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Note that ifr(z) ands(z) are any two functions, then
max(r,s) = (r + s+ |r —s|)/2.

Therefore, ifF'(x) is the given function, we have

F(z) = max{—3z — 3,0} — max{5z,0} + 3z + 2
= (=3z -3+ 3z —3|)/2

— (5x + |bx|)/2 + 3z + 2
1

= |3z —3)/2| — |5z/2| —x + 3

so we may sef(z) = (3z — 3)/2, g(x) = 5z/2, and
h(z) = —x + %

First solution: First factop(z) = q(z)r(z), whereg
has all real roots and has all complex roots. Notice
that each root of; has even multiplicity, otherwisg
would have a sign change at that root. Ths) has a
square root(z).

Now write r(z) = H?Zl(x — a;)(z — @;) (possible
because has roots in complex conjugate pairs). Write
H§:1($ — a;) = t(x) + iu(x) with ¢,z having real
coefficients. Then fox real,

(Alternatively, one can factor(x) as a product of
quadratic polynomials with real coefficients, write each
as a sum of squares, then multiply together to get a sum
of many squares.)

Second solution: We proceed by induction on the de-
gree ofp, with base case whegehas degree 0. As in
the first solution, we may reduce to a smaller degree
in casep has any real roots, so assume it has none.
Thenp(xz) > 0 for all real z, and sincep(z) — oo

for  — oo, p has a minimum value. Now p(z) — ¢

has real roots, so as above, we deducejthat — c is

Define the sequencgb,} by by, = a2, +
a2, bopi1 = an(an_1+ ans1). Then
26271,-&-1 + b2y = 2anan+1 +2ap1a, + ai_l + ai

= 2a,an+1 + Qp_1an41 + a2

=apy +al =bano,
and similarly 2bs,, + b2,—1 = bapt1, SO that{b,}
satisfies the same recurrence {as,}. Since further
bp = 1,b; = 2 (where we use the recurrence far,, }

to calculaten_; = 0), we deduce that,, = a,, for all
n. In particulara? + a2 | = baypi2 = aznq2.

Second solution: Note that

1
1— 2z — 22

1 V2+1 N V2 -1
S22 \1-(1+vV2)z 1-(1-V2)=

and that

1 = n, .n
1T (0+v2)e = ngo(l +v2)"z",
so that
Gp = 27\1/5 <(\/§+ 1)n+1 _ (1 _ \/i)n—&-l) )

A simple computation (omitted here) now shows that
2 2 —
a, + a1 = A2n42.

Third solution (by Richard Stanley): Let be the ma-
trix (2 ;) A simple induction argument shows that

An+2 _ an an+1
Ap4+1 An42 '
The desired result now follows from comparing the top
left corner entries of the equality? 2 An+2 = A2n+4,

a sum of squares. Now add one more square, namelya—4 Denote the series b, and leta,, = 3" /n. Note that

(v/¢)?, to getp(z) as a sum of squares.

First solution: Computing the coefficientgf+! in the
identity (1 — 2z — 22)>"°_  a,,z™ = 1 yields the
recurrencen,, 1 = 2a, + a,—1; the sequencga,, }

is then characterized by this recurrence and the initial

conditionsag = 1,a; = 2.
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where the second equality follows by interchanging

andn. Thus
1 1
28 = +
; ; (am(am + an) ap (am + an))

1
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and we conclude that = 9/32.

A-5 First solution: (by Reid Barton) Let, ..., 1999 b€
the roots of P. Draw a disc of radiug around each
r;, wheree < 1/3998; this disc covers a subinterval of
[—1/2,1/2] of length at mosBe, and so of the 2000 (or
fewer) uncovered intervals ip-1/2,1/2], one, which
we callZ, has length at leagt= (1—3998¢)/2000 > 0.
We will exhibit an explicit lower bound for the integral
of |P(x)|/P(0) over this interval, which will yield such
a bound for the entire integral.
Note that

LGOI Ty
PO~ LI

Also note that by constructionz — r;| > e for each
x € I.If |r;] <1, then we havé“";—ﬁi' >e lf jry| > 1,
then '

|z — 7]
7]

We conclude thatf, |[P(z)/P(0)|dz > de, indepen-
dent of P.

Second solution: It will be a bit more convenient to as-
sumeP(0) = 1 (which we may achieve by rescaling
unlessP(0) = 0, in which case there is nothing to
prove) and to prove that there exidls > 0 such that

f_ll |P(x)|dz > D, or even such thafo1 |P(x)|dx >

We first reduce to the case whefehas all of its roots
n [0,1]. If this is not the case, we can factB¥(z) as
Q(z)R(z), where@ has all roots in the interval and
R has none. TherR is either always positive or al-
ways negative ofp, 1]; assume the former. Létbe the

=1—a/ri| >1—|z/ri| >2=1/2 > €.

largest positive real number such thatz) — kz > 0
on [0, 1]; then

/ 11 P@)]ds = [ 11 Qa)R(x)| do

> / Q@) (R(x) — k)| d,

-1

andQ(z)(R(x) — kx) has more roots if0, 1] than does

P (and has the same value at 0). Repeating this argu-
ment shows tha\tfo1 |P(x)|dx is greater than the cor-
responding integral for some polynomial with all of its
roots in[0, 1].

