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=f F((x )+ -+ —2H 7 =0

where the last equality is a consequence of the fundamental theorem of calculus, Of ﬂ-u
two, only 3 i has a dx’ in it, and that part is

((x =2+ (= ¥V + (2= V)P - XYz - 2hdy’
&

?@ : et dx' =0

— — x'=0.

e 9 ((x = x)2 + (v = y)? + (2 — 2)H)?

The term involving dy’ is treated similarly. The conclusion follows.

Remark. The linking number is, in fact, an integer, which measures the number of nm
the curves wind around each other. It was defined by C.F. Gauss, who used it to declde

based on astronomical observations, whether the orbits of certain asteroids were w1ndmg
around the orbit of the earth. ~

535. Plugging in x = y, we find that f(0) = 0, and plugginginx = -1,y =0, we ﬁnc
that f(1) = — f(—1). Also, plugginginx =a,y = l,and thenx = a, y = —1, wc
obtain :

f@ -1 =@—-D(fa)+ f)).
f@®—=1)=(a+ D) (f(a) — f(1)).

Equating the right-hand sides and solving for f (a) gives f(a) = f(1)a forall a.
So any such function is linear. Conversely, a function of the form f(x) = kx cleaﬂ)

satisfies the equation.
(Korean Mathematical Olympiad, 2000)

536. Replace z by 1 — z to obtain
fA-2+U-2)f@x) =2~z

Combine this with f(z) + zf (1 — z) = 1 + z, and eliminate f(1 — z) to obtain
(l—z+2)f(z)=1-z+7%

Hence f(z) = 1 for all z except maybe for z = e¥"/*, when 1 — z + z? = 0. For
a=e"? a@=a’=1—a;hence f(a) +af(@) = | + a. We therefore have only oné
constraint, namely f(&) = [l +« — f(a)]/a =& + | — @ f («). Hence the solution ¢
the functional equation is of the form &

f(z)=1 forz# ™3,
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f(e™?) =B,
fle™ ™Y =a+1-ap,

where 8 is an arbitrary complex parameter.
(20th W.L. Putnam Competition, 1959)

537. Successively, we obtain

fen =i (-3)=r(-5) == fim s (-3)=ro.

Hence f(x) = f(0) forx € {0, =1, —%,..., =%, ... }.
Ifx#0,-1,..., —%, ..., replacing x by 5+ in the functional equation, we obtain

x ) =R
() () o

And this can be iterated to yield

X
f(l—_'_n;)=f(X), n=123....

Because f is continuous at O it follows that

. X _
f(x)= lim f (T—) = f(0).

1l +nx
This shows that only constant functions satisfy the functional equation.
538. Plugging inx =t,y = 0,z = 0 gives
f@O+ fO)+ f@) 23f@),

or f(0) > f(¢) for all real numbers ¢. Plugginginx = §,y=5,z=—

f@®)+ fO)+ f(0) = 3£(0),

or f(t) > f(0) for all real numbers . Hence f(t) = f(0) for all ¢, so f must be
constant. Conversely, any constant function f clearly satisfies the given condition.
(Russian Mathematical Olympiad, 2000)

539. No! In fact, we will prove a more general result.
Proposition. Let S be a set and g : S — S a function that has exactly two fixed points

{a, b} and such that g o g has exactly four fixed points {a, b, c,d}. Then there is no
function f : S — Ssuchthat g = f o f.

Besva el
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Proof. Let g(c) = y. Then ¢ = g(g(c)) = g(y); hence y = g(c) = g(g(y)). Thus yi
a fixed pointof g o g. If y = a, thena = g(a) = g(y) = ¢, leading to a contradiction
Similarly, y = b forces ¢ = b. If y = ¢, then ¢ = g(y) = g(¢), so ¢ is a fixed point o
g, again a contradiction. It follows that y = d, i.e., g(c) = d, and similarly g(d) = ¢.

Suppose there is f : § — Ssuchthat fo f =g. Then fog= fo fof =gof
Then f(a) = f(g(a)) = g(f(a)),so f(a) is a fixed point of g. Examining case by
case. we conclude that f({a.b}) C {a,b}and f({a.b.c.d}) C {a.b.c.d). Becaus
f o f = g. the inclusions are, in fact, equalities.

