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disjoint oriented curves C; and C> in three-dimensional space, parumetrized

134, Fortwo to
’ yand v a(f), define the linking number

—
by v (s

— — — —
K(Cr. C2) lygyg vz e (‘l”‘x‘——-lvz)nd
[ e/ = e T e 5.
W= R P T =g \ds

Prove that if the oriented curves C, and ~C, bound an oriented surface S such
that S is to the left of each curve, and if the curve C, is disjoint from S, then

K(Cp. C) = K(C}. C2).

3.4 Equations with Functions as Unknowns

341 Functional Equations

We will now look at equations whose unknowns are functions. Here is astandard example
that we found in B.J. Venkatachala, Functional Equations: A Problem Solving Approach

(Prism Books pVT Ltd., 2002).
Frample. Find all functions [ R — R satisfying the functional equation
fllx =)= flo)yT = 2xf )+ v
Solution. For vy = 0, we obtain
Flxd) = f07 =200
and for x = 0, we obtain
FOH = FOF+

Setting v = 0 in the second equation, we find that f(0)y =0o0r f(0) = |. On the other
hand. combining the two equalities. we obtain

Flo)d = 26f(0) = fOF + i)
that is.
F? =+ fON
Substituting this in the original equation yields

F = flr=nH 4y _ ot FON? = (x = v+ FO) £

2x 2x

foy) =
=y + f(O.

We conclude that the functional equation has the two solutions f(x) =X and f(x) =
v+ 0
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But we like more the nonstandard functional equations. Here is one, which is 5
simplified version of a short-listed problem from the 42nd International Mathematica}
Olympiad. We liked about it the fact that the auxiliary function A from the solution
mimics. in a discrete situation, harmonicity—a fundamental concept in mathematics,
The solution applies the maximum modulus principle, which states that if 4 is a harmonic
function then the maximum of |/| is attained on the boundary of the domain of definition,
Harmonic functions, characterized by the fact that the value at one point is the average
of the values in a neighborhood of the point, play a fundamental role in geometry. For
example, they encode geometric properties of their domain, a fact made explicit in Hodge

theory.

Example. Find all functions f : 0.1,2,...} x{0,1.2,...} = R satisfying

Yfp+lg—D+fp—1lg+)+1 ifpg#0

flea) =1, e}

Solution. We see that f(1, 1) = 1. The defining relation gives 1,2y =14 f(2, 1)/2":
and f(2,1) = 1+ f(1,2)/2. and hence fR.1H = f(1,2) = 2. Then f(3, 1):
I+ £2.2/2 f2.2) = 1+ fG. /24 f(1.3)/2, f(1.3) = 1+ f(2,2)/2. S0
fQ2.2) =4, f3,1) =3, f(1,3) = 3. Repeating such computations, we eventuallff
guess the explicit formula f(p,q) = pq, p.q = 0. And indeed, this function satisfies
the condition from the statement. Are there other solutions to the problem? The answég

is no, but we need to prove it.
Assume that f; and f> are both solutions to the functional equation. Leth = fi— fa.

Then h satisfies

Yh(p+1,9—D+h(p—1g+1) ifpg#0.

hip,qg) =

Fix a line p + ¢ = n, and on this line pick (po, go) the point that maximizes the value 0
h. Because

]
h(po. q0) = E(h(])o +1,g0— D +h(po—1.g0+ 1),

it follows that h(py + 1.go — 1) = h(po~ L, g0 + 1) = h(po. qo). Shifting the poin!
we eventually conclude that / is constant on the line p +¢ = n, and its value is equal ¢
h(n.0) = 0. Since n was arbitrary, we see that h is identically equal to 0. Therefore, h%
f>. the problem has a unique solution, and this solutionis f(p.¢) = pg, p.g =2 0. |

And now an example of a problem about a multivariable function, from the sam
short list, submitted by B. Enescu (Romania). ‘
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Increase the left-hand side to x -+ JVk: then square both sides. We obtain
Akt ok <k+ka+1 + a7

which reduces 10 0 < (.X\/—]\T — 1)%, and this is obvious. The induction 1s nOw ¢
plete.

535, Find all functions f:R—=>R satisfying
F =y = (= NE @+ FO-

536. Find all complex-valued functions of a complex variable satisfying
f2)+ fl—2)= 14z, forallz.

537. Find all functions [ : R\{1} — R, continuous at 0. that satisfy

X

fxy=1f (———-—) ~ forx € R\{1}.
I —x

538. Find all functions f:R—>R that satisfy the inequality
far+n+f+aF flz+x)z3fx +2y + 32

forall x,y,z € K.

539. Does there exist a function f : R — R such that f(f(x)) = x* — 2 for
numbers x?

540. Find all functions f 1 R — R satisfying
flx+y)= ffO)— € sin X $in ¥,
for all real numbers x and y, where ¢ is a constant greater than 1.

541. Let f and gbe real-valued functions defined for all real numbers and satis
functional equation

flx+y+ - y) = 2f()gy)

for all x and y. Prove that if f(x) 18 not identically zero. and if | f(O] =
x.then g < for all y.

542. Find all continuous functions [ R — R that satisfy the relation

3fRy+ 1= fx)+ 5x. forallx.
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i .\Find all functions f : (0, 00) = (0, 0o) subject to the conditions
@ FUS)) +2x = £(3x), forallx > 03
(i) me—»oo(f(-x) —Xx)= 0. '

4. Suppose that f, g : R — R satisfy the functional equation
' o(x — y) = g8 + FE )

:forx and y in R, and that f(£) = tand g(t) = 0 for some t # 0. Prove that f and
g satisfy

glx +y) = g(x)g(y) — FOfO)
and
flxxy) = fogy £ g(x) f()

‘/forallrealx and y.