Under this assumption, we have

1999

P(z)=c H (x —1ry)
i=1
for somer; € (0, 1]. Since

P(0) = —cHri =1,

we have
el > T =1

Thus it suffices to prove that @ (x) is amonicpolyno-
mial of degree 1999 with all of its roots i, 1], then

fol |Q(x)|dz > D for some constanb > 0. But the
integral offo1 Hﬁﬂg | —r;| dx is a continuous function

1
for r; € [0,1]. The product of all of these intervals is
compact, so the integral achieves a minimum value for

somer;. This minimum is the desiref.

Third solution (by Abe Kunin): It suffices to prove the
stronger inequality

1
sup |P(x)] < C’/ |P(z)|dx
z€[—1,1] -1

holds for some”'. But this follows immediately from
the following standard fact: any two norms on a finite-
dimensional vector space (here the polynomials of de-
gree at most 1999) are equivalent. (The proof of this
statement is also a compactness arguméhtan be
taken to be the maximum of the L1-norm divided by
the sup norm over the set of polynomials with L1-norm
1)

Note: combining the first two approaches gives a con-
structive solution with a constant that is better than that
given by the first solution, but is still far from optimal. |
don’t know offhand whether it is even known what the
optimal constant and/or the polynomials achieving that
constant are.



A-6 Rearranging the given equation yields the much more

tractable equation

G, Gp—1 ap—2

=6 -8

An—1 Gp—2 ap—3

Let b, = an/a,—1; With the initial conditionsb, =
2,b3 = 12, one easily obtaing, = 2"~1(2"=2 — 1),
and so

n—1

ay = 2n(n71)/2 H(2Z . 1)
i=1

To see that dividesa,,, factorn as2¥m, with m odd.
Then note thak < n < n(n — 1)/2, and that there
existsi < m — 1 such thatn divides2’ — 1, namely

i = ¢(m) (Euler’s totient function: the number of inte-
gersin{l,...,m} relatively prime tom).

B—1 The answer is 1/3. L&¥ be the point obtained by re-

flecting C about the lineAB. SinceZADC = =32,
we find that/BDE = = — 6 — ZADC = =3¢ —
/ADC =n—/BDC =n—/BDG, sothatE, D, G
are collinear. Hence

|BE| _|BE| _ sin(6/2)

EF| = = =
EF| |BC| |BG| sin(36/2)’

where we have used the law of sinedB DG. But by
I'H dpital’s Rule,

sin(6/2)

im cos(0/2)
§—0 sin(36/2)

620 3cos(360/2)

=1/3.

B—2 First solution: Suppose th& does not have distinct

roots; then it has a root of multiplicity at lea&twhich
we may assume ig = 0 without loss of generality. Let

line, say on the positive side of the imaginary axis, then
P’ has no roots on the other side. That follows because
if r1,...,r, are the roots oP,

P'(z) G|

P(z) Z z—r;
=1

and if z has negative real part, so doe&z — ;) for

1=1,...,n,so the sum is nonzero.

The above argument also carries throughlies on the

imaginary axis, provided thatis not equal to a root of
P. Thus we also have that no rootsiflie on the sides
of the convex hull ofP, unless they are also roots Bt

From this we conclude that if is a root of P which is

a vertex of the convex hull of the roots, and which is
not also a root of”’, then f has a single pole at(asr
cannot be a root aP”’). On the other hand, if is a root

of P which is also a root of”’, it is a multiple root, and
thenf has a double pole at

If P has roots not all equal, the convex hull of its roots
has at least two vertices.

B—3 We first note that

m, n __ xy
2 = iy

m,n>0
SubtractingS' from this gives two sums, one of which
is

x2n+1 3

m.n __ n . 7y
Z v —;y -2  (1—2)(1—a22y)

m>2n+1

and the other of which sums tg;3 /[(1 — y)(1 — zy?)].
Therefore

2* be the greatest power of dividing P(z), so that 3

P(x) = 2 R(z) with R(0) # 0; a simple computation

_ ry _ z’y - et
S(z,y) = (1—2)(1—y) (1—2)(1 — 22y) (1-y(1

yields
P"(z) = (K*~k)a* 2 R(2)+2ka" "' R (x)+2"R" ().

SinceR(0) # 0 andk > 2, we conclude that the great-
est power ofr dividing P”(z) is =2, But P(z) =
Q(x)P"(z), and sar? dividesQ(x). We deduce (since
Q is quadratic) that)(z) is a constant” timesz?; in
fact, C = 1/(n(n — 1)) by inspection of the leading-
degree terms oP(x) and P (z).

Now if P(z) = 377, a7, then the relatiorP(z) =
Cz?P"(x) implies thata; = Cj(j — 1)a; for all j;
hencea; = 0 for j < n — 1, and we conclude that
P(z) = ana™, which has all identical roots.