Consider f(c). If f(¢) = a, then f(a) = f(f(c)) = g(c) = d, a contradictior
since f(a) isin {a, b}. Similarly, we rule out f(c¢) = b. Of course, ¢ is not a fixed poin
of f, since it is not a fixed point of g. We are left with the only possibility f(c) = d
But then f(d) = f(f(c)) = g(c) = d, and this again cannot happen because d is not ¢
fixed point of g. We conclude that such a function f cannot exist.

In the particular case of our problem, g(x) = x> — 2 has the fixed points —1 anc
2, and g(g(x)) = (x? = 2)* — 2 has the fixed points —1,2, =25 and =1=5  p;
completes the solution. i i

(B.J. Venkatachala, Functional Equations: A Problem Solving Approach. Prism
Books PVT Ltd., 2002)

540. The standard approach is to substitute particular values for x and v. The solutior
found by the student S.P. Tungare does quite the opposite. It introduces an additional
variable z. The solution proceeds as follows:

flx+y+2)
= f(x)f(y +2) —csinxsin(y + z)
= fOLf () f(2) —csinysinz] — ¢sinx sin ycosz — ¢ sinx cos ysin g

= f(x)f(¥)f(2) —cf(x)sinysinz — ¢sin x sin y cos 7 — ¢ sin x cos ysin Z.
Because obviously f(x + y +2) = f(y +x + z), it follows that we must have
sinz[ f(x)siny — f(y)sinx] = sin z[cos.x sin y — cos y sin x].
Substitute z = 3 to obtain
f(x)siny — f(y)sinx = cosxsin v — cos vsin x.

For x = 7 and y not an integer multiple of 77, we obtain sin v[ f(;t) + 1] = 0, and hence
flmy=-1

Then, substituting in the original equation x = v = 5 yields

rm=1r(3)]-«
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whence f(3) = +vc— 1. Substituting in the original equation y = 7 we also obtain
f(x +m) = —f(x). We then have

—f(x)=f(x+7'!)=f<X+%)f(%)—ccosx

=f (%) (f(x)f (%) - csinx) —ccosx,

whence

fx) [(f (g)) - 1] —cf (%) sinx — ccos x.

It follows that f(x) = f(%) sinx + cosx. We find that the functional equation has two
solutions, namely,

f(x) =+vc—lsinx +cosx and f(x)=—=Vc—1sinx + cos x.

(Indian Team Selection Test for the International Mathematical Olympiad, 2004)

541. Because | f| is bounded and is identically equal to zero, its supremum is a positive
number M. Using the equation from the statement and the triangle inequality, we obtain
that for any x and y,

27 NgM = [f(x +y) + f(x — y)]
S+ +HI1f(x =y <2M.

Hence

gl = o

gl = .

Lf (o)

If in the fraction on the right we take the supremum of the denominator, we obtain
lg)| < % =1 forall y, as desired.

Remark. The functions f(x) = sin x and 8(x) = cos x are an example.
(14th International Mathematical Olympiad, 1972)

542. Substituting for f a linear function ax + b and using the method of undetermined

coefficients, we obtaina = 1, b = —%, 80 f(x)=x — % is a solution.
Are there other solutions? Setting g(x) = f(x) — (x — %), we obtain the simpler

functional equation
3g(2x + 1) = g(x), forallx € R.

This can be rewritten as
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| -1
gx) = ~2:g (x > ) , forallx e R.
For x = —1 we have g(—1) = %g(—l); hence g(—1) = 0. In general, for an arbitrary
x, define the recursive sequence xo = x, Xpy) = ""2" L for n > 0. It is not hard to

see that this sequence is Cauchy, for example, because [Xman — Xm] < 2,,%5 max(1, |x|).
This sequence is therefore convergent, and its limit L satisfies the equation L = % It

follows that L = —1. Using the functional equation, we obtain
1 | 1
glx) = 380 = §g(xz) == 380).

Passing to the limit, we obtain g(x) = 0. This shows that fx)=x— % is the unique
solution to the functional equation.

