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By differentiating P,(z)/(z* — 1)"*+1, we find that
Py () = (" = 1)P,(2) — (n+1)ka* =1 P, (); sub-
stitutingz = 1 yields P, 11(1) = —(n + 1)kP,(1).

Since Py(1) = 1, an easy induction give®, (1) =
(—k)™n! foralln > 0.

Note: one can also argue by expanding in Taylor series
aroundl. Namely, we have
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Draw a great circle through two of the points. There are
two closed hemispheres with this great circle as bound-
ary, and each of the other three points lies in one of
them. By the pigeonhole principle, two of those three
points lie in the same hemisphere, and that hemisphere
thus contains four of the five given points.

Note: by a similar argument, one can prove that among
anyn-3 points on am-dimensional sphere, some-2

of them lie on a closed hemisphere. (One cannot get by
with only n + 2 points: put them at the vertices of a reg-
ular simplex.) Namely, any of the points lie on a great
sphere, which forms the boundary of two hemispheres;
of the remaining three points, some two lie in the same
hemisphere.

Note that each of the sefd},{2},...,{n} has the
desired property. Moreover, for each setwith in-
teger averagen that does not contaim, S U {m}
also has average:, while for each sef’ of more than
one element with integer average that containsn,
T\{m} also has average. Thus the subsets other than
{1},{2},...,{n} can be grouped in pairs, 99, — n is
even.

A4 (partly due to David Savitt) Player O wins with opti-

mal play. In fact, we prove that Player 1 cannot prevent
Player 0 from creating a row of all zeroes, a column of
all zeroes, or @ x 2 submatrix of all zeroes. Each of
these forces the determinant of the matrix to be zero.

Fori,j = 1,2,3, let A;; denote the position in row
and columnj. Without loss of generality, we may as-
sume that Player 1's first move is df,. Player O then
plays atAss:
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After Player 1's second move, at least oneff; and
Aso remains vacant. Without loss of generality, assume
Ass remains vacant; Player 0 then plays there.

After Player 1's third move, Player 0 wins by playing at
Ao, if that position is unoccupied. So assume instead
that Player 1 has played there. Thus of Player 1's three
moves so far, two are at;; andA,;. Hence fori equal

to one of 1 or 3, and foj equal to one of 2 or 3, the
following are both true:

(a) The2 x 2 submatrix formed by rows 2 andand
by columns 2 and 3 contains two zeroes and two
empty positions.

(b) Columnj contains one zero and two empty posi-
tions.

Player O next plays at;;. To prevent a zero column,
Player 1 must play in colump, upon which Player 0
completes the x 2 submatrix in (a) for the win.

Note: one can also solve this problem directly by mak-
ing a tree of possible play sequences. This tree can be
considerably collapsed using symmetries: the symme-
try between rows and columns, the invariance of the
outcome under reordering of rows or columns, and the
fact that the scenario after a sequence of moves does
not depend on the order of the moves (sometimes called
“transposition invariance”).

Note (due to Paul Cheng): one can reduce Determi-
nant Tic-Tac-Toe to a variant of ordinary tic-tac-toe.
Namely, consider a tic-tac-toe grid labeled as follows:

A
Ao
Aszp

Ago
Az
A1z

Ass
A1
Ao
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Then each term in the expansion of the determinant oc-
curs in a row or column of the grid. Suppose Player
1 first plays in the top left. Player 0 wins by playing
firstin the top row, and second in the left column. Then
there are only one row and column left for Player 1 to
threaten, and Player 1 cannot already threaten both on
the third move, so Player 0 has time to block both.

It suffices to prove that for any relatively prime positive
integersr, s, there exists an integer with a,, = r and
ant+1 = s. We prove this by induction on+ s, the case

r + s = 2 following from the fact thatig = a1 = 1.
Givenr ands not both 1 withged(r, s) = 1, we must
haver # s. If » > s, then by the induction hypothesis
we havea,, = r — s anda, ;1 = s for somen; then
Gonio = 1T andas, 3 = s. If r < s, then we have
an = r anda,1 = s — r for somen; thenas, 1 = r
andagn+2 = S.

Note: a related problem is as follows. Starting with the
sequence
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repeat the following operation: insert between each pair

2 and{ the pairgjg. Prove that each positive rational
number eventually appears.