Second solution (by Greg Kuperberg): Létx) =
P"(z)/P(z) = 1/Q(x). By hypothesisf has at most
two poles (counting multiplicity).

Recall that for any complex polynomial, the roots of
P’ lie within the convex hull ofP. To show this, it suf-
fices to show that if the roots dP lie on one side of a

2y(l+ x4y + ay — 2%y?)
(1 —a?y)(1 - zy?)
and the desired limit iSm, )1, 2y(1 + 2 +y +
zy — 2?y?) = 3.

B—4 (based on work by Daniel Stronger) We make repeated

use of the following fact: iff is a differentiable func-
tion on all of R, lim, o f(z) > 0, and f'(z) > 0

for all z € R, thenf(z) > 0 for all z € R. (Proof: if

f(y) < 0 for somez, thenf(z) < f(y) forallz < y

sincef’ > 0, but thenlim,. _, ., f(z) < f(y) <0.)

From the inequality/””’(z) < f(x) we obtain

17" (@) < (@) f(z) < f(2)f(z) + f(2)?

since f'(x) is positive. Applying the fact to the differ-
ence between the right and left sides, we get

S@) < f@) (@), &



On the other hand, sing&z) and f””'(x) are both pos-
itive for all z, we have

2f" ()" (z) < 2f"(2) f" () + 2f (2) [ ().

Applying the fact to the difference between the sides
yields

f'(@)? <2f(2) " (2). )
Combining (1) and (2), we obtain
L@\ 1,
» (570) <307
< f(@)f'(2),

or (f'(z))® < f(x)®. We concludef’(z) < 2f(x), as
desired.

Note: one can actually prove the result with a smaller
constant in place of 2, as follows. Addidg”’ (z) f" ()

to both sides of (1) and again invoking the original
boundf”'(z) < f(x), we get

S @) @)+ (7)) < F@)F (@) + 550" (@)

2
3 /
if(l")f ().

IN

Applying the fact again, we get

1 1o £ § 2

SI@)f (@) < S f(@)
Multiplying both sides byf’(x) and applying the fact
once more, we get

Lowys_ Lo \a

S (@) < @)

From this we deducg’(z) < (3/2)Y/3f(x) < 2f(z),

as desired.

| don’t know what the best constant is, except that it is

not less than 1 (becaugéx) = e satisfies the given
conditions).

B-5 We claim that the eigenvalues df are 0 with mul-

tiplicity n — 2, andn/2 and —n/2, each with mul-
tiplicity 1. To prove this claim, define vectors™),
0 < m < n — 1, componentwise byu("™)), = e*m0,

and note that the(™ form a basis forC". (If we ar-
range thev™) into ann x n matrix, then the determi-
nant of this matrix is a Vandermonde product which is
nonzero.) Now note that

(Avm)y; = Z cos(j0 + k@)e'kmo
k=1

n —

eid? Z ik(m+1)0 | € Wi ik(m—1)0
== ) ML ——— % MMl
2 k=1 2 k=1

Since)",_, e*** = 0 for integer? unlessn | ¢, we con-
clude thatAv(™) = 0form = Oorfor2 < m <
n — 1. In addition, we find thafAv(V); = Ze=40 =
2(0™m=D); and (Av("Y); = Zelf = Z(yD),,
so that A(v™® £ vy = £2(uM L pn=D),
Thus{v©) v G p=2) 1) 4 g(n=1) (1) _
v(»~1} is a basis folC™ of eigenvectors ofl with the
claimed eigenvalues.

Finally, the determinant af+ A is the product of14-)\)
over all eigenvalues of A; in this casedet(l + A) =
(1+1/2)(1 —n/2) =1—n2/4.

vl

First solution: Choose a sequengep., . .. of primes
as follows. Letp; be any prime dividing an element of
S. To definep; 1 givenp,,...,p;, choose an integer
NJ_’ € S_ r_elatively prime topy -+ - p; and Iet_pj+1 be a
prime divisor ofN;, or stop if no suchV; exists.

Since S is finite, the above algorithm eventually ter-
minates in a finite sequengs, ..., px. Letm be the
smallest integer such that - - - p,,, has a divisor inS.
(By the assumption o8 withn = py---pg, m = k
has this property, so is well-defined.) Ifm = 1, then
p1 € S, and we are done, so assume> 2. Any di-
visor d of p; - - - p,, in S must be a multiple op,,,, or
else it would also be a divisor of; - - - p,,_1, contra-
dicting the choice ofn. But nowged(d, Np,—1) = pm,
as desired.

Second solution (froraci.math ): Letn be the small-
est integer such thafd(s,n) > 1 for all s in n; note
thatn obviously has no repeated prime factors. By the
condition on$, there exists € S which dividesn.

On the other hand, if is a prime divisor ofs, then by
the choice oh, n/p is relatively prime to some element
t of S. Sincen cannot be relatively prime tg ¢ is di-
visible by p, but not by any other prime divisor of
(as those primes divide/p). Thusged(s,t) = p, as
desired.