(B.J. Venkatachala, Functional Equations: A Problem Solving Approach, Prism
Books PVT Ltd., 2002)

543. We will first show that f(x) > x for all x. From (i) we deduce that f(3x) > 2x,
so f(x) > 2—3* Also, note that if there exists k£ such that f(x) > kx for all x, then
fx) > E%x for all x as well. We can iterate and obtain f(x) > k,x, where k, are the
terms of the recursive sequence defined by k, = %, and k,,, = 153;—2 fork > 1. Let us

examine this sequence.
By the AM-GM inequality,

B+1P+13
Knit = _"_+_3L_ >k,

so the sequence is increasing. Inductively we prove that k, < 1. Weierstrass’ criterion
implies that (k,), is convergent. Its limit L should satisfy the equation

P42

=5

which shows that L is a root of the polynomial equation L2 — 3L + 2 = 0. This equation
has only one root in [0, 1], namely L = 1. Hence lim,_, ok, = 1, and so f(x) > x for

L

“all x.

It follows immediately that f(3x) > 2x + f(x) for all x. Iterating, we obtain that
foralln > 1,

f@') = fx) 23" - D

Therefore, f(x) — x < f(3"x) — 3"x. If we let n — o0 and use (ii), we obtain
f(x) —x <0, thatis, f(x) < x. We conclude that f(x) = x for all x > 0. Thus the
identity function is the unique solution to the functional equation.

(G. Dospinescu)
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544. We should keep in mind that f(x) = sinx and g(x) = cosx satisfy the condition.
As we proceed with the solution to the problem, we try to recover some properties of sin x
and cos x. First, note that the condition f(r) = 1 and g(t) = O for some ¢ # 0 implies
g(0) = 1: hence g is nonconstant. Also, 0 = g(r) = g(0)g(t) + FOf@) = fO0),
hence f is nonconstant. Substituting x = 0 in the relation yields g(—y) = g(y),s0 g

is even.
Substituting y = ¢, we obtain g(x — ) = f(x), with its shifted version f(x +1t) =
g(x). Since g is even, it follows that f(—x) = g(x +1). Now letus combine these facts

to obtain
fx—v=gx—y—-1=g@gly+n+ f)fy+1)
= g() f(=y) + fx)g(y).
Change y to —y to obtain f(x +y) = f(x)g(y) + g(x) f(y) (the addition formula

for sine).
The remaining two identities are consequences of this and the fact that f is odd. Let

us prove this fact. From g(x — (—=y)) = gx +y) = g(—x —y), we obtain
FQ (=)= fWf(=x)

forall x and y in R. Setting y = ¢ and x = — yields f(=t)? = 1,50 f(—t) = £1. The
choice f(—t) = 1 gives f(x) = f(x) f(=1) = f(=x)f(t) = f(—x);hence f is even.
But then

fx—y)= f(x)g(=y) +8@)f(=y) = f)g(y) +gx)f(y) = fx+y),

for all x and y. For x = :g“', y = %“’ we have f(z) = f(w), and so f is constant, a

contradiction. For f(—f) = —1, we obtain f(—x) = —f(=x)f(=t) = =fx)f@¥) =
— f(x); hence f is odd. It is now straightforward that

flx—y) = f()gy) +gx) f(=y) = f()g(y) — &) f(Y)
and
gx 4+ y) = g(x — (=y)) = g()g(=y) + f(x) f(=y) = g(x)g(y) — Fx)yfy),

where in the last equality we also used the fact, proved above, that g is even.
(American Mathematical Monthly, proposed by V.L. Klee, solution by P.L. Kannap-

pan)

545. Because f(x) = f(x/2) > 0, the function g(x) = In f(x) is well defined. It

satisfies Cauchy’s equation and is continuous; therefore. g(x) = ax for some constant

«. We obtain f(x) = ¢*, withc = e“.
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546. Adding 1 to both sides of the functional equation and factoring, we obtain

T+ +1=G0+Df(y) +1).

The continuous function g(x) = f(x) + 1 satisfies the functional equation g(x + ¥) =
8(x)g(y), and we have seen in the previous problem that g(x) = ¢* for some nonnegativ
constant ¢. We conclude that f(x) = ¢* — | for al] x.

