≥ ‖r‖∞/2}.

For fixed N ≥ 1, it is easily proved by induction that

φrN (x)(x, 0) = ΦN(x). (2.4)

Hence |φT (x, 0)− Φn[x,T ](x)| ≤ AT (x), where AT (x) =
∫ T

rn[x,T ](x)
|φ ◦ St(x, 0)| dt.
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Proposition 2.5 Suppose that r satisfies the SLLN (2.1) and Ψ ∈ Lp(X) for some
p ≥ 1. Then AT = o(T 1/p) as T →∞ a.e.

Proof For N = n[x, T ] compute that

AT (x) ≤
∫ rN+1(x)

rN (x)

|φ ◦ St(x, 0)| dt =

∫ r(SNx)

0

|φ ◦ St ◦ SrN (x)(x, 0)| dt

=

∫ r(SNx)

0

|φ ◦ St(SNx, 0)| dt = Ψ(SNx).

Since Ψ ∈ Lp(X), the ergodic theorem applies to Ψp ∈ L1(X) so that Ψp(Snx) = o(n)
almost everywhere. Hence, Ψ(Snx) = o(n1/p) almost everywhere. It follows thatAT =
o(n[x, T ]1/p) almost everywhere. By (2.3), AT (x) = o(T 1/p) almost everywhere.

Part (a) of Lemma 2.1 follows immediately from Propositions 2.3 and 2.5. To
prove part (b), compute that

φT (x, u) =
∫ T

0
φ ◦ St(x, u)dt =

∫ T

0
φ ◦ St+u(x, 0)dt =

∫ T+u

u
φ ◦ St(x, 0)dt,

and so by (2.4),

|φT (x, u)− Φn[x,T ](x)| = |φT (x, u)− φrn[x,T ](x)(x, 0)|

=
∣

∣

∫ T+u

u
φ ◦ St(x, 0)dt−

∫ rn[x,T ](x)

0
φ ◦ St(x, 0)dt

∣

∣

≤ AT (x) +BT (x, u), (2.5)

where BT (x, u) =
∫ T+u

T
|φ ◦ St(x, 0)| dt+

∫ u

0
|φ ◦ St(x, 0)| dt for u ∈ [0, r(x)].

Proposition 2.6 If r ∈ L1(X), φ ∈ L1(Xr), and q > 0, then 1
T q
BT converges to zero

in probability.

Proof It suffices to estimate the first term in the definition of BT , so we write

BT (x, u) =
∫ T+u

T
|φ ◦ St(x, 0)| dt. Define VT (x) = BT (x, r(x)) =

∫ r(x)

0
|φ ◦ ST (x, t)| dt.

Since ST is measure-preserving, ‖VT‖1 = r‖φ‖1 and so VT/T
q → 0 in L1. In particular,

VT/T
q → 0 in probability. Fix ε > 0 and define

ET = {x ∈ X : VT (x)/T q ≥ ε}, FT = {(x, u) ∈ Xr : BT (x, u)/T q ≥ ε}.

Then µ(ET ) → 0. Since BT (x, u) ≤ VT (x) and r ∈ L1, it follows that µr(FT ) ≤
(1/r)

∫

ET
r dµ→ 0. Hence BT/T

q → 0 in probability as required.

Part (b) of Lemma 2.1 is immediate from equation (2.5) and Propositions 2.3, 2.5
and 2.6 (with q = 1/p.)
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3 Central Limit Theorem

In this section, we prove Theorem 1.3 extending the central limit theorem (CLT) from
observations on X to observations on the suspension flow Xr.

Since two different measures µ and µr are involved, the following device for passing
between X and Xr is required.

Lemma 3.1 Let S : X → X be ergodic and let Xr be the suspension with respect
to the L1 roof function r. Let Φ : X → R be an L2 observation and set ΦN =
∑N−1

j=0 Φ ◦ Sj.
Define ̂ΦN : Xr → R by ̂ΦN(x, u) = ΦN(x). If ΦN/

√
N →d G on X, then

̂ΦN/
√
N →d G on Xr.

Proof It follows from Eagleson [12, Section 4.2a] (see also [1, Section 3.6]) that
ΦN/
√
N converges in distribution to G relative to any probability measure ν that is

absolutely continuous with respect to the underlying ergodic measure µ. Taking ν to
be the measure with density r/r, we have

∫

X
eitΦN/

√
Nr/rdµ→ E(eitG) for all t ∈ R.

