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A–1 Note that ifr(x) ands(x) are any two functions, then

max(r, s) = (r + s + |r − s|)/2.

Therefore, ifF (x) is the given function, we have

F (x) = max{−3x− 3, 0} −max{5x, 0}+ 3x + 2
= (−3x− 3 + |3x− 3|)/2

− (5x + |5x|)/2 + 3x + 2

= |(3x− 3)/2| − |5x/2| − x +
1
2
,

so we may setf(x) = (3x − 3)/2, g(x) = 5x/2, and
h(x) = −x + 1

2 .

A–2 First solution: First factorp(x) = q(x)r(x), whereq
has all real roots andr has all complex roots. Notice
that each root ofq has even multiplicity, otherwisep
would have a sign change at that root. Thusq(x) has a
square roots(x).

Now write r(x) =
∏k

j=1(x − aj)(x − aj) (possible
becauser has roots in complex conjugate pairs). Write∏k

j=1(x − aj) = t(x) + iu(x) with t, x having real
coefficients. Then forx real,

p(x) = q(x)r(x)

= s(x)2(t(x) + iu(x))(t(x) + iu(x))

= (s(x)t(x))2 + (s(x)u(x))2.

(Alternatively, one can factorr(x) as a product of
quadratic polynomials with real coefficients, write each
as a sum of squares, then multiply together to get a sum
of many squares.)

Second solution: We proceed by induction on the de-
gree ofp, with base case wherep has degree 0. As in
the first solution, we may reduce to a smaller degree
in casep has any real roots, so assume it has none.
Then p(x) > 0 for all real x, and sincep(x) → ∞
for x → ±∞, p has a minimum valuec. Now p(x)− c
has real roots, so as above, we deduce thatp(x) − c is
a sum of squares. Now add one more square, namely
(
√

c)2, to getp(x) as a sum of squares.

A–3 First solution: Computing the coefficient ofxn+1 in the
identity (1 − 2x − x2)

∑∞
m=0 amxm = 1 yields the

recurrencean+1 = 2an + an−1; the sequence{an}
is then characterized by this recurrence and the initial
conditionsa0 = 1, a1 = 2.

Define the sequence{bn} by b2n = a2
n−1 +

a2
n, b2n+1 = an(an−1 + an+1). Then

2b2n+1 + b2n = 2anan+1 + 2an−1an + a2
n−1 + a2

n

= 2anan+1 + an−1an+1 + a2
n

= a2
n+1 + a2

n = b2n+2,

and similarly 2b2n + b2n−1 = b2n+1, so that{bn}
satisfies the same recurrence as{an}. Since further
b0 = 1, b1 = 2 (where we use the recurrence for{an}
to calculatea−1 = 0), we deduce thatbn = an for all
n. In particular,a2

n + a2
n+1 = b2n+2 = a2n+2.

Second solution: Note that

1
1− 2x− x2

=
1

2
√

2

( √
2 + 1

1− (1 +
√

2)x
+

√
2− 1

1− (1−
√

2)x

)
and that

1
1 + (1±

√
2)x

=
∞∑

n=0

(1±
√

2)nxn,

so that

an =
1

2
√

2

(
(
√

2 + 1)n+1 − (1−
√

2)n+1
)

.

A simple computation (omitted here) now shows that
a2

n + a2
n+1 = a2n+2.

Third solution (by Richard Stanley): LetA be the ma-

trix

(
0 1
1 2

)
. A simple induction argument shows that

An+2 =
(

an an+1

an+1 an+2

)
.

The desired result now follows from comparing the top
left corner entries of the equalityAn+2An+2 = A2n+4.

A–4 Denote the series byS, and letan = 3n/n. Note that

S =
∞∑

m=1

∞∑
n=1

1
am(am + an)

=
∞∑

m=1

∞∑
n=1

1
an(am + an)

,



where the second equality follows by interchangingm
andn. Thus

2S =
∑
m

∑
n

(
1

am(am + an)
+

1
an(am + an)

)
=
∑
m

∑
n

1
aman

=

( ∞∑
n=1

n

3n

)2

.

But
∞∑

n=1

n

3n
=

3
4

since, e.g., it’sf ′(1), where

f(x) =
∞∑

n=0

xn

3n
=

3
3− x

,

and we conclude thatS = 9/32.