547. If there exists x; such that f{xg) =1, then

1+ f(x — xp)

JO=FGot & —wo)) = =m0 =

1.
In this case, f is identically equal to 1. In a similar manner, we obtain the constan:
solution f(x) = —1.

Letusnow assume that f is neverequalto ] or —1. Defineg : R — R, g(x) = :’%}%
To show that g is continuous, note that for al X,

2f (5
fx) = *Jifix <L
L+ 7(35)
Now the continuity of g follows from that of f and of the function A(t) = }J_L—; on
(—o0, 1. Also,
L+ O+ fOfD)+ 1+ )+ F(v)
gx+y) = =

L= f+y)  fOfM+1-f@x) - f(n)
_IHfe 1+ —_—
= f0) 1= f(yy 88w

Hence g satisfies the functional equation g(x +y) = g(x)g(y). As seen in problem 545,
8(x) = ¢* for some ¢ > 0. We obtain f(x) = <=l The solutions to the equation are

I
therefore

=1

fx)= P

fo =1, fx)=-L

Remark. You might have recognized the formula for the hyperbolic tangent of the sum.
This explains the choice of g, by expressing the exponential in terms of the hyperbolic
tangent.

548. Rewrite the functional equation as

fan) _ f@) | fo)

Xy x ¥
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It now becomes natural to let g(x) = f—‘:—’ which satisfies the equation

g(xy) = g(x) +g(y).

The particular case x = y yields g(x) = 1g(x?), and hence g(—x) = le((=x)) =

Lo (x2) = g(x). Thus we only need to consider the case x > 0.
" Note that g is continuous on (0, 00). If we compose g with the continuous function
h:R — (0,00), h(x) =€, we obtain a continuous function on R that satisfies Cauchy’s
equation. Hence g o h is linear, which then implies g(x) = log, x for some positive base
a. It follows that f(x) = x log, x for x > 0 and fx) = xlog, x| ifx <O.

All that is missing is the value of f at 0. This can be computed directly setting
x = y = 0, and it is seen to be 0. We conclude that f(x) = xlog, jx| if x # 0, and
f(0) = 0, where a is some positive number. The fact thatany such function is continuous

at zero follows from

xl—lﬂ)]-{— x loga = 0,

-

which can be proved by applying the L’ Hopital’s theorem to the functions log, x and
This concludes the solution.

549, Setting vy = z = 0 yields ¢(x) = f(x) + g(0) + h(0), and similarly ¢(y) =
g(v)+ f(O) +h(0). Substituting these three relations in the original equation and letting
2 = 0 gives rise to a functional equation for ¢, namely

d(x +y) = () + () — (f(0) + g(0) + h(0)).

This should remind us of the Cauchy equation, which it becomes after changing the
function ¢ to ¥ (x) = ¢(x)—(f(0)+g(0)+h(0)). The relation ¥ (x+y) = ¥ (x)+¥(y)
together with the continuity of ¥ shows that y(x) = cx for some constant c. We obtain
the solution to the original equation

p(x)=cx+a+p+y, f)=cx+ta gx)=cx+p8, hx)=cx+y,

where «, 8, y are arbitrary real numbers.
(Gazeta Matematicd (Mathematics Gazette, Bucharest), proposed by M. Vlada)

550. This is a generalization of Cauchy’s equation. Trying small values of n, one can
guess that the answer consists of all polynomial functions of degree at most 1 ~— 1 with
ho constant term (i.e., with f(0) = 0). We prove by induction on n that this is the case.

The case n = 2 is Cauchy’s equation. Assume that the claim is true for n — 1
and let us prove it for n. Fix x, and consider the function g, : R — R, g, x) =
flx+x,)— fx)— flxy). Itis continuous. More importantly, it satisfies the functional
equation for n — 1. Hence g, (x) is a polynomial of degree n — 2. And this is true for

all x,,.




590 Real Anal ysis

It follows that FOx+x) = fx)is a polynomial of degree n — 2 for g X
particular, there exist polynomials P, (x) and P(x) such that f(x + D= flx) =,
and f(x +4/2) — f(x) = Py(x). Note that for any a, the linear map from the
space of polynomials of degree at most n — | to the vector space of polynomi;
degree at most 51 — 2, P(x) — P(x +a) - P(x), has kernel the one-dimensiona] .