But
∫

Xr

eit
̂ΦN/
√
Ndµr = (1/r)

∫

X

∫ r

0

eitΦN/
√
Nd(µ× `) =

∫

X

eitΦN/
√
Nr/rdµ.

Hence
∫

Xr
eit
̂ΦN/
√
Ndµr → E(eitG) and so ̂ΦN/

√
N →d G.

Remark 3.2 The result of Eagleson [12] used in the above argument states that
central limit theorems for ergodic sequences are automatically “mixing in the sense
of Rényi” (a concept introduced in [26]).

Now let φ : Xr → R be a mean zero observation. We assume that r ∈ La(X),

φ ∈ Lb(Xr) where (1− 1
a
)(1− 1

b
) ≥ 1

2
. Recall that Φ(x) =

∫ r(x)

0
φ(x, u)du and define

̂Φ(x, u) = Φ(x) as in Lemma 3.1. Let S : X → X and ΦN , N ∈ Z, be as described in
Theorem 1.3. Define

m[x, T ] = n[x, T ]− [T/r] and WT (x) =
1√
T

Φm[x,T ](S
[T/r]x).

Lemma 3.3 Suppose that r ∈ L1(X) satisfies the SLLN (2.1) and that

WT →d 0 on X and
1√
N
̂ΦN →d G on Xr as T,N →∞.

Then
1√
T
̂Φn[x,T ] →d G/

√
r on Xr.
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Proof By (2.3), it is equivalent to show that 1√
n[x,T ]

̂Φn[x,T ](x, u) →d G on Xr. We

compute that

1
√

n[x, T ]
̂Φn[x,T ](x, u)− 1

√

[T/r]
̂Φ[T/r](x, u) =

1
√

n[x, T ]

(

̂Φn[x,T ](x, u)− ̂Φ[T/r](x, u)
)

+
( 1
√

n[x, T ]
− 1
√

[T/r]

)

̂Φ[T/r](x, u)

= I+II.

By definition of ̂ΦN , term I is independent of u and

I =
1

√

n[x, T ]

(

Φ[T/r]+m[x,T ](x)− Φ[T/r](x)
)

=

√
T

√

n[x, T ]

1√
T

Φm[x,T ](S
[T/r]x)

=

√
T

√

n[x, T ]
WT (x)→d 0 on X

by (2.3) and the hypothesis on WT . Since r ∈ L1(X), it follows that I→d 0 on Xr.
Next, working on Xr,

II =
(

√

[T/r]
√

n[x, T ]
− 1
)( 1
√

[T/r]
̂Φ[T/r](x, u)

)

.

The second factor converges in distribution. The first factor converges (by (2.3)) to
0 a.e. Hence II→d 0 on Xr.

The key part of the argument is to verify that WT →d 0. This can be carried out
on X, with no mention of the suspension Xr.

Lemma 3.4 Let r,Φ ∈ L1(X), r > 0. Suppose that there exist α ∈ (0, 1], β ∈ (0, 1)
with αβ ≤ 1

2
such that

(i) 1
|N |αΦN → 0 a.e. as N → ±∞, and

(ii) 1
Nβ (rN −Nr) converges in distribution as N →∞.

Then WT →d 0 as T →∞.

Proof Fix a > 0. We show that µ(|WT | ≥ a)→ 0 as T →∞.

Let ε > 0. By hypothesis (i), we can choose a set ˜X ⊂ X with µ( ˜X) > 1− ε and

N0 such that | 1
MαΦM | < ε on ˜X for all |M | ≥ N0. For each value of T , we define

X ′T = {x ∈ X : |m[x, T ]| ≤ N0}, X ′′T = {x ∈ X : |m[x, T ]| > N0}.
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First, we estimate the contribution from X ′T . For x ∈ X ′T , we have

|WT (x)| ≤ 1√
T

N0−1
∑

j=−N0

|Φ ◦ Sj(S[T/r](x))| = 1√
T

Ψ(S[T/r](x)),

where Ψ =
∑N0−1

j=−N0
|Φ◦Sj|. Since Ψ lies in L1, there is a constant C and a subset Y ⊂

X with µ(Y ) > 1− ε such that Ψ(y) ≤ C for all y ∈ Y . Let YT = X ′T ∩ (S[T/r])−1(Y ).
Then µ(YT ) > µ(X ′T ) − ε (since S is measure-preserving), and Ψ(S[T/r](x)) < C for
all x ∈ YT . Hence