Observe that by induction, i and  are consecutive
terms in the sequence, théa — ad = 1. The same
holds for consecutive terms of theth Farey sequenge
the sequence of rational numbergin1] with denomi-
nator (in lowest terms) at most

The sum converges fdr = 2 and diverges fob > 3.
We first consideb > 3. Suppose the sum converges;
then the fact thaf (n) = nf(d) wheneveh?—! < n <

b? — 1 yields

d

o
Ju

=1 |
- - 1)
; f(d n=>bd—1 n

1
2wy

However, by comparing the integral bfx with a Rie-
mann sum, we see that
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= logb,

wherelog denotes the natural logarithm. Thus (1) yields
f:l
2 f(n

a contradiction sincivg b > 1 for b > 3. Therefore the
sum diverges.

B1 The probability is1/99.

Forb = 2, we have a slightly different identity because
f(2) # 2f(2). Instead, for any positive integér we
have
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Again comparing an integral to a Riemann sum, we see
that ford > 3,
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Putc = 8+10g2&ndL—1+ + = (1 3 Then we can

prove thatzn 1 f( ; < Lforalli > 2 by induction

oni. The case = 2 is clear. For the induction, note
that by (2),
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as desired. We conclude tha} -, f( y convergesto a

limit less than or equal td..

Note: the above argument proves that the sunb fer2

is at mostL < 2.417. One can also obtain a lower
bound by the same technique, namlalsy + W
with ¢/ = log2. This bound exceed$043. (By con-
trast, summing the first 100000 terms of the series only
yields a lower bound 0f.906.) Repeating the same ar-
guments withi > 4 as the cutoff yields the upper bound
2.185 and the lower bound.079.

In fact, we show by induc-
tion onn that aftern shots, the probability of having
made any number of shots fromto n — 1 is equal to

1/(n —1). This is evident fom = 2. Given the result
for n, we see that the probability of makinghots after

n + 1 attempts is

e

1
’fl,

as claimed.



B2 (Note: the problem statement assumes that all polyhe-

dra are connected and that no two edges share more than
one face, so we will do likewise. In particular, these are
true for all convex polyhedra.) We show that in fact
the first player can win on the third move. Suppose the
polyhedron has a faca with at least four edges. If the
first player plays there first, after the second player’s
first move there will be three consecutive faégs”, D
adjacent tod which are all unoccupied. The first player
wins by playing inC; after the second player’s second
move, at least one @B and D remains unoccupied, and
either is a winning move for the first player.

It remains to show that the polyhedron has a face with at
least four edges. (Thanks to Russ Mann for suggesting
the following argument.) Suppose on the contrary that
each face has only three edges. Starting with any face
Fy with verticesvy, vo, v3, let vy be the other endpoint

of the third edge out of;,. Then the faces adjacentkg
must have vertices;, v, v4; v1,v3,v4;, anduvs, v3, v4.
Thus vy, vs,v3,v4 form a polyhedron by themselves,
contradicting the fact that the given polyhedron is con-
nected and has at least five vertices. (One can also de-
duce this using Euler's formuld — E + F = 2 — 2g,
whereV, E| F' are the numbers of vertices, edges and
faces, respectively, angd is the genus of the polyhe-
dron. For a convex polyhedrop,= 0 and you get the
“usual” Euler’s formula.)

Note: Walter Stromquist points out the following coun-
terexample if one relaxes the assumption that a pair of
faces may not share multiple edges. Take a tetrahedron
and remove a smaller tetrahedron from the center of an
edge; this creates two small triangular faces and turns
two of the original faces into hexagons. Then the sec-
ond player can draw by signing one of the hexagons,
one of the large triangles, and one of the small trian-
gles. (He does this by “mirroring”: wherever the first
player signs, the second player signs the other face of
the same type.)

B3 The desired inequalities can be rewritten as
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By taking logarithms, we can rewrite the desired in-
equalities as
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Rewriting these in terms of the Taylor expansion of
—log(1—x), we see that the desired result is also equiv-
alent to
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which is evident because the inequalities hold term by
term.

Note: David Savitt points out that the upper bound can
be improved froml/(ne) to 2/(3ne) with a slightly
more complicated argument. (In fact, for any- 1/2,
one has an upper bound©f(ne), but only forn above

a certain bound depending or)

B4 Use the following strategy: gue$s3, 4,6,7,9,... un-

til the target number is revealed to be equal to or lower
than one of these guessesnli 1 (mod 3), it will be
guessed on an odd turn. /f = 0 (mod 3), it will be
guessed on an even turnsf= 2 (mod 3), thenn +1

will be guessed on an even turn, forcing a guess of
the next turn. Thus the probability of success with this
strategy is1335/2002 > 2/3.