Qi+ D=0 =Pi(x) = flx+ 1) — f(x).
Q2(x +v2) — 01(x) = Py(x) = Fx+2) = f(x).

We deduce that the functions f(x)— Oi(x)and f(x)— Q>(x) are continuous and peric
hence bounded. Their difference Q1(x)—01(x)isa bounded polynomial, hence cons;
Cons‘equently, the function f(x) — Q(x) is continuous and has the periods 1 and
Since the additive group generated by 1 and +/2 is dense in R, f(x)~ 0,(x) is const
This completes the induction.

That any polynomial of degree at most n — | with NO constant term satisfies
functional equation also follows by induction on 5. Indeed. the fact that S satisfies

equation is equivalent to the fact that g, satisfies the equation. And g, isa polynon
of degree n — 2.

(G Dospinescu)

included in R. One of the endpoints of this interval js finite, call this endpoint a. Withc
loss of generality, we may assume that / — (@, 00). Then as g o S is onto, g(/) =

This can happen only if lim SUP, . 8(x) = oc and lim inf, . g(x) = —00, whi.
means that ¢ oscillates in a neighborhood of infinity. But this is impossible becau

f(glx)) = x2 implies that g assumes each value at most twice. Hence the question h
a negative answer; such functions do not exist.

Second solution: Since g o f is a bijection, f is one-to-one and £ is onto. Note th
f(g(0)) =0. Since & 1s onto, we can choose g and b with g(q) = g(0)—1and g(b) :
8(0) + 1. Then f(g(a)) = a® > 0 and fE&d) =062 >0. Lete = min(a?, b%)/2 :
0. The intermediate value property guarantees that there is an xy € (g(a), g(0)) wit

f(x0) = ¢ and an X1 € (g(0), g(b)) with f(x1) = ¢. This contradicts the fact that fi
one-to-one. Hence no such functions can exist,

(R. Gelca, second solution by R. Stong)

552. The relation from the state
Let us show that S s increasin

ment implies that £ is injective, so it must be monotonic
g- Assuming the existence of 1 decreasing solution £ tc




Real Analysis 591

the functional equation, we can find xo such that f(xo) % xo. Rewrite the functional
equation as f(f(x)) — f(x) = f(x) —x.If f(xo) < xo, then f(f(x0)) < f(x0), and if
f(xo) > xo, then f(f(x0)) > f(x0), which both contradict the fact that f is decreasing.
Thus any function f that satisfies the given condition is increasing.

Pick some a > b, and set Af(a) = f(a) —aand Af(b) = f(b) — b. By adding a
constant to f (which yields again a solution to the functional equation), we may assume
that Af (a) and A f (b) are positive. Composing f withitself n times, we obtain ™) =
a+nAf(a)y and f"(b) = b + nAf(b). Recall that f is an increasing function, so
fU is increasing, and hence f™(a) > f™(b), for all n. This can happen only if
Af(a) = Af(b).

On the other hand, there exists m such that b + mAf(b) = f"™(b) > a, and the
same argument shows that Af(f**~ (b)) > Af(a). But Af(f"~V(b)) = Af(b), s0
Af(b) > Af(a). We conclude that Af(a) = Af(b), and hence Af(a) = fla) —ais
independent of a. Therefore, f(x) = x + ¢, with ¢ € R, and clearly any function of this
type satisfies the equation from the statement.

553, The answer is yes! We have to prove that for f (x) = e, the equation f'g+ fg' =
f’g’ has nontrivial solutions on some interval (a, b). Explicitly, this is the first-order
linear equation in g,

(1—2x)e"g + 2xe’ g = 0.
Separating the variables, we obtain

g 2x
R :l+ i
¢ 2x—1 2% — 1

which yields by integration In g (x) = x+ % In [2x — 1|+ C. We obtain the one-parameter
family of solutions

gx)y=ae'/|2x — 1|, a€R,

on any interval that does not contain %
(49th W.L. Putnam Mathematical Competition, 1988)

554. Rewrite the equation f2 + g2 = "> + g” as
(f+el+(f—g =+ +& -

This, combined with f + g = g’ — f/, implies that (f — g)> = (f' + &')*.