µ(x ∈ X ′T : |WT (x)| ≥ a) < µ(x ∈ YT : |WT (x)| ≥ a) + ε

≤ µ(x ∈ YT : 1√
T
C ≥ a) + ε = ε,

for T sufficiently large. Therefore, we can choose T0 so that

µ(|WT | ≥ a) ≤ µ(x ∈ X ′′T : |WT (x)| ≥ a) + ε, for all T ≥ T0.

Next, we estimate the contribution from X ′′T . Let ˜X ′′T = X ′′T ∩ (S[T/r])−1( ˜X) and

note that µ( ˜X ′′T ) ≥ µ(X ′′T )− ε (since S is measure-preserving). Hence,

µ(|WT | ≥ a) ≤ µ(x ∈ ˜X ′′T : |WT (x)| ≥ a) + 2ε.

Write

WT (x) =
|m[x, T ]|α√

T

1

|m[x, T ]|α
Φm[x,T ](S

[T/r](x)).

On X ′′T , we have |m[x, T ]| > N0 and so
∣

∣
1

|m[x,T ]|αΦm[x,T ](y)
∣

∣ < ε for all x ∈ X ′′T and

y ∈ ˜X. It follows from the definitions that
∣

∣
1

|m[x,T ]|αΦm[x,T ](S
[T/r](x))

∣

∣< ε on ˜X ′′T .

Hence |WT (x)| < ε |m[x,T ]|α√
T

for x ∈ ˜X ′′T , so that

µ(|WT | ≥ a) ≤ µ
(

x ∈ ˜X ′′T :
|m[x, T ]|α√

T
≥ a/ε

)

+ 2ε

≤ µ
( |m[x, T ]|
T 1/(2α)

≥ (a/ε)1/α
)

+ 2ε ≤ µ
( |m[x, T ]|

T β
≥ (a/ε)1/α

)

+ 2ε,

since αβ ≤ 1
2
. A direct calculation starting from hypothesis (ii) shows that the se-

quence |m[x,T ]|
Tβ

converges in distribution (cf. [25, p. 188]). Denote the limit distribution
by ν (seen as a probability measure on the real line). Then

µ
( |m[x, T ]|

T β
≥ (a/ε)1/α

)

→ ν
(

|t| ≥ (a/ε)1/α
)

,
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and hence there exists Tε ≥ T0 such that

µ(|WT | ≥ a) ≤ ν
(

|t| ≥ (a/ε)1/α
)

+ 3ε

for T ≥ Tε. Since ν(|t| ≥ A)→ 0 as A→∞, this completes the proof.

Proof of Theorem 1.3 Hypotheses (i) and (ii) of the theorem translate immediately
into the corresponding hypotheses for Lemma 3.4. Hence WT →d 0 on X. By
Lemmas 3.1 and 3.3, 1√

T
̂Φn[x,T ] →d G/

√
r on Xr. Finally, by Lemma 2.1(b) with

p = 2, 1√
T
φT →d G/

√
r on Xr.

4 LIL and ASIP for suspension flows

In this section, we show how to extend the LIL and ASIP from observations on X to
observations on the suspension flow Xr. As usual, φ : Xr → R has mean zero and

Φ(x) =
∫ r(x)

0
φ(x, u)du.

We say that φ satisfies the LIL if

(LIL) lim sup
T→∞

φT√
2T log log T

= σ a.e.

and similarly for Φ.

Theorem 4.1 Suppose that S : X → X is a measure-preserving transformation
and that St : Xr → Xr is the suspension flow corresponding to a roof function r :
X → R satisfying the SLLN (2.1). Suppose that r ∈ La(X) and φ ∈ Lb(Xr) where
(1− 1

a
)(1− 1

b
) ≥ 1

2
.

If Φ satisfies the LIL with variance σ2
1, then φ satisfies the LIL with variance

σ2 = σ2
1/r.