A–5 First solution: (by Reid Barton) Letr1, . . . , r1999 be
the roots ofP . Draw a disc of radiusε around each
ri, whereε < 1/3998; this disc covers a subinterval of
[−1/2, 1/2] of length at most2ε, and so of the 2000 (or
fewer) uncovered intervals in[−1/2, 1/2], one, which
we callI, has length at leastδ = (1−3998ε)/2000 > 0.
We will exhibit an explicit lower bound for the integral
of |P (x)|/P (0) over this interval, which will yield such
a bound for the entire integral.

Note that

|P (x)|
|P (0)|

=
1999∏
i=1

|x− ri|
|ri|

.

Also note that by construction,|x − ri| ≥ ε for each
x ∈ I. If |ri| ≤ 1, then we have|x−ri|

|ri| ≥ ε. If |ri| > 1,
then

|x− ri|
|ri|

= |1− x/ri| ≥ 1− |x/ri| ≥= 1/2 > ε.

We conclude that
∫

I
|P (x)/P (0)| dx ≥ δε, indepen-

dent ofP .

Second solution: It will be a bit more convenient to as-
sumeP (0) = 1 (which we may achieve by rescaling
unlessP (0) = 0, in which case there is nothing to
prove) and to prove that there existsD > 0 such that∫ 1

−1
|P (x)| dx ≥ D, or even such that

∫ 1

0
|P (x)| dx ≥

D.

We first reduce to the case whereP has all of its roots
in [0, 1]. If this is not the case, we can factorP (x) as
Q(x)R(x), whereQ has all roots in the interval and
R has none. ThenR is either always positive or al-
ways negative on[0, 1]; assume the former. Letk be the

largest positive real number such thatR(x) − kx ≥ 0
on [0, 1]; then∫ 1

−1

|P (x)| dx =
∫ 1

−1

|Q(x)R(x)| dx

>

∫ 1

−1

|Q(x)(R(x)− kx)| dx,

andQ(x)(R(x)−kx) has more roots in[0, 1] than does
P (and has the same value at 0). Repeating this argu-
ment shows that

∫ 1

0
|P (x)| dx is greater than the cor-

responding integral for some polynomial with all of its
roots in[0, 1].

Under this assumption, we have

P (x) = c
1999∏
i=1

(x− ri)

for someri ∈ (0, 1]. Since

P (0) = −c
∏

ri = 1,

we have

|c| ≥
∏

|r−1
i | ≥ 1.

Thus it suffices to prove that ifQ(x) is amonicpolyno-
mial of degree 1999 with all of its roots in[0, 1], then∫ 1

0
|Q(x)| dx ≥ D for some constantD > 0. But the

integral of
∫ 1

0

∏1999
i=1 |x−ri| dx is a continuous function

for ri ∈ [0, 1]. The product of all of these intervals is
compact, so the integral achieves a minimum value for
someri. This minimum is the desiredD.

Third solution (by Abe Kunin): It suffices to prove the
stronger inequality

sup
x∈[−1,1]

|P (x)| ≤ C

∫ 1

−1

|P (x)| dx

holds for someC. But this follows immediately from
the following standard fact: any two norms on a finite-
dimensional vector space (here the polynomials of de-
gree at most 1999) are equivalent. (The proof of this
statement is also a compactness argument:C can be
taken to be the maximum of the L1-norm divided by
the sup norm over the set of polynomials with L1-norm
1.)

Note: combining the first two approaches gives a con-
structive solution with a constant that is better than that
given by the first solution, but is still far from optimal. I
don’t know offhand whether it is even known what the
optimal constant and/or the polynomials achieving that
constant are.
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A–6 Rearranging the given equation yields the much more
tractable equation

an

an−1
= 6

an−1

an−2
− 8

an−2

an−3
.

Let bn = an/an−1; with the initial conditionsb2 =
2, b3 = 12, one easily obtainsbn = 2n−1(2n−2 − 1),
and so

an = 2n(n−1)/2
n−1∏
i=1

(2i − 1).

To see thatn dividesan, factorn as2km, with m odd.
Then note thatk ≤ n ≤ n(n − 1)/2, and that there
existsi ≤ m − 1 such thatm divides2i − 1, namely
i = φ(m) (Euler’s totient function: the number of inte-
gers in{1, . . . ,m} relatively prime tom).