Let x, be the second root of the equation f(x) = g(x). On the intervals I} =
(—00,0), I = (0, x9), and I3 = (xp, 00) the function f — g is nonzero; hence so
is f' 4+ g’. These two functions maintain constant sign on the three intervals; hence
f—g=¢€;(f'+g)onlj forsomee; € {—1,1},j=1,2,3.
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If on any of these intervals f — g = f' + g/, then since f + g = g — f’itfollc
that f = g’ on that interval, andso g’ + g = g’ — g”. This implies that g satisi
the equation g” + g = 0, or that g(x) = Asinx + Bcosx on that interval. Al
f(x)=g'(x) = Acosx — Bsin x.

If f —g =—f" - g onsome interval, then using again f + g=8—f,wef
that g¢ = g’ on that interval. Hence g(x) = C,¢*. From the fact that f=—f',weobt
fx) = Cye™*.

Assuming that f and g are exponentials on the interval (0, x), we deduce tl
Cy = g(0) = f(0) = C; and that Cye™ = 8{xo) = flxg) = Cre™". These v
inequalities cannot hold simuitaneously, unless f and g are identically zero, ruled ¢
by the hypothesis of the problem. Therefore, f(x) = Acosx — Bsinx and g(x)
Asinx + Bcos x on (0, xp), and consequently xo = 7.

On the intervals (— o0, 0] and [xg, 00) the functions S and g cannot be periodic, sin
then the equation f = g would have infinitely many solutions. So on these interv;
the functions are exponentials. Imposing differentiability at O and 7, we obtain B =
Ci=Aonliand C, = —Ae™™ on I3 and similarly C; = A on [, and C; = —Ae~™
I5. Hence the answer to the problem is

Ae™” for x € (~o00, 0],
f(x) = { A(sinx +cosx) forx e (0, 7],
—Ae™ T for x € (, 00),
Ae* forx € (~o0, 0],
g(x) = { A(sinx —cosx) forx € (0, x],
—Ae" " for x € (7, 00),

where A is some nonzero constant.
(Romanian Mathematical Olympiad, 1976, proposed by V. Matrosenco)

555. The idea is to integrate the equation using an integrating factor. If instead we h:
the first-order differential equation (x> + y?)dx + x ydy = 0, then the standard methc
finds x as an integrating factor. So if we multiply our equation by f to transform it in

(f + 1) f + flgg' =0,
then the new equation is equivalent to
(lf“-i— lfzgz)l -0
4 2
Therefore, f and g satisfy

f4+2f2g2=C,
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for some real constant C. In particular, f is bounded.
(R. Gelca)

556. The idea is to write the equation as
Bydx 4+ Axdy + " y"(Dydx + Cxdy) = 0.

then find an integrating factor that integrates simultaneously Bydx + Axdy and
"y (Dydx + Cxdy). An integrating factor of Bydx + Axdy will be of the form
1y~ !¢ (x®y"), while an integrating factor of X" y"(Dydx +Cxdy) = Dx"y" ' dx+
Cx"+1y"dy will be of the form =Ty ==y (xPy©), where ¢ and ¢ are one-variable
functions. To have the same integrating factor for both expressions., we should have

X y”(,bl (XB)’A) = ¢2(nyC)'

It is natural to try power functions, say (1) =17 and (1) = t9. The equality condition
gives rise to the system

Ap —Cq = —n,
Bp — Dg = —m,

which according to the hypothesis can be solved for p and ¢. We find that

Bn — Am Dn—Cm
) = ——————, = ——.
P=3p—BCc 17 AD-BC
Multiplying the equation by Byt = x“"”y*"”(nyC)" and integrating,
we obtain

1
Byt 4 —(xPy©)y*t! = constant,
p+1 g+1 )
which gives the solution in implicit form.
(M. Gherminescu, Ecuafii Diferentiale (Differential Equations), Editura Didacticd
si Pedagogici, Bucharest, 1963)

557. The differential equation can be rewritten as

viny _ oy

¢ €

Because the exponential function is injective, this is equivalent to y'Iny = Inx. Inte-
grating, we obtain the algebraic equation yIny — v = X inx — x + C, for some constant
C. The initial condition yields C = 0. We are left with finding all differentiable functions
y such that

ylny—y=xlnx—x.

B