Proof Define q : (3,∞) → (0,∞) by q(T ) = (2T log log T )−1/2. Noting that T 7→
n[x, T ] is a monotone surjection, we deduce that lim supT→∞ q(n[x, T ])Φn[x,T ](x) = σ1

a.e. By (2.3), lim supT→∞ q(T )Φn[x,T ](x) = σ a.e. It follows from Lemma 2.1(a) that

lim sup
T→∞

q(T )φT (x, 0) = σ a.e. (4.1)

Choose X ′ ⊂ X with µ(X ′) = 1 such that (4.1) holds for all x ∈ X ′. Then

lim sup
T→∞

q(T )φT (x, u) = lim sup
T→∞

q(T )φT+u(x, 0) = lim sup
T→∞

q(T )φT (x, 0) = σ

for all x ∈ X ′ and u ∈ [0, r(x)].
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We say that φ satisfies the ASIP if (after redefining {φT | T ≥ 0} on a richer
probability space without changing the joint distributions of φT ) there exists ε > 0
and a Brownian motion W with variance σ2 such that φT = W (T ) + o(T 1/2−ε) as
T →∞ almost everywhere. Similarly for Φ. Many statistical laws including the CLT
and LIL are implied by the ASIP, see Philipp and Stout [24].

Theorem 4.2 Let St : Xr → Xr be the suspension flow corresponding to a roof
function r : X → R. Suppose that r ∈ La(X) and φ ∈ Lb(Xr) where (1− 1

a
)(1− 1

b
) > 1

2
.

Suppose further that

rN = Nr + o(N1−δ) as N →∞ (4.2)

almost everywhere, for some δ > 0.
If Φ satisfies the ASIP with variance σ2

1, then φ satisfies the ASIP with variance
σ2 = σ2

1/r.

Proof By assumption (shrinking δ if necessary), there is a sequence of random
variables {SN , N ≥ 1} equal in distribution to the sequence {ΦN , N ≥ 1} such that

SN = W1(N) + o(N1/2−δ) as N →∞ (4.3)

almost everywhere, where W1 is a Brownian motion with variance σ2
1.

Thanks to condition (4.2), we can strengthen (2.3) to conclude that

n[x, T ] = T/r + o(T 1−2δ) as T →∞, (4.4)

almost everywhere, where for convenience we have replaced δ by 2δ.
Shrinking δ once again as necessary so that (1− 1

a
)(1− 1

b
) > 1

2
+ δ, Lemma 2.1(a)

guarantees that

φT (x, 0) = Φn[x,T ](x) + o(T 1/2−δ) as T →∞ a.e.

Moreover, r is finite almost everywhere, so for µ-a.e. x and each u ∈ [0, r(x)],

φT (x, u) = φT+u(x, 0) = Φn[x,T+u](x) + o(T 1/2−δ) as T →∞. (4.5)

As in [24, p. 23], without loss we may identify ΦN with SN and we may suppose
that they are defined on the same probability space as φT and W1. Hence combin-
ing (4.3) and (4.5) yields

φT (x, u) = W1(n[x, T + u]) + o(T 1/2−δ) as T →∞ a.e.
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By equation (4.4), n[x, T + u] = T/r + o(T 1−2δ) and so it follows as in [24, p. 10 and
p. 24] that for any δ′ < δ,

W1(n[x, T + u]) = W1(T/r) + o(T 1/2−δ′) = W (T ) + o(T 1/2−δ′),

where W is a Brownian motion with variance σ2 = σ2
1/r. Hence

φT (x, u) = W (T ) + o(T 1/2−δ′) as T →∞,

almost everywhere, as required.

Remark 4.3 (a) Condition (4.2) is satisfied if r ∈ L2(X) and r is cohomologous in
L2 to a martingale [13, p. 238]. A result of Gordin [16] guarantees that r is cohomol-
ogous to a martingale in a wide class of examples.

(b) Improved error terms in the ASIP for Φ and in (4.2) can be used to obtain an
improved error term in the ASIP for φ. So if Φ satisfies the ASIP with error o(N1/p)
for some p > 2, then φ satisfies the ASIP with error o(T 1/p′), for any p′ < p, provided
that rN = Nr + o(N2/p) and (1− 1

a
)(1− 1

b
) ≥ (1− 1

p
).

(c) When X is Axiom A, Hölder observations satisfy the ASIP with error term
o(N1/4+α) for any α > 0, see [14]. Moreover, Hölder roof functions satisfy the condi-
tion in part (a) (cf. [9, 14]). Hence, when r and φ are Hölder, we obtain the ASIP
with error term o(T 1/4+α) improving slightly upon the result of [9].