B–1 The answer is 1/3. LetG be the point obtained by re-
flecting C about the lineAB. Since∠ADC = π−θ

2 ,
we find that∠BDE = π − θ − ∠ADC = π−θ

2 =
∠ADC = π−∠BDC = π−∠BDG, so thatE,D,G
are collinear. Hence

|EF | = |BE|
|BC|

=
|BE|
|BG|

=
sin(θ/2)
sin(3θ/2)

,

where we have used the law of sines in4BDG. But by
l’H ôpital’s Rule,

lim
θ→0

sin(θ/2)
sin(3θ/2)

= lim
θ→0

cos(θ/2)
3 cos(3θ/2)

= 1/3.

B–2 First solution: Suppose thatP does not haven distinct
roots; then it has a root of multiplicity at least2, which
we may assume isx = 0 without loss of generality. Let
xk be the greatest power ofx dividing P (x), so that
P (x) = xkR(x) with R(0) 6= 0; a simple computation
yields

P ′′(x) = (k2−k)xk−2R(x)+2kxk−1R′(x)+xkR′′(x).

SinceR(0) 6= 0 andk ≥ 2, we conclude that the great-
est power ofx dividing P ′′(x) is xk−2. But P (x) =
Q(x)P ′′(x), and sox2 dividesQ(x). We deduce (since
Q is quadratic) thatQ(x) is a constantC timesx2; in
fact, C = 1/(n(n − 1)) by inspection of the leading-
degree terms ofP (x) andP ′′(x).
Now if P (x) =

∑n
j=0 ajx

j , then the relationP (x) =
Cx2P ′′(x) implies thataj = Cj(j − 1)aj for all j;
henceaj = 0 for j ≤ n − 1, and we conclude that
P (x) = anxn, which has all identical roots.

Second solution (by Greg Kuperberg): Letf(x) =
P ′′(x)/P (x) = 1/Q(x). By hypothesis,f has at most
two poles (counting multiplicity).

Recall that for any complex polynomialP , the roots of
P ′ lie within the convex hull ofP . To show this, it suf-
fices to show that if the roots ofP lie on one side of a

line, say on the positive side of the imaginary axis, then
P ′ has no roots on the other side. That follows because
if r1, . . . , rn are the roots ofP ,

P ′(z)
P (z)

=
n∑

i=1

1
z − ri

and if z has negative real part, so does1/(z − ri) for
i = 1, . . . , n, so the sum is nonzero.

The above argument also carries through ifz lies on the
imaginary axis, provided thatz is not equal to a root of
P . Thus we also have that no roots ofP ′ lie on the sides
of the convex hull ofP , unless they are also roots ofP .

From this we conclude that ifr is a root ofP which is
a vertex of the convex hull of the roots, and which is
not also a root ofP ′, thenf has a single pole atr (asr
cannot be a root ofP ′′). On the other hand, ifr is a root
of P which is also a root ofP ′, it is a multiple root, and
thenf has a double pole atr.

If P has roots not all equal, the convex hull of its roots
has at least two vertices.

B–3 We first note that∑
m,n>0

xmyn =
xy

(1− x)(1− y)
.

SubtractingS from this gives two sums, one of which
is ∑
m≥2n+1

xmyn =
∑

n

yn x2n+1

1− x
=

x3y

(1− x)(1− x2y)

and the other of which sums toxy3/[(1− y)(1−xy2)].
Therefore

S(x, y) =
xy

(1− x)(1− y)
− x3y

(1− x)(1− x2y)
− xy3

(1− y)(1− xy2)

=
xy(1 + x + y + xy − x2y2)

(1− x2y)(1− xy2)

and the desired limit islim(x,y)→(1,1) xy(1 + x + y +
xy − x2y2) = 3.

B–4 (based on work by Daniel Stronger) We make repeated
use of the following fact: iff is a differentiable func-
tion on all of R, limx→−∞ f(x) ≥ 0, andf ′(x) > 0
for all x ∈ R, thenf(x) > 0 for all x ∈ R. (Proof: if
f(y) < 0 for somex, thenf(x) < f(y) for all x < y
sincef ′ > 0, but thenlimx→−∞ f(x) ≤ f(y) < 0.)

From the inequalityf ′′′(x) ≤ f(x) we obtain

f ′′f ′′′(x) ≤ f ′′(x)f(x) < f ′′(x)f(x) + f ′(x)2

sincef ′(x) is positive. Applying the fact to the differ-
ence between the right and left sides, we get

1
2
(f ′′(x))2 < f(x)f ′(x). (1)
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On the other hand, sincef(x) andf ′′′(x) are both pos-
itive for all x, we have

2f ′(x)f ′′(x) < 2f ′(x)f ′′(x) + 2f(x)f ′′′(x).