A famous functional equation, which carries the name of Cauchy, 18

fx+y)=fO+ f).

We are looking for solutions f : R — R.

tis straightforward that f(2x) =2 f(x), and inductively f(nx) =n f(x). Setting
y = nx, we obtain f (% y) = % f(y). In general, if m,n are positive integers, then
@ =mf)=3f0
~ On the other hand, f(0) = fO) + f (0) implies f(0) = 0, and 0 = f(O) =
fx)+ f(—x) implies f(—x)=— f(x). We conclude that for any rational number x,
fx) = f(Hx.

If f is continuous, then the linear functions of the form
f(x) =cx,

where ¢ € R, are the only solutions. That is because a solution is linear when restricted
10 rational numbers and therefore must be linear on the whole real axis. Even if we
Assume the solution f to be continuous at just one point, it still is linear. Indeed, because
“flx + ) is the translate of f(x)by f(), f must be continuous everywhere.
But if we do not assume continuity, the situation s more complicated. In set theory
];FPCfe is an independent statement called the axiom of choice, which postulates that given
?family of nonempty sets (Aiiel there is a function f : [ —> U, A; with f(i) € A;. In
other words, it is possible to select one element from each set.
Real numbers form an ‘nfinite-dimensional vector space over the rational numbers
k(‘?‘;’efltOrS are real numbers, scalars are rational numbers). A corollary of the axiom of

:‘f-‘ﬁ!“
i

Ly b T e
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choice (Zorn’s lemma) implies the existence of a basis for this vector space. If (¢;);¢; is
this basis, then any real number x can be expressed uniquely as

X =rye, +nre,+ - +re.

where ry, ra. ..., r, are nonzero rational numbers. To obtain a solution to Cauchy’s
equation, make any choice for f(e;). i € I, and then extend f to all reals in such a
way that it is linear over the rationals. Most of these functions are discontinuous. As an
example, for a basis that contains the real number 1, set f(1) = 1 and f(e;) = 0 for all
other basis elements. Then this function is not continuous.

The problems below are all about Cauchy’s equation for continuous functions.

545. Let f : R — R be a continuous nonzero function, satisfying the equation
fx+v)=f(x)f(y). forallx,yeR.

Prove that there exists ¢ > 0 such that f(x) = ¢' forall x € R.

546. Find all continuous functions f : R — R satisfying
fx+y)y=f)+ f)+ f)f(y). forallx,yeR
547. Determine all continuous functions f : R — R satisfying

fod 0 =gy oty e®

548. Find all continuous functions f : R — R satisfying the condition
fxy) =xf(y) +vyf(x), forallx,yeR.
549. Find the continuous functions ¢, f, g, h : R — R satisfying
p(x+y+2)= flx)+gly) + ).

for all real numbers x, y, z.

550. Given a positive integer n > 2, find the continuous functions f : R — R, with the
property that for any real numbers x;, x2, ..., Xy,

Z flxp) — Zf(.\'i +x;)+ Z fxi+x;+x)+-

i<j i<j<k

+ (_])n—lf(xl + x4+ x,) = 0.
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~ Weconclude our discussion about functional equations with another instance in which
. continuity is important. The intermediate value property implies that a one-to-one contin-
gous function is automatically monotonic. So if we can read from a functional equation

that a function, which is assumed to be continuous, is also one-to-one, then we know that
' the function is monotonic, a much more powerful property to be used in the solution.

i Example. Find all continuous functions f : R — R satisfying (f o fo fHx)=xfor

- allxeR

~ Solution. For any x € R, the image of f(f (x)) through f is x. This shows that f is
 onio. Also, if f(x1) = f(x2) then x; = FUS @D = FUF(f(x2) = x2, which

_ shows that f is one-to-one. Therefore, f is a continuous bijection, sO it must be strictly

'“:f'iﬁl:‘monotonic. If f is decreasing, then f o f is increasing and f o f o f is decreasing,
~ contradicting the hypothesis. Therefore, f is strictly increasing.

" Fix x andletuscompare f(x) and x. There are three possibilities. First, we could have
o f(x) > x. Monotonicity implies f(f(x)) > f (x) > x, and applying f again, we have
= f(f(f(x))) > f(f(x)) > f(x) > x, impossible. Or we could have f(x) < x,
* which then implies f(f(x)) < f(x) < x,and x = FOUFFN) < fFUFE) < flo) <
x, which again is impossible. Therefore, f(x) = x. Since x was arbitrary, this shows
that the unique solution to the functional equation is the identity function f(x) =x. O

' 551. Do there exist continuous functions f, g : R — R such that f(g(x)) = x? and
g(fx)) = x? forall x € R?

5§52. Find all continuous functions f : R — R with the property that
2 FFx) —2f(x)+x =0, forallxeR.

'3.4.2 Ordinary Differential Equations of the F irst Order

Of far greater importance than functional equations are the differential equations, be-

- cause practically every evolutionary phenomenon of the real world can be modeled by
 adifferential equation. This section is about first-order ordinary differential equations,
- namely equations expressed in terms of an unknown one-variable function, its derivative,
~ and the variable. In their most general form, they are written as F(x,y.y)=0,butwe

~ will be concerned with only two classes of such equations: separable and exact.

An equation is called separable if it is of the form % = f(x)g(y). In this case we

- formally separate the variables and write

dy [
—_—= dx.
/g(y) fxdx

- After integration, we obtain the solution in implicit form, as an algebraic relation between
x and y. Here is a problem of LV. Maftei from the 1971 Romanian Mathematical
Olympiad that applies this method.

e
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