Note: for any positive integem, this strategy wins
when the number is being guessed fréhym] with
probability 1 | 271 | We can prove that this is best
possible as follows. Let,, denotem times the proba-
bility of winning when playing optimally. Also, leb,,
denotem times the corresponding probability of win-
ning if the objective is to select the number in an even
number of guesses instead. (For definiteness, extend the
definitions to incorporate, = 0 andby = 0.)

We first claim thati,,, = 1+maxi<p<m{bk—1+bm—k}
andb,, = maxlgkgm{ak_l + @i} form > 1. To
establish the first recursive identity, suppose that our
first guess is some integér We automatically win if

n = k, with probability 1/m. If n < k, with proba-
bility (kK — 1)/m, then we wish to guess an integer in
[1,k — 1] in an even number of guesses; the probabil-
ity of success when playing optimallybg_, /(k — 1),

by assumption. Similarly, i < k, with probability

(m —k)/m, then the subsequent probability of winning
iS by—k/(m — k). In sum, the overall probability of
winning if k is our first guess i§1 + by 1 + by —i ) /M.

For optimal strategy, we choogesuch that this quan-
tity is maximized. (Note that this argument still holds
if Kk =1ork = m, by our definitions ofag andby.)
The first recursion follows, and the second recursion is
established similarly.

We now prove by induction that,, = |(2m + 1)/3]
andb,,, = [2m/3] for m > 0. The inductive step relies
on the inequality|z| + |y| < [z + y], with equal-
ity when one ofz, y is an integer. Now suppose that
a; = [(2¢ +1)/3] andb; = |2i/3] fori < m. Then

14 beoy +bpp =1+ {2(]“3 UJ n V(mg k)J
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and similarlyax—1 + am—r < [(2m + 1)/3], with

equality in both cases attained, e.g., whiea- 1. The
inductive formula fora,,, andb,,, follows.




B5 (due to Dan Bernstein) Puv = 2002!.

Then for
d = 1,...,2002, the numberN? written in baseb =
N/d — 1 has digitsd?, 2d?, d*. (Note that these really
are digits becaus®(2002)? < (2002!)2/2002 — 1.)

Note: one can also produce an integewhich has base
b digits 1, x, 1 for n different values of, as follows.
Choosec with 0 < ¢ < 2'/™. Form a large positive
integer, putN = 1+ (m+1)--- (m-+n)|em|"2. For
m sufficiently large, the bases

N-1

b= = [[m+3)

n—2
(m+i)m o

fori = 1,...,n will have the properties thaV = 1
(mod b) andb? < N < 2b* for m sufficiently large.

Note (due to Russ Mann): one can also give a “noncon-
structive” argument. LelV be a large positive integer.
Forb € (N2, N3), the number of 3-digit basepalin-
dromes in the rang@?, N — 1] is at least

N6_2 N6
{ bJ_1> b,

b =2

since there is a palindrome in each inter{fd, (k +
1)b—1] for k = b,...,b% — 1. Thus the average num-
ber of bases for which a number ji, N¢ — 1] is at
least

N3-1

% > (Z\gﬁ—b 2>Zlog(N)—c

b=N2+1

for some constant > 0. TakeN so that the right side
exceed=002; then at least one number ji, N¢ — 1]
is a baseér palindrome for at least 2002 valuestof

B6 We prove that the determinant is congruent mogtio

p—1
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We first check that
p—1
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Since both sides are homogeneous as polynomiats in
andy, it suffices to check (4) fox = 1, as a congru-
ence between polynomials. Now note that the right side
has0,1,...,p — 1 as roots modul®, as does the left

side. Moreover, both sides have the same leading coef-
ficient. Since they both have degree oplythey must
then coincide.

We thus have
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which is precisely the desired determinant.

Note: a simpler conceptual proof is as follows. (Ev-
erything in this paragraph will be module) Note
that for any integers, b, ¢, the column vectofax +

by + cz, (ax + by + c2)P, (ax + by + cz)pQ] is alinear
combination of the columns of the given matrix. Thus
azx+by+cz divides the determinant. In particular, all of
the factors of (3) divide the determinant; since both (3)
and the determinant have degy€e+ p + 1, they agree

up to a scalar multiple. Moreover, they have the same
coefficient Of,zp2yp:r (since this term only appears in
the expansion of (3) when you choose the first term in
each factor). Thus the determinant is congruent to (3),
as desired.

Either argument can be used to generalize to a corre-
spondingn x n determinant, called a Moore determi-
nant; we leave the precise formulation to the reader.
Note the similarity with the classical Vandermonde de-
terminant: ifA is then x n matrix with A;; = =z for
1,j=0,...,n—1,then

det(A) =

H (xj — m;).

1<i<j<n