Applying the fact to the difference between the sides
yields

f ′(x)2 ≤ 2f(x)f ′′(x). (2)

Combining (1) and (2), we obtain

1
2

(
f ′(x)2

2f(x)

)2

<
1
2
(f ′′(x))2

< f(x)f ′(x),

or (f ′(x))3 < f(x)3. We concludef ′(x) < 2f(x), as
desired.

Note: one can actually prove the result with a smaller
constant in place of 2, as follows. Adding12f ′(x)f ′′′(x)
to both sides of (1) and again invoking the original
boundf ′′′(x) ≤ f(x), we get

1
2
[f ′(x)f ′′′(x) + (f ′′(x))2] < f(x)f ′(x) +

1
2
f ′(x)f ′′′(x)

≤ 3
2
f(x)f ′(x).

Applying the fact again, we get

1
2
f ′(x)f ′′(x) <

3
4
f(x)2.

Multiplying both sides byf ′(x) and applying the fact
once more, we get

1
6
(f ′(x))3 <

1
4
f(x)3.

From this we deducef ′(x) < (3/2)1/3f(x) < 2f(x),
as desired.

I don’t know what the best constant is, except that it is
not less than 1 (becausef(x) = ex satisfies the given
conditions).

B–5 We claim that the eigenvalues ofA are 0 with mul-
tiplicity n − 2, and n/2 and−n/2, each with mul-
tiplicity 1. To prove this claim, define vectorsv(m),
0 ≤ m ≤ n − 1, componentwise by(v(m))k = eikmθ,

and note that thev(m) form a basis forCn. (If we ar-
range thev(m) into ann × n matrix, then the determi-
nant of this matrix is a Vandermonde product which is
nonzero.) Now note that

(Av(m))j =
n∑

k=1

cos(jθ + kθ)eikmθ

=
eijθ

2

n∑
k=1

eik(m+1)θ +
e−ijθ

2

n∑
k=1

eik(m−1)θ.

Since
∑n

k=1 eik`θ = 0 for integer̀ unlessn | `, we con-
clude thatAv(m) = 0 for m = 0 or for 2 ≤ m ≤
n − 1. In addition, we find that(Av(1))j = n

2 e−ijθ =
n
2 (v(n−1))j and (Av(n−1))j = n

2 eijθ = n
2 (v(1))j ,

so that A(v(1) ± v(n−1)) = ±n
2 (v(1) ± v(n−1)).

Thus{v(0), v(2), v(3), . . . , v(n−2), v(1) +v(n−1), v(1)−
v(n−1)} is a basis forCn of eigenvectors ofA with the
claimed eigenvalues.

Finally, the determinant ofI+A is the product of(1+λ)
over all eigenvaluesλ of A; in this case,det(I + A) =
(1 + n/2)(1− n/2) = 1− n2/4.

B–6 First solution: Choose a sequencep1, p2, . . . of primes
as follows. Letp1 be any prime dividing an element of
S. To definepj+1 givenp1, . . . , pj , choose an integer
Nj ∈ S relatively prime top1 · · · pj and letpj+1 be a
prime divisor ofNj , or stop if no suchNj exists.

SinceS is finite, the above algorithm eventually ter-
minates in a finite sequencep1, . . . , pk. Let m be the
smallest integer such thatp1 · · · pm has a divisor inS.
(By the assumption onS with n = p1 · · · pk, m = k
has this property, som is well-defined.) Ifm = 1, then
p1 ∈ S, and we are done, so assumem ≥ 2. Any di-
visor d of p1 · · · pm in S must be a multiple ofpm, or
else it would also be a divisor ofp1 · · · pm−1, contra-
dicting the choice ofm. But nowgcd(d,Nm−1) = pm,
as desired.

Second solution (fromsci.math ): Letn be the small-
est integer such thatgcd(s, n) > 1 for all s in n; note
thatn obviously has no repeated prime factors. By the
condition onS, there existss ∈ S which dividesn.

On the other hand, ifp is a prime divisor ofs, then by
the choice ofn, n/p is relatively prime to some element
t of S. Sincen cannot be relatively prime tot, t is di-
visible by p, but not by any other prime divisor ofn
(as those primes dividen/p). Thusgcd(s, t) = p, as
desired.
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