5 Applications

Hyperbolic flows As discussed in the introduction, Ratner [25] established the
CLT for Hölder observations on a hyperbolic basic set X, and also (by a quite com-
plicated argument) the CLT for Hölder observations on the suspension Xr by a Hölder
roof function r. The CLT for general hyperbolic flows then follows from Bowen [3].
In this paper (see Theorem 1.1), we have given an elementary and general argument
that yields the CLT for hyperbolic flows, based on the CLT for hyperbolic basic sets.
(See Remark 1.2 for a comparison of the two proofs.)

Nondegeneracy The statistical limit theorems in this paper are said to be degen-
erate if σ2 = 0 (equivalently σ2

1 = 0). In our abstract setting, it is not possible to
formulate useful criteria for nondegeneracy.

However, if Φ is a Hölder continuous observation on a hyperbolic basic set X
equipped with a Gibbs measure µ, then it is well-known that σ2

1 = 0 if and only if
there is a constant K1 such that |ΦN |∞ ≤ K1 for all N , which is equivalent to the

12



fact that Φ is a Hölder coboundary (see [14, §5] for an explicit statement). Provided
r and φ are Hölder, so in particular φT (x, u) = Φn[x,T ](x) + O(1), we conclude that
σ2 = 0 if and only if there is a constant K such that |φT |∞ ≤ K for all T .

This condition for degeneracy has significant advantages over the L2 condi-
tion in [25]. For continuous observations, it means that φp(x, u) = 0 whenever
Sp(x, u) = (x, u) (equivalently, ΦP (x) = 0 whenever SPx = x) so we can guaran-
tee nondegeneracy by perturbing the observation along a single periodic trajectory.

Nonuniformly hyperbolic flows The CLT has been established for certain classes
of nonuniformly hyperbolic and partially hyperbolic diffeomorphisms. The CLT for
the suspension flow follows from Theorem 1.1.

For example, Young [30, 31] proves the CLT for smooth enough observations of a
class of nonuniformly hyperbolic diffeomorphisms. By Theorem 1.1, we have

Corollary 5.1 Provided r and φ are smooth enough, the CLT (and its functional
version) hold for suspension flows over the nonuniformly hyperbolic transformations
considered in [30, 31].

Nonuniformly hyperbolic diffeomorphisms The methods in this paper apply
also to nonuniformly hyperbolic diffeomorphisms (and more generally to induced
transformations). The tower construction in Young [30, 31] realises such diffeomor-
phisms as discrete suspensions over a uniformly hyperbolic base, where the roof func-
tion r takes only integer values. Provided r lies in L2, the results in this paper
immediately yield the CLT. The condition that r is L2 is more natural and general
than the condition in [31] (though the emphasis there is on establishing rates of decay
of correlations which is a much harder problem).

The application of the ideas in this paper to nonuniformly hyperbolic diffeomor-
phisms has been carried out recently by Gouëzel [18] (our main results are summa-
rized in [18, Appendix A]). This provides a significantly simplified proof of results in
Gouëzel [17].

A class of partially hyperbolic flows Suppose that Λ is a hyperbolic basic set for
a smooth flow St with an equilibrium measure µΛ corresponding to a Hölder potential,
and G is a compact connected Lie group with Haar measure ν. If ht : Λ → G is
a smooth cocycle (hs+t = hs ht ◦ Ss), then we form the G-extension flow St,h on
Λ×G, St,h(y, g) = (St(y), ght(y)), with invariant measure µΛ× ν. Such G-extensions
are amongst the simplest examples of partially hyperbolic flows (We note that the
arguments in [9, 25] do not seem to apply to such flows.)
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Theorem 5.2 Let G be a semisimple compact connected Lie group and suppose that
Λ × G is an ergodic G-extension of a hyperbolic basic set Λ for a hyperbolic flow.
Then the CLT (and its functional version) hold for sufficiently smooth observations
φ : Λ×G→ R. Moreover, the LIL and ASIP hold for sufficiently smooth observations.

Proof By Bowen [3], Λ can be modelled as a symbolic flow Xr where X is a subshift
of finite type, r : X → R is a Hölder roof function, with equilibrium measure µr where
µ is an equilibrium measure on X. Hence Λ × G is realised as Xr × G ∼= (X × G)r
with ergodic measure (µ× ν)r. (We regard r as defined on X×G but independent of
the G-component.) Since Λ×G is ergodic, it follows that µ×ν is an ergodic measure
on X ×G.

Dolgopyat [10, Corollary 4.8] proves rapid mixing for Hölder observations onX×G
that are sufficiently smooth in the G direction and deduces the CLT using [20]. The
CLT follows also from [22] and so does the ASIP. By the results in this paper, these
results lift to the suspension (X ×G)r and hence to Λ×G.

Remark 5.3 (Application to frame flows) Let V be a negatively-curved ori-

entable n-dimensional manifold, with unit tangent bundle M = SV . Let ̂M be the
space of positively oriented orthonormal n-frames in TV . The frame flow on ̂M is an
SO(n − 1)-extension of the geodesic flow on M . Recall that SO(n − 1) is semisim-
ple provided n ≥ 4. Ergodicity of the frame flow has been proven by [4] when n is
odd, n 6= 7, and by [5, 6] in the remaining cases under a pinching condition on the
curvature. By Theorem 5.2, the ASIP etc. hold for sufficiently smooth observations
on such frame flows.

If G is not assumed to be semisimple, then the situation is more complicated.
Below, we describe some results for suspensions (X × G)r where X is a hyperbolic
basic set for a diffeomorphism. Note that the hypotheses are now on X ×G and for
this reason the results are considerably weaker than in the semisimple case.

Suppose that X is a hyperbolic basic set with Gibbs measure µ and G is a compact
connected Lie group with Haar measure ν. If S : X → X is the underlying Axiom A
dynamics and h : X → G is a smooth cocycle, the G-extension Sh : X ×G→ X ×G
is given by Sh(x, g) = (Sx, gh(x)). Field et al. [15] showed that the G-extension
X × G is ergodic with respect to µ × ν for an open dense set of smooth extensions
h : X → G. Such a G-extension Sh is said to be stably ergodic.

For restricted classes of G-extensions (G semisimple covered above, but also X
Anosov infranilmanifold), Dolgopyat [10] proved that stable ergodicity implies rapid
decay of correlations, and hence the CLT, for sufficiently regular observations Φ :
X ×G→ R.
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Corollary 5.4 Provided r and φ are smooth enough, the CLT (and its functional
version) hold for suspension flows over the G-extensions considered in [10].

In the context of equivariant flows, it is natural to consider equivariant observa-
tions [23, 14], and stronger results are possible.

Theorem 5.5 Let G be a compact connected Lie group and suppose that Y × G is
an ergodic G-extension of a hyperbolic basic set Y for a hyperbolic flow. Let ρ be
a representation of G on the vector space Rk, and consider mean zero observations
φ : Y × G → Rk of the form φ(y, g) = ρgv(y), where v : Y → Rk is Hölder. Then φ
satisfies a k-dimensional CLT, and each one-dimensional projection of φ satisfies the
ASIP.

Furthermore, the CLT is degenerate (singular covariance matrix) if and only if
some component of φT is uniformly bounded, and the CLT is nondegenerate for an
open and dense set of equivariant Hölder observations φ.

Proof As usual, we can reduce to the case where Y = Xr is the suspension of a
subshift of finite type X and r is Hölder. Then Y ×G = Xr ×G = (X ×G)r.

Define Φ(x, g) =
∫ r(x)

0
φ(x, g, u)du = ρgV (x) where V (x) =

∫ r(x)

0
v(x, u)du. Then

Φ : X×G→ Rk is a Hölder equivariant observation and it follows from [14, 21] that Φ
satisfies the CLT. The CLT for φ follows from our main results and the Cramer-Wold
technique. Similarly, it follows from [14] and Theorem 4.2 that each one-dimensional
projection of φ satisfies the ASIP.

As in the Axiom A case, the statements about nondegeneracy for φ follow from
the corresponding statements for Φ which were obtained by Nicol et al. [23].

Remark 5.6 The ideas in [14, 23] were applied by Ashwin et al. [2] to provide an
explanation of hypermeander of spiral waves in planar excitable media. There, the
spiral tip undergoes Brownian-like motion in the plane. Theorem 5.5 bridges the gap
between discrete and continuous time [2, Section 5].
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